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1. Introduction 

In semiautomated orange fruits canning factories, 
the concept of bouncing ball seems applicable to the raw 
material transformation process in which Gresh h i t s  are 
passed through conveyors from the supply station (feed 
station) on factory floor to an elevated height where proc- 
essed h i t s  are translated, ready for sales to customers. 
The motion of these oranges is similar to a ball constrained 
to an accelerating lift tabletop. As the orange ball drops 
onto the surface of the upward carrying conveyor in slow 
motion, its shape will change dramatidy. When the or- 
ange hits the surface of the conveyor, the bottom of the 
orange becomes flat against the conveyor floor. Then, 
when it bounces up, if returns to its original shape. How- 
ever, the changes in shape are due to a balance of forces 
and energy. 

A great number of research efforts have been 
made on theGbouncing ball problem [I, 21. In other studies, 
the bouncing ball problem has been related to chaos. Tufil- 
lam and Albano [3] study the chaotic dynamics of a bounc- 
ing ball. This. study has however generated some contro- 
versies 141. In addition, in many industries across the 
world, products or raw materials are transported along a 
vertical accelerator. A good case is the movement of or- 
anges for processing into h i t  juice on a conveyor in a 
food-manu- industry. The movement pattern of the 
ball-like orange has energy implications. A study on this 
could be useful in evaluating the amount of energy needed 
to drive the system. This ball moves in a way that could be 
described as a fractal motion. Thus, the current work is 
motivated in modelling the problem as a fractal concept. 

C 

At the initial instant of time, the ball location is at 
the origin. Thus XBO = 0. But the height of the ftee falling 
ball and that of the lift tabletop from origin is 
approximately the same at the instant of first bounce. Thus 

I 1 1  
Eqs. (1) and (2) can be equated as follows: - g? - - aL? = 

2 2 
= xa By re-amkgin& the following is obtained: (g - a') ?= 
= b. Smce this is the time at the first instance when the 
ball is bounced, it is referred to as time 1, i.e. tl. Thus, the 
expression for tl becomes 

However, the total distance moved by the ball at 
the first instance is 

Now, for simulation purposes, it may be neces- 
sary to consider intermediate positions of the bouncing 

1 ball. An important position is - bounce-up position. This 
3 

height is different from the previous XI height and is 
termed 21. This is related to XI as in Eq. (5) as follows 

The starting point in the analysis is to consider Now, if the ball location from datum after 1" Newton's law of motion, which measures theheight of the bore is given as sl, the Eq. (6) is 
l i  from origin. Here, if t is given at the time counter, x the 
height of they& fiom the origin, x,, the initial height of the z,, - XI - z, 
lift and at. the acceleration of the lift. then the current 
height of %e lift from the origin is defink by the equation 
below as Initial d i c e  xm must be changed to 

Given that t l ~  is the time value on the time line or 
time axis when the ball first bounced off the tabletop by 21. 

(1) Thus, the total first bounce period is the difference be- 
tween t~ and t* (i.e. (rl-tlB)) and for a bounce height of 21. 

These two quantities (i.e. (tl-tl~) and zl) are related by 
Now, considering the ball being placed on top of Newon's law for a falling ball under gravity as: 

the table, the same equation of Newton could be used for , 
it. By taking xm as the initial & i c e  of the ball the Ig(tl-rl,)A= z, . By solving for the unknown tlB, this 
top of the lift, g as the acceleration due to gravity. 2 

. Then (7) ie. 
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From this tjme location to the time location for 
the s e c d b a l l  bounce, the time interval is (2- t18) and the 
ball height from origin, is x(t), given as 

At this very point in time (i.e. t) the ball height 
approximately equal the lift tabletop height, both measured 
h m  the origin. Hence we can equate Eq. (8) to Eq. (1) to 
obtain 

This could be W e r  simplified to obtain 

Solve for the unkaown t (i-e. ta the second time 
measure of ball bounce off tabletop) in this ezpression us- 
ing almighty formula 

where A-&-aL; B z - ~ ~ G B  and 

c = g t , , 2 + 2 ( x B O - ~ ) .  

