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Abstract: The contribution of this paper to traffic engineering is the application of Laplace Transform to the
quantification of speed control in the modelling of road bumps with hollow rectangular shape. The paper simulates
the behaviour of a vehicle when passing over a series of bumps. In many countries the current practice used for
lowering the vehicle speed is to raise road bumps above the road surface. If a hollow bump is used it may be
economical and offers other advantages over road bumps raised above the road surfaces. The method models the
vehicle as the classical one-degree-of-freedom system whose base follows the road profile, approximated by Laplace
Transform. Then, a traditional vibration analysis is carried out and the isolation factor is calculated. A case study
application is presented to substantiate the model developed. This case indicates how much difference the current
model has compared to other existing models. Therefore, a relationship is established between the characteristics of
the road profile, and the vehicle vibration response. Thus, the model's impact on the vehicle speed control is
specified.

Keywords: Laplace Transform. traffic engineering. vibration analysis. speed limit. accidents prevention.

Laplace DijnU~UmU Kullamlarak Yol C;arpl~malarmm Matematiksel
Modellenmesi

Ozet: Bu maka!enin trafik miihendisligine katkisi cukur dikdtirtgen bicimindeki sekille yo! carpismalannm
modclinde luz kontrolUnlln niceline Laplace d(inll~lImllnlln bir uygulamasrdir. Mable bir seri carpismalar gectiginde
bir tasum davramslan gibi goruntlyor. Bircok Ulkedc ala~ hrzuu azaltmak icin kullamlan su anki uygulama yol
yUzeylerinin ustunde yol carpismalanm arurmaktadir. Egcr bir cukur carprsmasi kullamhrsa, ckonomik olabilir ve
yol yllzeyinin Ustllnde yo! carpismalanm arurmasmdan otc digcr avantajlar Onerir. Tabam yol profilini takip cdcn
birinci derecedcn bagunsiz sistem klasik olarak bir aracm metot modcllcrinc Laplace donU~UmU ile yaklasu, 0
zaman, geleneksek bir titresim analizi yapildi ve izolasyon fakt6rU hcsaplandi, Bu durum cahsmasnun uygulamasi
model gelisirnini karutlamak icin sunulur. Bu durum diger var olan modellerle karsilasurildigmda son modclin ne
kadar Iarkh oldugunu belirtir. Bundan baska, yol profilinin karakteristikleri ve tasit titresirnlerinin kar~l1tgl arasinda
bir iliski kuruldu. Boylece, tasit hrz kontrolU Uzerinde modellerin carprsmasi kesinlikle belirtildi.

Anahtar Kellmeler: Laplace DonU~UmU,trafik muhendisligi, titresirn analizi, 1HZ limiti, kazalann onlenrnesi

1. Introduction

The introduction of road bumps in road networks
has important implications for traffic safety [1-3].
The main purpose of road bumps is traffic calming
as a physical method of traffic control [4]. They
are the most effective measures used to lower the
vehicle speed, encouraging motorists to drive
carefully and to reduce accident numbers and

severity [5,6]. The aim of road bumps is to break
the speed of vehicles (especially the fast ones) in
order to prevent them from going beyond' a certain
limit in some areas [7]. Another goal is to
ultimately reduce the rate of accidents usually
caused by over-speeding. In sum, the development
and implementation of road bump models allows
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control of vehicular speed in different locations. It
provides information on the effects of road bumps
on vehicular systems, and budgetary information
for construction and maintenance purposes. Road
bumps are varied in geometry (Figure I), and are

(a) Conical shape

__ n_n<----
(c) Heaped
rectangular

(e) Combined conical and heaped
rectangular

usually a few meters apart in some communities,
They have a minimum distance of about 10 meters
and a maximum distance of about 100 meters
where other ranges come in-between.

u u
(b) Hollow
rectangular

(d) Combined conical and
hollow rectangular

--u..---n<-----

(f) Combined hollow and heaped
rectangular

Figure 1: Various geometries of road bumps·
has been applied as an approximate function to
evaluate the effective distance between two
consecutive roads bumps. Thus, an opportunity to
utilise other functions such as Laplace Transform
on all possible geometries is created. With thus, it
would be possible to compare results. However, in
order to avoid complexity of analysis, only the

