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Artificial Neural Network Model for Prediction of Friction Factor in Pipe Flow •
I
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Abstract: Determination of friction factor is an essential prerequisite in pipe flow calculations. The Darcy-
Weisbach equation and other analytical models have been developed for the estimation of friction factor.
But these developed models are complex and involve iterative schemes which are time consuming. In this
study, a suitable model based on artificial neural network (ANN) technique was proposed for estimation
of factor to friction in pipe flow. Multilayered perceptron (MLP) neural networks with feed-forward back-
propagation training algorithms were designed using the neural network toolbox for. MA TLAB"'. The input
parameters of the networks were pipe relative roughness and Reynold's number of the flow,' while the
friction factor was used as the output parameter. The performance of the networks was determined based
the mean on absolute percentage error (MAPE), mean squared error (MSE), 'sum of squarederrors (SSE).,
and correlation coefficient (R-value). Results have shown that the network with 2-20-31-·1 configuration
trained with the Levenberg-Marquardt 'trainlm' function had the best performance' with R-value (0.999),
MAPE (0.68%), MSE (5.335xI0·'), and SSE (3.414xIO·4). A graphic user interface (GUI)with plotting
capabilities was developed for easy application of the model. The proposed model is suitable for modelling
and prediction of friction to factor in pipe flow for on-line computer-based computations.
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form:

The flow of liquid through a pipe is resisted by
viscous shear stresses within the liquid and the rough
internal walls of the pipe. This resistance, which leads
to head loss, is usually measured in terms of the
friction factor (j). The factors that affect the head loss
in pipes are: the viscosity of the fluid being handled;
the size of the pipes; the roughness of the internal
surface of the pipes; the changes in elevations within
the system; and the length of travel of the fluid. Other
factors that contribute to the overall head loss are
resistance through various valves and fittings. In a well
designed system the resistance through valves and
fittings will be of minor significance to the overall

. head loss, many designers choose 'to ignore the head
loss for valves and fittings at least in the initial stages
of a design [II.

Much research has been carried out over the years
and various formulae for estimation of head loss have
been developed based on experimental data. Among
these is the Chezy formula which dealt with water flow
in open channels. Using the concept of 'wetted
perimeter' and the internal diameter of a pipe the
Chezy formula could be adapted to estimate the head
loss in a pipe [21. Chezy proposed a relationship of the

(I)

where P is the wetted perimeter, S is the channel
slope, and A is. the area of flow. The velocity term is ~
expressed as:

:V = cJii (2)

where C is the empirical constant, R is the radius
of the pipe.

The friction factor, f, is an artefact of definition,
arising from the experimental observation that the
pressure drop in a segment of pipe for a type of flow
is proportional to the square of velocity. That is;

(3)

where f is the friction factor, L is the pipe length,
D is the pipe diameter, k is the form loss factor (to
account for bends, entrance and exit losses, valves,
orifices, etc.), p is the fluid density and v is the fluid
velocity. The Darcy-Weisbach [lJ equation is the
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accepted method to calculate energy losses resulting
from fluid motion in pipes and other dosed conduits.
The factors that influence the friction factor include:
Pipe roughness, Pipe diameter, Fluid kinematic
viscosity, and Velocity of flow. The complexity in!,
which results from boundary layer mechanics, obscures
the valid relationship between all the listed parameters,
,and led to the development of several irrational,
dimensionally inhomogeneous, empirical formulas (4J.

The Colebrook (S. 6J equation for estimation of friction'
factor is given in implicit form that can be written in

,3 different forms, as:

Wherefis the friction factor, D is the diameter of,
the pipe, Re is the Reynolds number, e is the
roughness of the pipe.

These expressions were implicit, complex and,
involve iteration scheme, while is to which time
consuming. As a solution to the iteration scheme of
Colebrook's equation, Mondy (7] developed the friction
factor chart, known today as the Moody chart (Fig. 1)

.based on the data from the Colebrook equation.
Although the chart to moody provides a solution to the
implicit Colebrook's equation, the tedious nature of the
graphical solution is major setback to its application.

