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ABSTRACT 
 We report the development of a predictive model based on artificial neural network (ANN) for the estimation of 
flank and nose wear of uncoated carbide inserts during orthogonal turning of NST (Nigerian steel) 37.2. Turning 
experiments were conducted at different cutting conditions on a M300 Harrison lathe using Sandvic Coromant uncoated 
carbide inserts with ISO designations SNMA 120406 using full factorial design. Cutting speed (v), feed rate (f), depth of 
cut (d), spindle power (W), and length of cut (l) were the input parameters to both the machining experiments as well as the 
ANN prediction model while the flank wear (VB) and nose wear (NC) were the output variables. Nine different structures 
of multi-layer perceptron neural networks with feed-forward and back-propagation learning algorithms were designed 
using the MATLAB Neural Network Toolbox. An optimal ANN architecture of 5-12-4-2 with the Levenberg-Marquardt 
training algorithm and a learning rate of 0.1 was obtained using Taguchi method of experimental design. The results of 
ANN prediction show that the model generalized well with root mean square errors (RMSE) of 3.6% and 4.7% for flank 
and nose wear, respectively. With the optimized ANN architecture, parametric study was conducted to relate the effect of 
each turning parameters on the tool wear. The ANN predictive model captures the dynamic behaviour of the tool wear and 
can be deployed effectively for online monitoring process. 
 
Keywords: model, ANN, carbide inserts, Taguchi method, tool wear, NST 37.2 steel, turning, cutting speed, machining. 
 
1. INTRODUCTION 

NST 37.2 is a grade of Nigerian commercial 
steels produced by the Delta Steel Company (Asafa, 
2007). The steel is commonly deployed for the production 
of machine components and sometimes as structural 
members in building construction and other architectural 
edifices. With its wide applications in machining 
industries and the requirements for various machining 
operations to produce the desired end results, it becomes 
important to establish an optimized model for the 
prediction of tool wear during turning of this steel. 
Accurate prediction of the tool wear conditions is an 
essential prerequisite for reliable on-line tool condition 
monitoring system (Mursec and Cus, 2003; Cus et al., 
1997) and such a system can be deployed for effective tool 
wear monitoring in our local machine tools industries. 
Without doubt, modern machining system requires tool 
wear monitoring and prediction systems for higher quality 
production. In precision machining, the surface quality of 
the manufactured part can be related to tool wear which 
contributes to the increase in the industrial interest for in-
process tool wear monitoring systems.  

One of the available methods is by the application 
of ANN. Prediction of tool wear/tool life and tool 
condition monitoring has been extensively studied using 
ANN by many researchers (Sick, 2002). Sunil and Sandra 
(2000) considered neural network as a parallel processing 
architecture in which knowledge is represented in the form 
of weights between highly interconnected processing 
elements. More details of ANN can be found elsewhere 
(Ozel and Nadgir, 2002).  

In the present study, ANN is adopted because of 
its several advantages. Among these is its capability to 
learn arbitrary nonlinear mappings between noisy sets of 
input and output data and predicting, with substantial 
accuracy, complex data interactions (Umbrello, et al., 
2008. ANN differs from the traditional modeling 
approaches in that it is trained to learn solutions rather 
than being programmed to model a specific problem 
(Bhatikar and Mahajan, 2002). Also, it is usually used to 
address problems that are intractable or cumbersome to 
solve with traditional methods. A number of applications 
of ANN in tool conditioning monitoring and prediction of 
tool wear and tool life during non-orthogonal machining 
has been reported (Elanayar and Shin, 1990; Elanayar and 
Shin, 1992; Ghasempoor et al., 1999; Sick, 2002; Dimlar 
et al., 1997) or orthogonal turning (Li et al., 1999; Tansel, 
et al., 2000; and Dimlar, et al., 1998). ANN has equally 
been used for monitoring surface roughness (Asilturk and 
Cunkas, 2011) and induced residual stress (Umbrello, et 
al., 2008). In addition, ANN has found huge applications 
in other areas of industrial technology including 
semiconductor industries (Chen et al., 2007), 
transportation (Asafa et al., 2010) among others. ANN is 
often implemented via back propagation, a gradient 
descent algorithm in which the network weights are 
moved along the gradient of the performance function. 
The algorithm computes the weights in the network so as 
to minimize the output error in a least-squared sense 
(Howard and Mark, 2005).  