The geometries of road bumps are classified
according to the shapes roads bumps in two
consecutive positions. To the best of the author's
knowledge, the following possible classifications
are available: (i) conical shape; (ii) hollow
rectangular; (iii) heaped rectangular; (iv)
combined conical and heaped rectangular; (v)
combined conical and hollow rectangular; and (vi)
combined hollow and heaped rectangular. The
literature has only accounted for the conical
shaped geometry. Even at this, only Fourier series
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hollow rectangular geometry is treated here. The
result of this is then compared to those on conical
shape, which is available in the literature.
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Depending on the density of traffic, types of
vehicles expected to ply route (i.e. heavy duty
vehicles, cars, lorries, buses, etc.) the minimum
and safest distance between bumps can be
determined [8,9]. Other factors include: the type of
environment (i.e. .residential neighbourhood,
commercial centers), population density,
availability of infrastructure (such as traffic light
and zebra crossing). All these are input factors in
the siting of road bumps in locations. These factors
differ from one location to another. Considerations
are also given to the state of the road, either good
or bad, presence of some organisations,
government agencies such as police station, fire
station, army barracks, etc.

In the construction of road bumps, the
structure must be such that low friction between
the wheels of the vehicle and the road is permitted.
The bumps must be visible from a distance (even
at night) to avoid accidents due to oversight [10].
Where visibility may be poor, road signs could be
erected to inform drivers about the bumps ahead in
order to take precautionary measures. The shapes
of these road bumps are usually sinusoidal and can
be modelled using the sine functions. Computer-
generated images can be made to see the effects of
various parametric changes on vehicle
performance. Parameters such as amplitude,
curvature, and base length can be varied to obtain
optimal system functions. The distance between
bumps is such that when a vehicle passes over it
the vehicle accelerates from zero to a maximum
velocity before experiencing retardation, which
enables the vehicle to safely pass over the bump. It
is assumed that the vehicle has sufficient shock
absorbing device to minimize the shock [II]. The
altitude should not be more than I inch. Some road
bumps are constructed with a flat surface having a
lengthy base while others have short bases. Flat
surface road bumps have an advantage in not being
easily affected by wear at the top surface unlike
the curved surface bumps, which are prone to
erosion especially at the top [12].

Research on road bumps in recent times has
been empirical. The growing research on road
bumps initially focused on the development of
conical-shaped road bumps. The current authors
are concerned with road bumps research with the
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use of Laplace Transform since no reported cases
have been documented on this. Although Fourier
series presents an interesting research method in
road bump design, Laplace Transform may be a
more. exciting tool for mathematical analysis of the
road bump problem. The current work presents a
mathematical model for a hollow rectangular
bump with a particular design that could be used
for effective control of vehicle over-speeding [13].
Practically, this work develops a new set of
quantitative measures that would be valuable to
typical safety professionals and researchers.

The following is a summary of the succeeding
sections. Section 2 presents the necessary notations
and model description. In section 3 the
determination of isolation factor and effective
distance is made' .. The case study is introduced in
section 4 with results illustrated numerically.
Section 5 concludes on the study.

2. The Road Bump-Vehicle Interaction Model

2.1 Notations

The following notations are used in the model:

v linear velocity at which vehicles are
moving over bumps
f frequency at which vehicles are moving

over bumps
A. distance between two consecutive points
on road (wavelength)
T period, which is the time taken to
complete a cycle
h(t) height of undulation ,of the bump at a
particular time "
t, time of oscillations
x vertical displacement of body due to
undulation
k spring constant (stiffness)
lr Isolation factor
ex = 'Y damping force
kx spring force ;
d linear displacement I
L general Laplace Transform notation
(02 natural frequency (rad/s or lis: "
s complex Laplace operator 'i

1. ~,.
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S,J,n, and H constants
Q Laplace operator

2.2 Model development

In considering the pictorial representation
of the road bump shown below, a clear
understanding of the road bump geometric layout

gives us some insight into the governing equations
for the road bump designs which will further point
out its interaction with the mechanical property of
the vehicle suspension system. The 'geometry
discussed in this work is a variance of existing
studies on road bumps in terms of bump geometry.