The artificial neural network (ANN) approach
provides a viable solution to the problem of prediction'
of friction factor in .pipe flow because it is based on'
training not on analytical model and statistical
assumptions. ANN model can be trained to predict
.r esults from examples "and once trained can perform
predictions at very high speed (8J• ANN is an intelligent
data-driven modeling tool that is able to capture and
represent complex and non-linear input/output

'relationships. ANNs are massively parallel, distributed,
processing systems that can continuously improve their
performance via dynamic learning. ANNs are used in
many important applications, such as function
approximation, pattern recognition and classification,

(4)

memory recall, prediction, optimization and noise-
filtering (9J. They are used in many commercial
products such as modems, image-processing and j
recognition systems, 'speech recognition software, data
mining, knowledge acquisition systems and medical
instrumentation, etc.'

ANN is inspired after the biological neural
network. As in nature, the network function is
determined largely by the connections between
elements. You can train a neural network to perform a
particular function by adjusting the values of the
connections (weights) between elements. Commonly
neural networks are adjusted, or trained, so that a
particular input leads to a specific target output
(Fig. 2).

The network weights are adjusted based on a
comparison of the output and the target, until the
network output matches the target. Typically many
such input/target pairs are needed to train a network.
The power of ANN comes from 'its collective
behaviour where all neurons are interconnected. The
network starts evolving: neurons continuously evaluate
their output by looking at their inputs, calculating the
weighted sum and comparing to a threshold to decide
if they should fire. This is highly complex parallel
process whose features can not be reduced to

phenomena taking place with individual neurons in the
network. Neural networks have been trained to perform
complex functions in various fields, including pattern
recognition; identification, classification, speech, vision,
and control; systems. Today neural networks can be
trained to solve problems that are difficult for
conventional computers or humari beings (IO'"J. The
benefits associated with ANN application include (12];

Adaptive learning: An ability to learn how to do tasks
based on the, data given for training or iriitial
experience.

Self-organisation: An ANN can create its own
organisation or representation of the information it
receives during learning time.

!,' Real Time Operation: ANN computations may be
, carried out in parallel, and special hardware devices are

being designed and manufactured which take advantage
of this capability.

Fault Tolerance via Redundant Information Coding:
Partial destruction of a network leads to the
corresponding degradation of performance. However,
some network capabilities may be retained even with
major network damage.

Negm et al. (L6J has applied both the multiple linear
regression, and ANN for estimation of friction factor
external flow over a pile of circular tubes. They
established that the ANN gave a better prediction.
Azimian (17J has also applied ANN to predict the

friction c factor for flow inside a pipe. However, the

(5)

(6)
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Fig. 1: The Moody chart [7)

Fig. 2: Schematic of the neural network

training algorithm, performance criteria and predictive
accuracy were not reported. The essence of this study
was to investigate the feasibility of using ANN to'
model the non-linear relationship in the friction factor
estimation in pipe flow. Hence, the ~odel can be used
to predict the friction factor using the pipe relative
Toughness and Reynolds number as input parameters.
The schematic of the. proposed model is shown in
Fig. 3.

MATERIALS AND METHODS

2.1 Data Source: The data used in this study was
generated using Colebrook's equation (equ. 4). The
initial guess for the iterative scheme was determined

fh:'c::::::rE::(~rJI·
664

(7)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



J. App. Sci. Res., 5(6): 662-670, 2009

J
ZI/l(Z7Z)IZZ/ZZZIZIZZ/Z/1

.,: ~
------..,..~~.

,.,

J

qt.,.LnUD
. ..,.<r"'"

/J

Fig. 3: Schematic of the proposed model for prediction fri~tion factor in pipe flow {l7J

Using Eqns. 4 and. 7, 2,560 values of friction
factor were generated for different values of relative
roughness ranging from 5xlO-6 - 7x10·2 and Reynolds
number ranging from 2.5x10' - 1.0xlO'. The generated
2,560 data constituted the input/output dataset used for
training and testing the neural network.

2.2 Design of the ANN Model; Neural Network
Toolbox for MATLABO {I') was used to design the·
neural network.

The basic steps involved in designing the network
wcrcrCo llectio n/generation of input/output dataset; Pre-
processing of data -(normalization and partitioning of.
dataset); Design of the neural network objects; Training·
and testing of the neural network; simulation and
prediction with new input data sets; and Analysis and
post-processing of predicted result.

2.2.1 Pre-processing of Data: Prior to the training of
the network, the input/output dataset was nonnalized·
using the 'premnmx' MATLABo function. The dataset
was scaled to range between 0 and I. The normalised
input/output dataset was then partitioned into two
subsets consisting training dataset, 75% (1920 data),
and the test dataset, 25% (640 data).