In the past, Boothroyd and Knight (1999) had 
observed that wear in metal cutting could be in the form 
crater (nose wear) or flank (as shown in Figure-1). Crater 
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wear is the limiting factor for the tool life under very high 
speed cutting conditions because the wear is usually 
severe that the tool edge is weakened and consequently 
fractured. Crater wear occurs on the rake face of the tool, 
changing the tool-chip interface geometry, thus negatively 
affecting the cutting process. The most significant factors 
influencing the crater wear are the temperature at the tool-
chip interface and the chemical affinity between the tool 
and the work piece materials (Ezugwu et al., 2005). Flank 
wear occurs on the relief face of the cutting tool and is 
generally attributed to the rubbing of the tool along the 
machined surface. At high temperatures, abrasive and/or 
adhesive processes are accelerated, thus affecting tool 
material properties as well as work piece surface. Flank 
wear is a mechanically activated wear usually by the 
abrasive action of the cutting tools on the work piece 
material (Boothroyd and Knight, 1999). The severity of 
abrasion increases in cases where the work piece materials 
contain hard inclusions, or when there is hard wear debris 
from the work piece or the tool, at the interface (Ozel and 
Karpat (2005). Flank wear increases with increase in 
cutting time as well as increases in the axial cutting 
distance (Ozel and Nadgir, 2002). The nature of this 
relationship depends on material and process condition. 
 

 
 

Figure-1. Major regions of tool wear during metal cutting 
(Boothroyd and Knight, 1999). 

 
Tool wear are measured directly or indirectly 

(Cuneyt, 2009; Xu et al., 2011). Direct measurement is 
usually carried out by means of optical, radiometric, 
pneumatic or contact sensors in which tool wear is 
measured in term of material loss (Sunil Elanayar and 
Sandra, 2000). This technique can be effectively deployed 
for on-line measurement. The application of the tool 
maker microscopes and the radiometric method help us to 
measure the tool wear directly (Ozel and Nadgir, 2002). 
For example, Ezugwu et al. (2005) measured tool wear on 
ceramic inserts during machining of Inconel 718 by means 
of a travelling microscope. Though direct method is 

widely applied, it is however difficult to implement for on-
line sensing because of the inaccessibility of the tool 
surface during machining (Xu, 2009). 

Indirect method of tool wear estimation has been 
extensively studied as a solution to the shortcomings of the 
direct method most especially for in-process monitoring. 
Matins et al. (1984) used vibration generated during 
cutting process to reveal the state of the tool wear. The 
change in the flank wear has also been monitored by 
means of reduction in the work piece dimensions (El-
Gomayel and Breggar, 1986). The use of acoustic 
emission due to change in sound intensity as well as 
optical method that relies on the changes in the reflectance 
characteristics of the worn tool surfaces has also been 
reported (Kannately-Asibu and Dornfeld, 1992). Also, 
spindle motor current and power have been used to 
estimate tool wear for on-line monitoring (Martins et al., 
1984). Literature shows that tool wear prediction during 
machining of a wide range of steel grades have been 
reported (Ezugwu et al., 2005). However, it appears that 
no study has been conducted in the area of machining of 
NST 37.2. Therefore, developing an optimized ANN-
based predictive model for estimation of flank and nose 
wear of uncoated carbide cutting tools during turning of 
NST 37.2 is the objective of this study. It is our opinion 
that these findings will assist machinists in acquiring a 
priori knowledge of the magnitude of tool wear without 
the usual experimental trials and errors approach. 
 