Eqs. (1) to (9) en&Ie us to monitor the ball 
through its fiat and subsequent journey to make a bounce 
off the table top in an iterated fashion, adjusting and reset- 
ting variable, due follow the motion of the ball for the sec- 
ond, third, fourth bounces, etc. and keep record ofz-height 
or time of bounce back for different li% acceleration. Either 
of these will serve as dynamic representation of the inter- 
acting lift tabletop and bouneing ball- The whole idea ex- 
pressed by the nine equations above was packaged in 
F O R W  codes. The graph of the output results was 
found to be fr-1 like (Figs. 1 to 3) as shown in the re- 
sults section. 

3. Results 

The mathem&d model, which is expressed in 
equations, needs to be W e d  empirically to ascertain its 
usellness in practical tern. This is usuaily done by either 
manual c a l W o n  or computerization. Such computerisa- 
tion is used for flexibili in manipulaxing the numbers and 
due to tb number of repetitiveness of steps involved. 
Computer codes are provided in Fortran Language. The 
results of the simulation are as shown in Figs. 1-3. The 
horizontal axis is the parameter change in % of aceeler* 
tion due to gravity whiie the vertical axis is the measured 
quantity befme the end condition of simulation is satisfied. 
This procedure was repeated smoothly along the horizontal 
axis with the results in each round being kept in an output 
file. The Excel-Fortran interadion is involved for importa- 
tion of the simulated data in a named file into the Excel 

environment for graph'ig purposes. Graphs are produced 
in a scattered form. The smoother the transverse on the 
horizontal axis the more detail of the graph. 

Ii! pdcular, four different programmes have 
been written. The first computer programme concerns 'lift 
baIl bounce distance diagram'. The programme first speci- 
fies the initial distance of the lift and its acceleration. men, 
the ball is specified while accelerating under gravity. The 
next step is to specify the distance of the lift and ball re- 
spectively from rest. Incremental variation of lift accelera- 
tion is then considered. This procedure is the same for all 
the programmes with modificasicms in the coding elements 
in order to achieve the set goals. 

Although the x-axis of 811 the three Figs. 1-3 are 
labelled as lift acceleration, which is measured in percept- 
age of gravity, the label on the y-exis f i r  each of the fig- 
ures are different, and are shown as (i) (In) of drop height, 
(ii) number of Bounces, and (iii) time of bounce (normal- 
ised), for Figs. 1,2, and 3, respectively. Fig. 1 displays the 
scattered diagram of the relationship between the drop 
height and the lift acceleration. The shape obtained is bell- 
like and is skewed to the left. The mean of this distribution 
seems to be at 28 units with the sfart and end positions 
along the x-axis taken from 0 to &out 83. For the y-axis, 
the range of values is from 0 to about 0.065 units. The gra- 
dient towards the left side of the graph is about 45.27' 
while it is less for other part of the graph, which is to the 
right. This informs the reader that with small increments in 
lift acceleration, greater value of drop height usually re- 
sults.' 

O l O Z D 3 3 4 0 3 0 6 0 X 1 8 0 W  
Li acceleration in % of g 

Fig. 1 Scattered diagram of (113) of drop height 
& 

Fig. 2 is ogive curve of the number of bounces 
plotted against lift acceleration. It is observed that the 
number of bowices on &e y-axis has a maximum value of 
about 1070 units while it is asymptotic towards the x-axis 
with a- terminal value of about 98 units. The number of 
bounces decrees as the acceleration increases steadily 
until the earlier reaches 75 units. Consequently, the lift 
acceleration moves asymptotically towards zero. From the 

0 20 40 en 80 I W  120 

Li acceleration in % of g 

Fig. 2 Number ofbounces before 10.000 metre covered 
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graph, the gradient of the curve is 3.38". 
Fig. 3 shows the portion the bell shape of the time 

of bounce (normalis@ against lift acceleration. It seems to 
be skewed toward the ri&t with scattered diagram spread 
in from 0 to about 96 units. The gradient of time of bounce 
plotted against lift acceleration is 45.5". This shows that 
increase in lift acceleration also brings almost an equal 
increase in time bounce of the ball. 