.2.2.2 Design of the Network Object: Multi-layer feed-
forward back-propagation hierarchical networks with
:different architecture were designed using the 'Neural
Network Toolbox' version 4.0.2 for MATLAB [18J. The
networks consisted of three layers: input layer; hidden
. layer; and output layer. There were two input
. parameters into the network: relative roughness and
Reynolds number and one output parameter
'corresponding to the friction factor. Different networks
with single or double. hidden layer topologies were
used. The schematic of typical network architecture is .
depicted in Fig. 4.

2.2.3 Training of the Neural Network: The network
was trained by feeding in some teaching patterns
(training dataset) and letting it change its weights
according to some. learning rule. Four different back-
propagation training .algorithms were used in training
the differenttnetworks: Levenberg-Marquardt' train lm",
Bayesian regularization 'iranibr", BFGS Quasi-Newton
'trainbfg", and Cyclical order incremental 'traininc':
The neurons with tan-sigmoid transfer function 'tansig'
were used in the hidden layer(s), while neurons with
linear transfer function "p urelin' were used in the
output layer. The "purelin' transfer function was used
so that the output would not be limited like the 'tansig'
function which generates output between 0 and + 1. If
linear output neurons were used, the output can take on
any value.

2.2.4 Testing of. the ANN Model: The traimrig was
terminated when the threshold of MSE = 0.001 or
when the number of iterations is equal to 1000. The
test dataset, 25% (640 data) was used to test the
validity of the proposed model. The mean square error
(MSE), sum of square error (SSE) and mean absolute
percentage error (MAPE), and correlation coefficient
(R-value) between the network predicted outputs and
the desired outputs were used as the performance
parameters to determine the network structure with
optimal predictive capability.

RESUL TS AND DISCUSSIONS

3.1 NetworkOptimization: The performance
parameters of the different network structures trained
with four different training algorithms are presented in
Tables 1-4. The table shows the mean square error
(MSE), sum of square error (SSE) and mean absolute
percentage error (MAPE), and correlation coefficient
(R-value) between the networks predicted outputs and
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Fig. 4: A typical design of a multilayer neural network used for prediction of friction factor

Table 1: Performance parameters for different network structures trained with' Bayesian regularization. 'tranibr' algorithm

J

Network Network performance parameters
S tructure --------------------------------------.-----------------------------.------------.-.-------------------.---.------------------------------------------

2-5-1

2-10-1

Fr aining dataset Test detaset

Correlation MSE MAPE (%) SSE Correlation MSE MAPE (%) SSE
Coefficient Coefficient
(R-value) (R-value)
0.996 3.566e-6 4.34 0.006 0.998 2.1 92e-6 5.40 0.001

0.997

0.992

2.534e-6 4.40 1.6690-6 3.97 0.001

0.003

2-5-5-1
--------------------------_.-.-._---------------------------------------~-----------------.--------------- ..-------------------- ..--------------------------------------------

6.035e-52-5-10-1

2-5-15-1

1.000

1.000

1.000

0.005 0.998

6.981 e-6 0.013 6.42

9.493e-5

2.254e-5
----------------------------------------------------------------------.--------------------------------------------------------------------------------------------.

Ll77e-52-10-15-1

2-15-20-1

2-20-30-1

2-20-31-1

1.000

1.000

1.000

1.000

4.8920-66.61 0.995

1.469~-7. 1.28 2.82Ie-4 0.999 1.483e-7 1.31

1.958e-5

1.204e-4

8.09ge-5

--»

1.0970-7 0.89 2.UJ6e-4 0.999 9.42ge-~ 0.78

4.568e-8 0.61 8.77.le-5 0.999 3.5220-8 0.49

1.987e-8 0.38 3.815e-5 0.999 1.840e-8 .0.30

4.010e-8 0.48 7.698e-5 3.05ge-80.999 0.36

3.720e-7 1.46 7.143e-4 0.999 1.881e-7 1.03

1.532e-7 0.99 2.9420-4 0.999 1.2650-7 0.86
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Table 2: Performance parameters for different network structures trained with Cyclical order incremental "tratnc' algorithm

Training dataset Test dntaset

Network Network performance parameters
Structure ------------------------------------------------------------------------------------------------------- •.--.---------------------.-.------------------