2. MATERIALS AND METHODS 

NST 37.2 samples were used as the work piece 
material for the orthogonal turning experiment in a full 
factorial design. The outputs of the experiment were used 
to construct the predictive model while the architecture of 
the model was optimized via Taguchi approach using 
signal-to-noise ratio and analysis of variance. Details of 
these steps are discussed in this section. 
 
2.1 Work piece material, cutting tool and tool holder 

Samples of fully annealed NST 37.2 steel bars 
with 25 mm diameter were obtained from Delta Steel 
Company (DSC). The chemical composition and the 
mechanical properties of the steel sample are given in 
Tables 1 and 2, respectively. Uncoated cemented carbide 
inserts produced by Sandvic Coromant® with ISO 
designation SNMA120406 were used as the cutting tool. 
The insert had a square shape with zero clearance angle 
and inbuilt chip breakers. It was rigidly mounted on a tool 
holder with ISO designation PSBNR 3225P15 while the 
holder was clamped to the tool post in an orthogonal 
arrangement. 

 
Table-1. Chemical composition of NST 37.2 (Asafa, 2007). 

 

Element C S Si Mn P Fe 
Composition (%W) 0.33 0.01 0.150 0.69 0.02 98.80 
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Table-2. Mechanical properties of NST 37.2 
(Asafa, 2007). 

 

Properties Average value 
Yield strength (MPa) 245 
Tensile strength (MPa) 342 
Elongation (%) 18 
Reduction in area (%) 15 
Young modulus  (GPa) 199 
Brinell Hardness 49 
Density (g/m3) 8.15 

 
2.2 Machining experiment 

Straight turning was done on M300 Harrison-type 
lathe driven by 3.0 Hp Kapak inductions motor with speed 
range of 40-2500 rpm. Cutting conditions typical of those 
available in the machining industries were used for the 
machining trials. These cutting conditions are listed in 
Table-3. The cutting parameters - cutting speed (v); feed 
rate (f) and depth of cut (d) - were investigated at three 
different levels in a 33 full factorial experiment. Full 
factorial design is chosen to study the interactions between 
the turning parameters.   
 

Table-3. Summary of turning conditions. 
 

Cutting parameters  
Level Cutting speed 

(m/min) 
Feed rate 
(mm/rev) 

Depth of 
cut (mm) 

1 20.4 1.0 0.2 
2 29.1 1.8 0.4 
3 42.4 2.2 0.8 

 
For each of the machining conditions, eight 

passes of 50 mm length of cut were made. At the end of 
each pass, the spindle motor current, nose wear and flank 
wear were measured. Spindle current was measured with 
digital multimeter connected to the electric motor of the 
lathe while the nose and flank wear were measured by 
means of a machine vision system earlier developed at the 
University of Ibadan, Nigeria (Oni, 2007). The tool 
rejection criteria for roughing operation according to ISO 
3685 Standard were used. The criteria directed that an 
insert must be rejected and further machining discontinued 
when any or combination of the following criteria is 
reached: flank wear ≥ 0.7 mm, nose wear ≥ 0.5 mm, or 
catastrophic failure. These values serve as constrains into 
the predictive model. 
 
2.3 Neural network model description  

Here, we discuss the processes involved in the 
data collection, pre-processing and partitioning of data as 
the preliminary stages in ANN development. Then, the 
steps in the architecture design, training as well as testing 
of the neural network performance are explained. 

2.3.1 Data collection and processing  
Input data into the neural networks were obtained 

from the machining parameters used in the full factorial 
experiments. 112 input/output data were used for the 
network training, model validation and testing in a relative 
proportion of 2:1:1. The input vectors were first 
normalized with Matlab function, prestd, in order to obtain 
inputs with zero mean and unity variance. In addition, 
principal component analysis was done with Matlab 
function, prepca, to eliminate those components that 
contribute less than 99% to the variation in the datasets. 
The outputs of the network were later converted to the 
original data format with Matlab function postd. 
 
