
UNIV
ERSITY

 O
F I

BADAN LI
BRARY

i

A FRAMEWORK FOR DEPLOYMENT OF MOBILE

AGENTS AS WINDOWS OPERATING SYSTEM

SERVICE FOR INFORMATION RETRIEVAL IN

DISTRIBUTED ENVIRONMENTS

BY

BOSEDE OYENIKE OYATOKUN

113798

B.Tech. (Hons), Computer Engineering (LAUTECH), M. Sc. Computer Science

(Ibadan).

A Thesis in the Department of Computer Science

Submitted to the Faculty of Science

In Partial Fulfilment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

 of the

UNIVERSITY OF IBADAN

DECEMBER, 2013

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

ii

CERTIFICATION

This is to certify that this res earch work was carried out by BOSEDE OYENIKE

OYATOKUN with matriculation number 113798 in the Department of Computer

Science, Faculty of Science, University of Ibadan, Ibadan.

Prof. Adenike O. Osofisan

B. Sc (Ife), M. Sc (Georgia Tech.), Ph D (Ife) Computer Science

Professor, Department of Computer Science,

University of Ibadan, Ibadan

--

Prof. G. A. Aderounmu

B. Sc (Hons), M Sc, Ph D Computer Science (OAU, Ife)

Professor, Department of Computer Science and Engineering

Obafemi Awolowo University, Ile-Ife

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

iii

DEDICATION

I dedicate this thesis to GOD ALMIGHTY, my source and inspiration

The memory of my parents Pa Joseph Ogunjumo Oyatokun and Madam Nihinlola

Amope Oyatokun

And

My ‘boys’, My Prince, Oluwatimilehin, MoyosoreOluwa

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

iv

ACKNOWLEDGEMENTS

All glory, honour, praise and majesty to the Lord Almighty through Jesus Christ, for

His love, mercies and favour that I receive each day. Father, you are wonderful,

without you there is no me, I am exceedingly grateful.

My profound gratitude goes to my supervisor, Prof. Adenike O. Osofisan for her

guidance, support and motherly counsel. She made me see possibilities where others

have seen impossibility; thank you so much ma, the good Lord will do you good. I am

indebted to Prof. G.A Aderounmu (OAU), for his persistent zeal to see that the

programme is completed. He devoted his time to attend to me even when not notified

before hand, his comments, suggestions and corrections all added to enrich the value of

this work, thank you so much sir, God will perfect all concerning you.

I sincerely appreciate the Head of Department of Computer Science, University of

Ibadan, Dr. B. A. Akinkunmi for his counsel and advice. I also appreciate the

contributions of Dr. A.B.C. Robert for his comments and provision of literature

materials and Dr. S.O. Akinola for his untiring support at the verge of completion of

the work. I express my gratitude also to Dr. O.F.W Onifade for his support; he read the

first draft of the thesis and made necessary comments. I am sincerely grateful to the

entire members of staff of the department, you have contributed in no small measure to

the success of this work, and God bless you.

I appreciate the Deans of Science and Heads of Department, staff and student of

Mathematical Sciences, Redeemer‟s University and Olabisi Onabanjo University. I

sincerely appreciate Prof. T. Ogunsanwo, who believed in me and spoke in my favour

before I was given the admission, thanks a lot sir, God bless.

My profound gratitude goes to the entire members of Oyatokun‟s family, who have

been there for me and have been supportive spiritually, financially and morally, God

bless you all. I also wish to express my appreciation to my friends and colleagues,

OreOluwayinka, Dr T.O. Olatayo, Mrs M.D Okewole, Mr. M.O. Odim, Dr S.A.

Arekete and many others I could not mention, thanks a million.

My special thanks to my husband, „my Prince‟, you are indeed inestimable and my

lovely children, Oluwatimilehin and MoyosoreOluwa, for their love, support,

understanding, cooperation and encouragement, which have contributed to making this

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

v

work a success, God bless you, make you exceedingly great and perfect all that concern

you.