J
Correlation MSE MAPE (%) SSE Correlation MSE MAPE, (%) SSE
Coefficient Coefficient
(R-yalue) (R-yalue)
0.935 2.743e-4 75.26 0.527 0.945 2.921 e-4 74.39 0.1872-5-1

2-10-1 0.840 2.057.-4 72.60

2-15-1 0.906 2.099.-4 66.10

2-5-5-1 0,875 3.515.-4 85.62

2-5-10-1 8.950e-4 133.50.911

2-5-15·1 0.918 1.882.-4 62.50

2-10-15-1 0.865 88.513.705e-4

2-15-20-1 0.961 1.705.-5 60.12

2-20-30-1 0,942 57,121,221 e-S

2-20-31-1 2,614.-4 73,28

Table 3: Performance parameters for different network structures trained with BFGS Quasi-Newton 'trainb[x' algorithm

0,927

0,357 0,848 1.905e-4 71.87 0,282

0.403 0,939 1,954.-4 60.94 0,125

0,675 3,578e-4 0,22982,350.883

1.718 0.893 0.5678,853e-4 126,9

0,836 0,922 2,017e-4 61.41 0,328

0,361 3,61Ie-4 0,12983,350,885

0,711 J.,92le-5 0,23162,250.930

1.718 1,321 e-5' 0,5670,950 57,25

0,502 0.921 2.998e-4 75,37 0,192

Training dataset Test dataset

Network Network performance parameters
S tructure -------------:----------------------------------------------------~-------------------------------------7--------------------------- ..----------------

Correlation MSE MAPE ('%) SSE Correlation MSE MAPE (%) SSE
Coefficient Coefficient
(R-yaille) , (R-yalue)
0,997 2,0 II e-s 11.49 0,012 0,979 1.935e-5 12.84 0,0392·5·1

2-10-1 0,976 15.32

, ,

---------------------------------------------------------------------------------------------------------------------------------------------------------------------

0,0152,162e-5

2-15-1 0,977 2.056e-5 12.47

2·5-5-1 0,969 2.726e-5 14.57

2-5-10-1 0,983 1,56ge-5 10.64

2-5·15-1 0,929 12,202, I05e-5

2·10-15-1 0,929 1.811 e-S 10.42

2-15-20-1 0,945 7,555e-6 6.52

2-20-30-1 0,988 4,814.-6 5,67
----------------------------------------------------------------------------------------------------------------------------- .._------------------------------------------_.-

0,0052-20-31-1 0,991 8.478e-6 7,58

--'"

'the desired outputs for the trammg and test datasets.
The network with 2 neurons in the input layer, 10,
neurons in one hidden layer, and one neuron in the
output layer was designated by 2-10-1.

The network structure and the training algorithm,
with the best predictive performance were determined.
based on the performance parameters of the test
dataset. Results have shown that, for networks trained
with' the Bayesian regularization 'tranibr' algorithm,
(Table 1) the correlation coefficient (R-va1ue) and mean,

0.042 0,975 2,2'8ge-5 12.35

0.040 0,978 2,017e-5 14,07 0,013

0:052 0,967 3,088.-5 18,70 0,020

0,030 0,984 1.3 81 .-5 11,20 0,009

0.040 0,976 2:255e-5 15,21 0.014

0.Q35 0,980 1.792e-5 12,51 0,012

0.015 0,0040.985 5.53ge-6 6,22

0.009 0,996 3,16ge-6 4,93 0,002

0.016 0,992 7,366e-6 7,86

absolute percentage error (MAPE) for the test dataset
ranged between 0.995 - 0.999, and 0.30 - 6.42%,
respectively. Corresponding values for networks trained
with Cyclical order incremental 'trainc' (Table 2),
BFGS Quasi-Newton 'trainbfg' (Table 3), and
Levenberg-Marquardt 'trainlm' (Table 4) were 0.848 -
0.950 and 57,25 - 83.35%, 0.967 - 0.996 and 4.93 -
18.70%, and 0.996 - 0.999 and 0.68 - 5.77%,
respectively. The network structure (2'-20-31-1) trained
with the Levenberg-Marquardt' trainlm' algorithm with
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Table 4: Performance parameters for different network structures trained with Levenberg-Marquardt "trainlm ' algorithm