2.3.2 Neural network design and optimization 

The design of the network architecture requires 
the selection of a number of hidden layers and those of the 
neurons in each of the hidden layer, the training algorithm 
and the learning rate that would minimize the prediction 
error. Figure-2 shows a general architecture of the ANN 
model having five inputs and two outputs as used in this 
work. Taguchi method is used to optimize the number of 
neurons in each of the hidden layers, the training 
algorithm and the learning rate based on the method 
proposed by Khaw et al. (1995). Three training algorithms 
which are Levenberg-Marquardt algorithm, Scaled 
Conjugate Gradient and Bayesian Regularization were 
included in the optimization because of their similar 
performance in some previous studies (Bealle at al., 2010). 
Two hidden layers were proposed since ANN model of 
one layer is usually too weak to accurately predict non-
linear function (Kaw et al., 1995). 
 

Input
layer

Hidden
layer

Output
layer

Cutting speed (v)

Feed rate (f)

Depth of cut (d)

Length of cut (l)

Spindle power (P)

Flank wear

Nose wear

 
 

Figure-2. Schematic illustration of the ANN structure. 
 

The four important parameters of ANN model are 
arranged using the Taguchi’s orthogonal array (Taguchi, 
1993). These parameters are: (A) number of neurons in 
hidden layer 1, (B) number of neurons in hidden layer 2, 
(C) type of training algorithm and (D) learning rate. The 
number of neurons in each of the hidden layers is selected 
based on the mathematical relationship presented by Chen 
et al. (2007) (Table-4). 

Taguchi approach is essentially a statistical 
technique used in experimental study for analyzing the 
relationship between large numbers of design parameters 
with the smallest number of experimental runs (Chen et 
al., 2007). Taguchi used an engineering approach to plan 
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and design optimum experimental runs using orthogonal 
arrays and signal-to-noise ratios. His method is widely 
applicable because of its strengths; it has however been 
criticized for the poor interaction among the processing 
variables. A reviewed article on the strengths and 
limitations of Taguchi’s experimental design approach had 
been published (Maghsoodloo et al., 2004). Generally, 
implementation of Taguchi method requires four basic 
steps. These include (1) brainstorming on the design 
parameters that are important to the process and identify 
the factors as well as the levels of each factor, (2) selecting 
the appropriate orthogonal array (OA) from the published 
table, (3) conducting experiments based on the selected 

OA and analyze the results using signal-to-noise ratio 
(S/N) approach to determine the optimal combination of 
parameters and using analysis of variance (ANOVA) to 
rank the parameters in order of influence/significance and 
(4) conducting a confirmatory experiment using the 
optimal ANN architecture (Hinkelmann and Kempthorne, 
2005). The viability of this approach has been 
demonstrated for selection of ANN parameters for 
designing high quality and robust networks (Asilturk and 
Cunkas, 2011; Chen et al., 2007). In this work, the number 
of input variables (N) is 5 and that of the output variable 
(OP) is 2, each with three levels. The results are presented 
in Table-5. 

 
Table-4. Estimation of number of neurons in the hidden layers. 

 

ANN parameter 

Level Number of neurons in the 
hidden layer 1 

Number of neurons in the hidden 
layer 2 

Level 1 OPN +  2
OPN +  

Level 2 12 +N  3
1212 +

++
NN

 
Level 3 )1( +NxOP  ( ) ( )

3
11 +

++
NxOPNxOP  

 
Table-5. Factor and level for the ANN parameters. 

 

Factor  
Level Number of neurons in 

the hidden layer 1 (A) 
Number of neurons in 
the hidden layer 2 (B) 

Training 
algorithm (C) 

Learning 
rate (D) 

1 3 4 LM 0 
2 11 15 RP 0.05 
3 12 16 SCG 0.1 

 
Table-6. L9 (34) orthogonal arrays and S/N ratio. 