.!5 0 20 40 60 80 1 0 0 I Z O  
Lift acceleration in % of g 

Fig. 3 Lift ball next time of bounce diagram 

4. Conclusion 

The importance of understanding the theory be- 
hind bouncing bail falling consecutively on an accelerating 
lift tabletop has been emphasized. Consequently, this study 
investigated the dynamic interaction of accelerating lift 
tabletop h m  the viewpoint of fractal analysis. The 
mathematical model developed was tested with simulation 
results. From the results obtained, the ball bounce-off 
height has a normal distribution shape with fhctal details. 
It is conduded that fractal representation of the problem 
brings a new perspective to its solution; and should be ex- 

$ plored in order to take advantage of this knowledge in its 
application to orange juice production and other apptica- 
tions. 

Notably, understanding the dynamics and kinetics 
of a bouncing ball has both theoretical and practical sig- 
nificance to the researchers and managers in industries 
who are interested in optimal management of energy con- 
sumed during manufacturing processes. Particularly, for 
food industries that utilize ball-shaped objects as in- 
process materials in manufacturing the concept proposed 
here is of importance. Consequently, the motion of the 
bouncing ball on the able-top of an accelerating lift is 
modelled as fractals. This is motivated by the shared- 
characteristics of the bouncing ball and fractals. The model 
formulated is then tested with simulated data in order to 
evaluate its practical dimensions. The results are then plot- 
ted as graphs descriiig the relationship between the set of 
two important parameters indicated. 

W i g  developed the model, there is a need for 
future oldlook of research in the area. Since fractal is an 
already established area, there is a wide army of opportuni- 
ties in applying some advanced fractal techniques and the- 
ory in the promotion of research in this area. Another as- 
pect that readily attracts the development by its integration 
to existing hetal-bouncing ball structure is the application 
of soft computing tools such as fuzzy theory, genetic algo- 
rithm, simulated annealing, artificial neural network, and 
neurofuzzy systems. Efforts could initially be focused on 
the motion of the ball during bounces. 
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VERT1ICIQI;IAI GALIN~IO ATSOKTI KAMUOLIUKO, 
ESAN~IO ANT KELTWO PLOKSTBS, KURI 
GREIT~~DAMA JUDA TA PACLA KRYPTIMI, 
F R A K T A L ~  ANALIB 

R e z i u m e  

lrodyta, kad kamuoliuko at3okimo problema, ky- 
lanti vibruojanEiuose transporteriuose ar virpanEiose tieki- 
mo sistemose yra svarbus reiSkinys sprendZiant tam tikrq 
techniniq sprendimq mnd in imq .  Siame straipsnyje nag- 
rin,ejama kamuoliu& be pertraukos krintanEiy ant greite- 
janeios keltuvo plokstks, athkimo dinamika Modeliuojant 
nustatyta, kad dinarnine ~veilca -tarp viena kryptimi dide- 
janeiu greiEiu judanEios keltuvo plokmts ir ant jos kriitan- 
Eio kamuoliuko atsokimo yra fraktalinio pobiiao. Keltuvo 
plok9t6s pavir3iaus pagreitis kito' tolygiai procentine pri- 
klausomybe (daugiau nei vieno MkstanEio Zingsneliq 
10.000 m atsturnu) nuo pagreieio, atsirandaneio del sunkio 
jkgos, galinei~ at3okti kamuoliukams atsitrenkus i keltuvo 
ploUt6 pavidiq. Tai u w y t a  grafiSkai. Taip pat grafiSkai 
uZfiksuotas keltuvo plokstts pavuSiaus pagreitis treEdaliu 
uZpildZius ji kroviniu. Kamuoliulcq atSokimas gerokai su- 
ma2eja ir arteja prie nulio keltuvo plokgtq 40% uZpildZius 
kroviniu. Karnuoliuky &okimo sumaZkjimo grafikas kinta 
pagal normalini pasiskirstymo desni ir yra"lfaktalinio po- 
b8dZio. Sis tylimas parodo, kad du objektai, pradZioje 
esantys skirtingmse aukSEiuose, veikiami gravitacijos jk- 
gk pasiekia ir atsitrenkia i pavirSiy skirtingame aukgtyje. 
Lygtis, aprdanti at3o'kanf io kamuoliuko diiarnikq ir keltu- 
vo ploHtb kilimq, yta- kvadratinio pobBdEo, taEiau ka- 
muoliuko atSokimo i3nykimas, kintant krovinio aukgfiui 
yra fraktalinio pobiid2io. 