Training dataset Test datas et

Network Network performance parameters
Structure ----------"-------------------------------------------------------------------------------------------------------------------:.------------------

Correlation MSE MAPE (%) SSE' Correlation MSE MAPE (%) SSE
Coefficient Coefficient
(R-value) (R-value)
0.993 6.064e-6 6.39 0.012 e-O 0.996 3.875e-6 5.77. 0.003 0-02-5-1

2-10-1 0.995 4.476e-6 5.41

2-15-1 0.992 3.176e-6 5.10

2-5-5-1 4.137e-7 1.940.997

2-5-10-1 0.995 4.112e-6 4.12

2-5-15-1 0.999 6.95ge-7 2.38

2-10-15-1 0.999 5.5990-7 2.16

.2-15-20-1 1.000 1.384e-7 0.98

2-20-30-1 0.999 1.010e-7 0.82

0.999 4.275e-8 0.51

highest R-value (0.999) and lowest MAPE (0.68%)
.gave the best predictive performance compared with
.other network structures and trammg algorithms
investigated. The comparison between the actual and
the predicted values for the best network structure and
training algorithm is shown in Fig. 5.

3.2 Graphical User Interface (GUI): A graphical user
interface (0 UI), was designed based on the best
network structure and training algorithm, to enhance
the users' friendliness application of the model. The'
GUI (Fig. 6) was designed using the OUI toolbox for
MATLABo. On input ~f the pipe diameter, pipe
roughness and Reynolds number of the flow in the
respective data input windows, the relative roughness.:
is computed internally as the ratio of the pipe
roughness and pipe diameter and the friction factor is
predicted for the given relative roughness and Reynolds
number by clicking the 'calculate friction factor'
button. The calculated relative roughness and friction
factor are displayed in the respective data output'
.windows. Oraphical display of the predicted friction
factor for giventange of Reynolds number was also
incorporated in the OUI. The minimum and maximum
values of the Reynolds number are' inputted in the
respective data input windows and chart is displayed in
the graphing window by clicking the 'plot' button. The
'OUI also allows easy comparison of friction factor.
charts for two or more plots by plotting them together
. using the 'hold' button. The facilities for zooming in

0.008 0-0 3.288e-6 0.002 e-O5.390.996

0.003 e-O 0.995 5.24 0.001 0-0

7.943e-4 0.999 3.720e-7 2.02 2.3820-4

0.008 0-0 0.997 2.71ge-6 3.77 0.002 e-O

0.001 0-0 4.5380-7 2.06 2.9040-40.999

0.001 0-0 0.999 3.3790-7 1.76 2.162e-4

2.6570-4 0.999 1.6490-7 0.94 1.055e-4

1.940e-4 0.999 1.645e-7 0.80 1.053.e-4

8.2080-5 0.999 5.335e-7 0.68 3.414e-4

and out on the chart were incorporated by the 'zoom
in' and 'zoom out' buttons. It is however important to
note that the GUI will work with appropriate accuracy
only when the input parameters are within the range of
the dataset used. in this. study. A pop-up window
showing a warning message is displaced as feedback
when inputted data is out of range.

An illustrative example (Figure. 6) for typical pipe
and flow parameters (D = 0.56, E = 0.009, Re =

45600) shows the relative roughness and predicted
friction factor as 0.01607 and 0.04578, respectively,
while the graphical display shows plots for relative
roughness of 0.0161 and 0.0107 for the Reynolds
number ranging from 3.4x IOJ and 1.04x I 07

•

Conclusions: In this paper, a suitable method for
predicting friction factor in pipe flow using an artificial
neural network is described. The friction factor
prediction is done in a simple way with. no need for
neither analytical nor empirical equation. This model
can predict friction factor using relative roughness and
Reynolds number as input parameters. The validation
of the model was performed with previous data, which
has not been used in the training of the network. The
network structure with 2-20-31-1 configuration trained
with the Levenberg-Marquardt' trainlm' algorithm gave
the best prediction performance with highest R-value
(0.999) and lowest MAPE (0.68%). This accuracy is
within the acceptable level used by design engineers.
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Fig. 5: Comparison between the actual and ANN predicted friction factor using 2-20-31-1 network trained with
Levenberg-Marquardt 'trainlm' (T=ac!ual values; A= ANN predicted values)

Fig. 6: Graphical user interface (GUI) for prediction of friction factor in pipe flow
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