Figure 2: The road bump geometric shape (hollow rectangular)

, '.
From figure 2, a number of observations

could be made. Firstly, movement of vehicles is
considered over and below the ground surface.
Consideration is given for movement below the
ground surface due to the hollow design of the .
road bump that makes the tyre movement below
the road surface. Secondly, a complete motion of
the vehicle is divided into two stages. Stage 1
considers motion of the vehicle over the rood

~ .
bump while the second stage visualises motions of
vehicle in-between two consecutive road bumps.
From the above consideration, the development of
the governing equations for this road bump
problem presents a challenging mathematical
debate. Therefore, in analysing the periodicity of
the model, we apply the mathematical tool of
Laplace Transform. For the first stage, fl (t) = h,
where t ranges from ° to tl' In considering the
second stage, f2 (t) = 0, where 11< t < T. .

We then have L[F(t)]= ~0..6 [h'e-st.F(t)dt] (1)
1- e

where T is considered as the period of motion, which is the angular velocity, Further analysis of equation
(1) gives

~

st
h 1- e 1

L[F(t)l=~[ ~'e-sthdt+ [e-st.Odt] = ( -TS)
l-e.L I sl-e

This equation (1) represents the Laplace Transforms of the periodicity of the model. It is therefore
used in the determination of the inverse of the Laplace Transforms of equation (2).

(2)
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[;1 [t{1_e-
Sl1

)J= E.[Q_e-(L)s] ='
s(l- e-TS) S

= h [Eo(H(J) - H(t - nT - tl ))] = L-1 (F(s))

E.[i:Q_e-<LlS]= h[i: Q _ e-(i)~]
s n:O n=O S S

(4)

Equation (4»)s the result of the inverse of
Laplace Transform. Now, a relationship between
the vehicular body suspension spring of the vehicle
and the damper (shock absorber) could be

established. Here, vibration analysis of the
problem is described' as illustrated by the diagram
in Figure (3).

X(t)

F(t)

Figure 3: Moving support problem

We could develop a free body diagram for the system as shown in Figure (4).

~
k(x-F) c(x-F)

Figure 4: Free body diagram for vehicle - road interaction system
When the mechanical property of the free body diagram was analysed, equation (5) was obtained so that

-k(X-F)-c(x-F)=mx (5)

By expanding equation (5) and re-arranging, we obtain

.1
mx +cx-i-kx = cF+kF .' (q)

This shows the relationship between damping force, ex, and the spring force, kx. From equation (2),

, L[F(t)]= ~ (1- e-'" )(1- e-
TS)= F(s) = ~L~oQ-e-(Ll ];':;~;·.,H~,·:i';,;:,~~
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L[F1(t)] = SF - Fo' Fo=F(o)
L[F(t)] = F, L[F(t)]= F
F = Fl

L[F1 (t)] = hL~oQ - c'«(') ] - Fo (8)

To know the value of Fo, it was stated in tjle assumption that the road is smooth and that the only major
source of vibration is bump. Therefore, at ~ 0, F(O)= 0 because there is no displacement yet.

L[F1 (t)] = hL~oQ -e'(L)l
Substituting for F and F in equation of motion, dividing through by m, and putting oi = k/rn, 'Y =

chm, we have x + 21* + aJ2X =(2/h + aJ
2h) f (Q - e'(L)s) (9)
2 n..o

Note that 0)2is called natural frequency and y is called the damping factor. But L[x] = S2x: -Sx , - XI'

L[x] = SX:- xo. ' an~ L[x] = x: . Then substituting in equation (9) to get

(S2x:-Sxo -XI)+2r(SX-xo)+lllx=(21h+ alnJf(Q~e'(L)S) (10)
S n=O

"

From the boundary conditions of the system at t = 0, x(O) =Xo = 0, and x \0) = x\O) = 0

Then, (S'x -s., -x.l + 2y{Sx- x'~)+ ",'x ~ (2)h + "': h ).~, (Q - <1'1' )
Knowing that Xo = 0, and XI = 0, we may substitute into the' above equation to obtain

(S2x:- 0 - 0)+ 2r(Sx - xo)+ aix: ~(2/h + aJ
2h)i:(Q - e,(L)S), This reduces to
s ",,0

S2X+2]8X:;aJ2X:=(2/h+ aJ:h l~o(Q-e'(L)S) (11)

Thus, we have eliminated the vertical displacement of body due to undulation, x. It means that

x: = 2th If Q - e ,(L)s ) + 0)2h i:(BQ - Be .(L)S ) (12)
n:ol'M+N M+N n=O

. '
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1
Equation (12) gives an expression for x where, B = [ ]. By using partial fraction method to split