 

Test run Orthogonal array S/N ratio 
1 A1 B1 C1   D1 -25.766 
2 A1 B2 C2 D3 -31.496 
3 A1 B3 C3 D2 -57.066 
4 A2 B1 C2 D2 -23.837 
5 A2 B2 C3 D1 -29.758 
6 A2 B3 C1 D3 -21.393 
7 A3 B1 C3 D3 -22.726 
8 A3 B2 C1 D2 -24.123 
9 A3 B3 C2   D1 -23.897 
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Table-7. S/N ratio and ANOVA. 
 

Level (dB) 
 

1 2 3 
Range Rank DOF1 SS2 Variance % contr3 

A -38.109 -24.99 -23.58 14.52 1 2 384.98 192.49 39.34 

B -24.109 -28.46 -34.12 10.01 4 2 151.14 75.57 15.44 
C -23.761 -26.41 -36.52 12.76 2 2 271.87 135.96 27.78 

D -26.473 -35.01 -25.22 9.80 3 2 170.58 85.29 17.43 

Total      8 7601.54  100 

 

 
 

Figure-3. Response chart for the S/N ratio. 

 
Table-8. The optimized ANN model. 

 

Network 
architecture 

Training 
algorithm 

Learning
rate 

MSE 
(flank 
wear) 

MSE 
(nose 
wear) 

5-12-4-2 LM 0.1 0.0365 0.0467 

 
Table-6 shows the arrangement of 4-factor, 3- 

level design proposed to determine the effect of ANN 
variables on the network performance. For this type of an 
arrangement, 34 (or 81) sets of experimental runs are 
needed for full factorial design while only 9 suffice based 
on Taguchi method. For every experimental run, the 
training section is terminated if one of the following 
stopping criteria is reached: (a) when the mean square 
error (MSE) between the actual and predicted output 

reaches 10-10, (b) when the number of iterations reaches 
2000 and (c) when validation data begin to over fit. A 
typical example of the convergence of the testing and 
training networks for flank wear is shown in Figure-4. The 
best validation performance of 0.041 is obtained after 27 
iterations. The coefficients of regression are 0.98 and 0.99 
for training and testing data, respectively. These 
coefficients are statistically satisfactory. 
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Figure-4. Network performance (a) Network validation with number of epochs 
(b) Regression analysis for training and validation datasets for flank wear. 

 
The MSE of the nine ANN architectures are taken 

as the outputs of the experimental runs and as the inputs to 
the S/N ratios. Depending on the optimization 
requirements, different S/N ratios may be applicable, 
including “lower is better” (LB) - minimum performance 
characteristics, “nominal is best” (NB) - medium 
performance characteristics, and “higher is better” (HB) - 
maximum performance characteristics. Since the value of 
MSE is desired to be as small as possible for both flank 
and nose wear, LB is selected. The S/N ratio is therefore 
calculated from the Eq. (1) (Chen et al., 2007). The results 
are presented in Table-6. 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑

=

iN

u i

j
i N

y
NS

1

2

log10)/(       (1) 

 

Where i = experimental number, j = number of trials, Ni = 
number of trial for experiment i and y is the trial output.   

After estimating the S/N ratio for each of the 
experimental runs (Table-6), the average S/N value is 
calculated for each factor and the corresponding level. 

This is done by taking the average value of the S/N ratios 
for each level and the corresponding factor level. The 
results are presented as a response table (Table-7) and a 
response graph (Figure-3). The optimum parameter 
combination is A3B1C1D3 as highlighted in Table-7. Under 
this condition, the BPNN architecture is 5-12-4-2 with a 
Levenberg-Marquardt training algorithm and a learning 
rate of 0.1 as presented in Table-8. The relative 
contribution of each ANN parameter on the performance 
characteristic of the predictive model expressed as a 
percentage is obtained via ANOVA (Hsu et al., 2008). The 
results, shown in Table-7, indicate that the first hidden 
layer is the most significant parameter contributing ~39% 
to the change in the network performance while the second 
hidden layer is the least with ~15%. The learning rate and 
the training algorithm contribute ~17% and ~27%, 
respectively.  
 