B. Alabi, T.A.O. Salau, S.A. Oke 

FRACTALDYNAMICS OF A BOUNCING BALL ON 
ACCELERATING LIFT TABLETOP BOOTH 
CONSTFWNED TO VERTICAL MOTION 

S u m m a r y  

The bouncing ball problem has proved to be an 
important phenomenon in engineering applications involv- 
ing 'vibro-transportation and vibratory feeder systems. In 
this paper, the dynamics of a bouncing ball falling con- 
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swutively on an accelerating lift tabletop is studied.'Using mme-rca ~ a m o 8  m pernew onpeaenemw Texnxqe- 
simulation, it is established that the dynamic interaction of CKHX w a y .  B m b e  nyYaeTcr maMnKa crrc~orra ma- 
accelerating li tableob constrained to one-dimensional pkllcon novrzxiio nmmuwx Ha nome~nyto ma~y c yc- 
motion on which %I e ball is bouncing is fractal. The accel- KopenneM mmcymeroca nomewma. npn Mogennpoea- 
eration of the lift table top was varied gradually as a per- nnn ycTBHoBneHo, YTO AnIfaMn~eCKoe ~3amioaelic~~ne 
oentage of acceleration due to gravity over one thousand M e w  nosepxwomm man1 c ycKopemieM nmmyaero- 
sops while the number of bounces-off made by the bounc- ca nome- n Ha Hero nammmero c OTCKOKOM mapH- 
ing ball befire the lift table top covered a fall distance of xa HOCW r r p a ~ ~ ~ ~ b ~ b r i i  xapaIcrep. Yc~opeme n n m  
10.000 m was recorded graphically. Similarly, every lift ' nonaeMHHKa 'EisMewoca nocmrmo, c n p o q e m b ~ o 8  
tabletop acceleration has the set of bounceoff height of the sas~lemoc~bm (6onanre .reM oAHa Tarcaqa uamB Ha mc- 
bouncing ball recorded gqhieally, and taken to be one TBELUHH) 10.000 M) OT yc~ope~~lrr  eo3~~~11le ro  OT c m ~  
third of height of fall. The number of bounce off drastically TIWCeCm mapnKoB npn HX ynape Ha nosepxnom man1 
dropped to about zero when the acceleration of the l i i  ta- noffaemmca. Bce nu, 3anncano rpaclm~ecni. rpa@nsecui 
Metop was 40% of acceleration due to gravity. The graphi- ymwoo8neHo ycKopemie n n a ~ b ~   no^^ nljn ee 3a- 
cal presentation of the ball bounce off height has normal nomewti rpy3o~ Ha qem. OTCKOK U I ~ ~ H K O B  3~awma1h- 
disfribution shape with fractal detail. This study showed HO yMeHbnraeTcx n npn-a K ~ y m a  npn san'omie- 
that two objects, initially at different heights, failing under nnn WOM M ~ T H  n o m ~ n m  Ha 40%. rpa@mc OTCKOKa 
gravity, maintain separating heights for the period of their nrapnKoB Memexr no H O P M ~ H O M ~  38~01-y pacnpenene- 
fall. The equation governing the dynamics of the bouncing iw~ n H O C ~  + p w M  xapamp. Mccnegosanw no- 
ball and the lift tabletop are of quadratic type but the ball =am3 wo m a  o6~ema B H a x o m e c r  Ha pa3- 
bounce off height graphical results contain fractal details. H ~ D C  ypo~m npn ~ 0 3 a e 8 c r ~ m  c m  r p a ~ m  ynapa- 

m Ha noBepxnocm. Ha paxioil BMcoTe. Ypmnemie an- 
H- ~03~efiWB~li l'UtaTbr nomeMEulKa c OTc-=- 

6. An&n,T.A.O. Canay, C.A. Orte um OT nee m a p m o ~  a w m r  manpmoii, no W C ~ ~ ~ H O -  
Bexne m e -  OTCICOM mapma npm mMenenm sbicarar 

@PAKTAJI~H~@ d5: IIIAPMKA rpym HOCW @pammHbdi xapamep. 
B E P T ~ ~ C ~ U I ~ H O  oTcKAKM[BAIoryero OT 
nOBEPXHOCW NIATbI nOJ&EMHMKA C Received June 2 1,2007 
YCKoPEHMEM ABHXXI@rOCX B TOM XE 
HAIIFABJIEm 
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