~ M+N.
c D +E 1- + S • This could further be stated as: B = --
s M+N o/S

the equation, we have B = '. [1 ]=
. ; . 'SM+N

s 2y
-a; a;
M+N M+N

If the angular velocity is equal to the
distance between two consecutive points on the
road, that is ro = y, and the square of the angular
velocity equal to the square of the distance
between two consecutive points on the road
(wavelength) (ffi2= i\ it implies that there is no
oscillation in the system. Therefore, the system

(13)

frequency is equal to zero. However, f = 0, and f =
~. The expression between f and T could be
T

written as T = ..!.. Therefore, at f = 0, T = 00, then,
f

However, X = ° as earlier shown. Therefore, if
angular velocity is less than wavelength, it implies
that the square of angular velocity is less than the
square of wavelength. Mathematically, If ro < ,,(,
then ffi2 < i. It means that the system is
overdamped which resulted in no oscillation of the

(14)

(15)

system. It implies that the frequency' at which
vehicles are moving over bumps is equal to zero,

then, period, T = 00 since T = ..!.. However, x = 0,
f

and if angular velocity is greater than the
wavelength, it implies that ffi2 - i > 0. Now, let

ffi2_i = a2, Then from equation (15), x = 2;h f(Q - e'(L)S) + m2h f (BQ - Be'(L}S) (16)
. n~O M+N n~O

where, B = [1 rTherefore x =2;h f(Q-e'LS) + m2hI2(DQ-De'LS) (17)
S M +N n~O\. M +N n,,:O

h D 1 B' ial f ' f DIE GS + N btai •were, = -[ ]. y usmg part! raction or =-[] = - + ,we 0 tam
SP SP S P
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] S 2y
D = B - B(P) - B(P)' Therefore,

• (18)

Converting the equation above from Laplace Transform function of [(s) to function of f(t) by using
Laplace inverse. For simplicity, let Q = e·nTS and P = (s+yi + a2, then:

, .
_ 2hr oo(aQ ae·LS

) aJ2h oo~Q (S-r)eLS 3/Q e'LS (S-r)e'LS3]e'LS)X=-L ---- + -L -- --+-- --- (19)
a n=O P P B n~ S P P S P P .

By further simplification, let J = (t-n'T) and K = (T-nT-t.)

~

2hy f(HJ e'l1 SinaJ - HK e'1J<:SinaK) + " J
a n=O

X= aJ
2

h f (HJ (1- e?' CosaJ - 3HJ e" ) + HK (1- e"'1f<CosaK - 3HK») (20)
B n=O

However it has been defined earlier that T is the

period of the motion ~nd T = .!.. From the Figure
f

2, it can be stated that v = ~, which could be re-
t.

written as d = vt, or t. = dlv, where d is the length

of the rectangular bump in road direction. The

assumption is that v is constant. Therefore the

displacement equation of the system can now be

re-written as:

x- aJ
2

h f(HZ(l-e'~ CosaZ-3e'~)+HY(1-e'ii CosaeY -3e'ii SinaJ»)
B ;'=0

(21) .

I
3. Determination of Isolation Factor and

Effective Distances , ;'11., " . , .
:'1

"

2hy f(HZe',z SinaZ-JYe'ii SinaY) +
a n=O

The equation (21) above represents the
displacement response of vehicular system as it
passes over road with' bumps.
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The literature has determined effective
distances between two consecutive on roads with
bumps using the relationship between velocity,
frequency, and wavelength [3]. The idea is to
measure the liner velocity at which vehicle move
over bumps, then derive the distance (equivalence
of wavelength) form the expression V= fA. This
simple relationship has been extended in the
literature to capture more variables [4]. The
frequency used in the calculation of effective
distance between two consecutive bumps is
usually determined from the values of Isolation
Factor. Usually. It is practically accepted that in
order to determine what frequency is best for
vehicles to travel over road bumps a graph should
be constructed from which corresponding values

frequency and isolation factors could be
interpreted. It is generally accepted that a isolation
factor of 80% and above is considered excellent.