3. RESULTS AND DISCUSSIONS 

Once the optimal level of the design parameters 
has been selected with Taguchi method, we thereafter run 

(a)

(b) 
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a confirmatory test to verify the improvement of the 
performance characteristic using the optimal level of the 
design parameters for the flank wear. The optimal 
combination of the factors level is the test with highest 
value of S/N ratio. The estimated optimum output 

predictedy using the optimal level of the design 
parameters is calculated from (Lin and Chang, 
2003).

( ) )2(
1

∑
=

−+=
k

i
mimpredicted yyyy  

 

Where my  is the global mean S/N ratio, iy  is the mean 
S/N ratios at the optimal level, and k is the number of the 
design parameters. Equation (2) gives -~20dB which is 
greater than -~21dB, the maximum value obtained from 
the orthogonal array. Experiment conducted at the 
optimum design parameters gives S/N ratio of -~20dB 
which is the same as the predicted value and higher than -
21dB. The average prediction errors were 3.7% and 4.7% 
for flank and nose wear respectively. This gives a good 
confidence that the optimal parameters are truly optimal. 
With this level of accuracy, the model performance is 
satisfactory. The higher MSE of the nose wear is attributed 
to the fact that the two outputs were being predicted 
simultaneously and in such a case the output of the ANN 
model is often more accurate for the first output than the 

rest. We thereafter used the optimal ANN architecture to 
predict the outcome of the testing data. The result of the 
model is now compared with the experimental value. 
 
3.1 Model validation 
 Three typical cutting conditions were selected to 
test the accuracy of the model. The results of these tests 
indicate that ANN is a viable tool for prediction of tool 
behaviour. Figure-5(a) shows that the flank and nose wear 
increased as the cutting length increased. This behaviour is 
well captured by the ANN model. It is however obvious 
that increase in flank wear is greater than that of the nose 
wear. This observation can be attributed to the tool nose 
radius (0.6 mm) being less than the depth of cut (0.8 mm). 
The analogy can be correlated to the direct proportionality 
between flank wear and the depth of cut as presented by 
Yongjin and Fischer (2002). However, the nose wear 
exceeded that of flank wear at the condition cutting 
condition when v = 20.42 mm/s, f = 2.2 mm/rev and d = 
0.4 mm as showing in Figure-5(b). This behaviour is 
attributed to the depth of cut (0.4 mm) being smaller than 
the nose radius which subsequently lead to the partial 
engagement of tool nose during the turning operation. At 
higher cutting speed (42.42 mm/s), the flank wear 
becomes higher than the nose wear Figure-5(c) due to high 
temperature generated at high cutting speed. Such a high 
temperature could easily weaken the tool materials and 
thereby enhances tool wear. 
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Figure-5. Comparison of ANN prediction and measured tool wear for various cutting conditions 
(a) v = 20.42 mm/s, f = 1.0 mm/rev, d = 0.8 mm (b) v = 20.42 mm/s, f = 2.2 mm/rev, d = 0.4 mm 

and (c) v = 42.42 mm/s, f = 2.2 mm/rev, d = 0.8 mm 
 

The feature that is common to both the 
experiment and the ANN predictive model is the ability to 
capture the cutting conditions where the resulting tool 

wear violates the standard conditions for tool disposal. 
Few machining experiments were conducted such that the 
resulting tool wear were higher than the accepted values. 
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In the same manner, the predictive model equally predicts 
the cutting conditions at which tool wear constrains are 
violated. This will surely guide machinist on the selection 
of the appropriate turning parameters without violating the 
wear constraints. 
 