One problem with reading and interpreting
the values of isolation from graphs is the limitation
of inability to alter the component variables of
isolation factor to desired values. The motivation
to have control over the generation of isolation

factor has party motivated this study. 'Thus, an
extension to the 'literature sought have is to
reformulate the isolation factor. A relation factors,
system displacement, and rmid bump
displacement. In the reformulation, it is
acknowledged. That ride harshness isolation
depends greatly on the stuffiness of the tyres, the
sprung mass, loose or damaged components the
friction in the suspension depends moderately on
the unsprung mass and dumping characteristics of
the tyres. Ride harshness isolation is a
measurement of the percentage of the road
disturbance input that is dissipated by the
suspension system. The function, which described
the bump, is a function of distance. This is
obtained by converting the true and velocity of
motion of vehicle to distance. The assumption here
is that the velocity is constant. This is true at the
instance that the vehicle approaches road ·bump. At
this point, the vehicle rides over the road bumps
with a relatively how but constant speed. However,
for some vehicles, the velocity of motion of
vehicle is variable. The formulation of
mathematical model to represent this is beyond the
scope of this paper.

In the determination of isolation factors, a relationship is established between system displacement and
road bump displacement. The expression for the former is stated in equation (21) while that of the later is

System x(t)
in equation (3). Thus, we have the mathematical statement for isolation: Factors as: Ir = = -( )

Road f t

(22)

However, we need to simplify this expression (22) to make it easy to understand. The changes sought in
. 1 d . .

the above expression are to express T as f' t) as V . Also, Y IS expressed as

(t~).In summary, rro = h (f ) = h (f(HZ- HY)).
f n~O n~O

System displacement
Thus, I, = ---=-----=-----

Road bumps displacement

(
- n - d)t- - and Z =. f V' --

= x(t) = equation (21)
f(t) equation (3)

(23)
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. (- ) 1 dAs stated earlier, f(t) = h L(H(t - nT)- H(t - nT - tl)) . By changing T = - and tl = -. The equation
neO f v

can be re-written, giving us f(t) = hC~(HZ - HY))

But if Y = (t - rr - rv); and Z = (t - rr), then

2y f(HZe'l1 SinaZ-HYe'rY SinaY) +
a n=O

([Ph ee ( .' )

L HZ (1- e'IE CosaZ - 3e'~) + HY (1- e'rY Cosa Y - 3e'rY Sina Y)
B n=O ,

ee

h 2JHZ-HY)
nc{)

The equation' (24) represents isolation factor. For
this to be possible, all other variables in the
isolation factor should be fixed, depending on the
vehicles characteristics except frequency, f. Thus,
we state that Ir = F(f). However, from the

v
expression V = fA, we obtain'}." = -, which is a

,.f
component of the effective distance. When d is

v .
introduced as in '}."- d or - - d, we obtain the

f
effective distance.

4. Case Study

In order to substantiate the model with
results, a hypothetical case study is used. This
demonstrates the usefulness of the model where

(24)

the calculations are applied and the whole logic of
the paper is explained. Consider a hypothetical
case of a road called University of Ibadan (Ul) -
Ojoo road located in front of a higher institution.
The road also has many commercial shops and
offices on both sides, making it very busy for
pedestrians. Thus, pedestrian safety on the road is
assumed by installing bumps at designated point so
as to enforce 'speed breaks. Consequently, a
committee has been constituted by the Federal
Government of Nigeria to design, install and
implement road bumps at the desired locations. To
this end, this technical committee wishes to
determine the road bump parameters in order to
determine the cost requirements of labour
materials, and maintenance of the bump (Figure 5).
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M

Road surface

Figure 5: Model example of the road-bump-vehicle interaction problem
"

The application of the mathematical model
presented in this work is made ac; follows. The first
concerns the simulation of values for equation (2)

.and the generation of results. The other application
is the simulation of values for equation (27) and
the generation of corresponding results. The Figure
6 shows the variation.of Laplace Transform index '

with the height of undulation of the bump at a
particular time, t = lOseconds. Using equation (2),
the inverse of the Laplace Transform index is
plotted against the height of undulation ranging
from 0.2m to 3m. It could be observed that the
curve gradually falls from left to right, showjng
that the slope becomes more negative as the height
of undulation of the bump increases.

35
.~ 30
"0c
III 25
E.E ~ 20
(/l Q)

~ .~ 15

2l 10.l)1
a.

5III...J
0

0 0.5 1.5 2 2.5 '3 3.5
Undulation of the burrp (h)

Figure 6: Laplace Transform notation versus height of bump undulation

Figure 7 shows the variation of Laplace
Transform index with time using equation (2). The
vertical axis was obtained using the inverse of
Laplace Transform index while the horizontal axist
is the range of time from 0 to 30 seconds. It could

be observed that between 0 and 10 seconds, the
slope of the curve is negative while the slope is
zero between 10 seconds and 15 seconds. This
trend of negative and zero value of slope is
continued from left to right.
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50

60

--
10

I
-+-L(F(t)) I
___ L'(F(t))

10 15nrm (t) 20

O+-~--~----~----~-----.-----.-----+-----.
o 30

Rgure 7: Laplace Transform notation verse tirm

5

Equation (21), which is an important
equation that reflect the displacement response of
vehicular system as it passes over the road with
bumps is tested with the following values in order
to evaluate its validity: H = 0.1 m, Z = 20, y =
Q,.OOI,a = 0.05, T = O,2s, t - lOs, Y= 4, n = 0, 5,

..<10, 15,20, and 25.
. . For simplicity of computation, let A =

(HZe-,z SinaZ-JYe-l'\' SinaY). Now, A can be

solved for using different values of n. For n = 0, J
= (t - nT) = 0, we have Ao = -0.109. When n = 5,

, and J = 9, As = -0.091. Computation of n = 10, 15,
20, and 25 are obtained as AIO, Al5, A20, and

A25 having values of -0.077, -1.037, -0.884, and-
25

0,731 respectively. Since A = LAn' therefore the
n~O .

sum of all An = -2.93m.
Also,let

D= ¥ [HZ (1- e-rz CosaZ - 3e-rz )+ HY J.
n=O (1- e-rt CosaY - 3e-rt SinaJ)

Also J = (t - nT). By using the values of the
variables earlier introduced i.e. n = 0, J = 10, Do to
D2Scould also be computed. Thus, when n = 0, 10,
15, 20, and 25, with J = 10, 9, 8, 7, 6, and 5, the
corresponding values of Do, Ds, DID, DIS, D20, and
D2S are -45.892, -45.89, -45.90, -45.89, -45.90,

25
and -45.84 respectively. Thus, D = LDn = -

n~O

229.46. It follows thai

25 35

2hr w2h . .
x = --- A + -- D . Assuming that B = 0.650,

a B
w = 0.3 rads', and h = 0.2m, then, x = - 6.38m.
Since X represents the displacement response 9f
vehicular system as it passes over road with
bumps, it could be deduced that the displacement
is in opposite direction since it is negative .

5. Conclusion

The work as attempted to investigate into
the relationship between road bumps at the road
surface and the tyre that rides through the road
bumps with a view to identify some peculiar
characteristics of this interaction. In particular, the
model evaluates the effective distance that should
be installed between two road bumps. This would
help in controlling the speed of vehicles, reduce
noise pollution due to vehicle movement and
sudden break application, and maintain minimum
impact on the vehicles. Previously developed road
bumps are conical shaped as against the hollow
shape presented here. The usefulness of the model
is many-sided. The mere knowledge of the
presence of calming road bumps on the road
instills a sense of discipline in the drivers.
Complex-shaped bumps are sometimes not
periodic'. Thus, they may at best be modelled using
Laplace Transform instead of Fourier series that is
used to model periodic-shaped bumps. Since the
hollow design is used in this work, it seems that
the impact of the road bump on the passing
vehicles is least for the designed bump category.
This would extend vehicle life and make the

--
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vehicle more economical to use. Since the
literature contains publications that solved the
road-bump-interaction problem with the traditional
simple approach of estimating the parameters
based on simple shapes, analysis of complex
shapes of road bumps could be effectively handled
with Laplace Transform which has been used as a
tool for modelling of response of the vehicle
model. The ability to handle complex situations is
a great advantage of using the Laplace Transform.
Engineers would benefit from the analysis by
understanding the possible dimensions of road
bumps. They could therefore design standard road
bumps with related characteristics to the
population of vehicles in the environment in which
the road bump is to be installed.

The paper succeeds in presenting a
mathematical viewpoint for this interacting
surfaces from an extend viewpoint of the
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