3.2 Effects of cutting parameters on tool wear 

Cutting speed is one of the most important 
parameters that influence the development of tool wear 
during machining. Figure-6 (a) and (b) show the 
progressive increase in both the flank and nose wear with 
increase in cutting speed within the experimental 
consideration. Both wear types are linearly related to the 
cutting speed with the correlation coefficients of 0.99 for 
both wear. The increase in tool wear at higher cutting 
speed can be explained by the enhancement of tool 
material diffusion and thermal stress inducement at higher 

temperature. The tool wear are still within the acceptable 
level for the cutting conditions shown in Figure-6. 
Generally, when one of the cutting parameters is 
increased, wear mechanism due to diffusion and adhesion 
is activated. A similar correlation between feed rate and 
dept-of-cut, and process parameters such as cutting force, 
flank and nose wear has been reported (Ezugwu et al., 
2005). The results of the ANN prediction for the influence 
of feed rate on tool wear are shown in Figure-7 (a) and (b). 
Increase in feed rate raises the thermal state of the tool 
with subsequent softening and eventual rise in the wear 
rate. The condition for continuous tool application is only 
satisfied at feed rate of 1 mm/rev for both wear. Higher 
wear is recorded for a feed rate greater than 1 mm/rev. 
This behaviour is also confirmed by Sivasakthivel et al. 
(2010). 

 

  
 

Figure-6. Effects of cutting speed on tool wear (a) flank wear and (b) nose wear. 
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Figure-7. Neural network prediction on the influence of feed on tool wear: (a) flank wear (b) nose wear. 
 

The effect of depth of cut (DOC) on tool wear is 
shown in Figure-8 (a and b). The behaviour of tool wear 
under DOC modulation is in two folds. Between 0.2 mm 
and 0.4 mm, both the flank and nose wear decreased and 
thereafter increased between 0.4 mm and 0.8 mm. Thus 
the wear has minimum values at a depth of cut of 0.4 mm. 

More study is required to identify the reasons for this 
behaviour. A typical tool wear image generated at cutting 
speed of 42.4 m/min is shown in Figure-2. Presence of 
chipping, attrition and abrasion were observed on the 
carbide tools during machining under the conditions 
investigated in this study. 

(b) 
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Figure-8. Effect of depth of cut on tool wear: (a) flank wear (b) nose wear. 
 

 
 

Figure-9. A typical flank wear image generated at cutting 
speed of 42.4 m/min, feed rate f 1.8 mm/rev and depth-of-

cut of 0.8 mm as observed on a tool insert 
(Fadare and Asafa, 2009). 

 
CONCLUSIONS 

We have used ANN to create a predictive model 
for the estimation of flank and nose wear during 
machining NST 37.2. The optimized architecture, obtained 
with Taguchi experimental design, was 5-12-4-2 with the 
Levenberg-Marquardt training algorithm and a learning 
rate of 0.1. The results of ANN prediction show that the 
model generalized well with root mean square errors 
(RMSE) of 3.55% and 4.67% for flank wear and nose 
wear, respectively. With the optimized ANN architecture, 
parametric study was conducted to show the effects of the 
cutting parameters on the tool wear. Generally, the 
magnitude of flank wear was significantly higher than that 
of the nose wear in all the cutting conditions considered 
except at cutting condition (v = 20.42 mm/s, d = 2.2 mm 
and f = 0.4 mm/rev) where the magnitude of the nose wear 
was higher than that of the flank wear. From the 
parametric study, increase in cutting speed accelerates tool 
wear. Increase in the feed rate increased both flank and 
nose wear. Depth of cut significantly affects the tool wear. 
A DOC of 0.4 mm produces least wear for cutting 

condition of v = 42.42 mm/s, f = 1.8 mm/rev and l = 200 
mm. However, minimum wear were obtained for flank and 
nose wear at d = 0.8 mm and 0.2 mm respectively for 
condition v = 29.06 mm/s, f = 2.2 mm/rev and l = 400 mm. 
The ANN predictive model captures the dynamic 
behaviour of the tool wear and can be effectively deployed 
for online monitoring process. 
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