TABLE OF CONTENTS

CERTIFICATION .. i

DEDICATION ... iii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS ... v

LIST OF FIGURES .. xi

LIST OF TABLES ... xiii

ABSTRACT .. xiv

CHAPTER ONE: INTRODUCTION

1.0 Background of the Study ... 1

1.1 Rationale for the Research .. 5

1.2 Statement of the Problem .. 6

1.3 Research Aim and Objectives ... 7

1.4 Research Methodology .. 8

1.5 Scope and Limitation .. 8

1.6 Arrangement of the Thesis .. 9

CHAPTER TWO: LITERATURE REVIEW

2.0 Introduction ... 10

2.1 Overview of Information Technology.. 10

2.2 Computer Network ... 11

2.2.1 Classification of Computer Networks .. 12

2.2.3 Computer Network Topology .. 14

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

vi

2.3 Software Agents ... 25

2.3.1 Distributed System Paradigms ... 27

2.3.2 Characteristics of Agents ... 34

2.3.3 Types of Agent ... 36

2.4 Mobile Agent Technology .. 39

2.4.1 Strength of Mobile Agent Paradigm .. 41

2.4.2 Issues Associated with Mobile Agents .. 43

2.4.3 Security Issues with Mobile Agent Technology (MAT) 45

2.4.4 Protection Methods Against Security Threats ... 48

2.5 Mobile Agent Platform.. 49

2.5.1 Mobile Agent Platform Architecture ... 50

2.5.2 Mobile Agent Systems Interoperability .. 50

2.5.3 Standardization of Mobile Agent Systems .. 54

2.6 Multi-Agent Systems... 60

2.6.1 Motivation for Multi-Agent System .. 61

2.6.2 The Agent Framework Design ... 63

2.6.3 Mobility Strategies .. 67

2.6.5 Itinerary Implementation Strategies ... 70

2.7 A Survey of Mobile Agents Systems .. 72

2.7.1 JADE: Java Agent Development Framework .. 72

2.7.2 Grasshopper ... 73

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

vii

2.7.3 Agent Tcl (D‟Agents) .. 74

2.7.4 Aglet ... 74

2.7.5 TACOMA: Tromso And COrnell Moving Agents 75

2.7.6 Telescript/Odyssey ... 76

2.7.7 Voyager .. 77

2.8 Windows XP Operating System .. 78

2.8.1 Windows Operating System Service ... 78

2.8.2 Peculiarity of Service Applicationn ... 80

2.8.3 Service Control Manager (SCM) ... 81

2.8.4 Windows XP Service Lifecycle ... 81

2.9 Introduction to Information Retrieval .. 83

2.9.1 Evolution of Information Retrieval ... 83

2.9.2 Overview of Information Retrieval (IR) .. 84

2.10 DISTRIBUTED INFORMATION RETRIEVAL (DIR) 86

2.10.1 Information Retrieval Model .. 87

2.10.2 Boolean Retrieval Model .. 88

2.10.4 Ranked Retrieval Models ... 89

2.11 Mobile Agent Architecture for Information Retrieval 91

2.11.1 Existing Agent Based Information Retrieval ... 93

2.12 Related Works ... 94

2.12 Overview of Proposed Approach .. 99

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

viii

CHAPTER THREE: SYSTEM DESIGN AND PERFORMANCE ANALYSIS

3.1 Introduction .. 101

3.2 The Agent System Model .. 101

3.3 Proposed Embedded Mobile Agent (EMA) .. 102

3.3.1 The Internal Structure of Agent ... 104

3.3.2 Mobile Agent Components .. 106

3.5 The architcture of the proposed system... 109

3.6 Communication Pattern ... 114

3.6.1 Communication at the Initializing Node (Origin) 114

3.6.2 Communication at Remote Host ... 116

3.7 Agent information ... 119

3.9 Mobile Agent Migration.. 121

3.11 Database Design .. 123

3.12 Performance Evaluation .. 125

3.12.1 Service Delay ... 126

Proposed Embedded Mobile Agent (EMA) ... 129

3.12.2 Memory Utilization .. 130

3.12.3 Denial of Service.. 131

3.12.4 Fault Tolerance .. 134

3.12.5 Turn Around Time ... 136

3.13 Conclusion ... 138

CHAPTER FOUR .. 139

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

ix

IMPLEMENTATION AND SIMULATION OF EMBEDDED MOBILE AGENT

4.1 Introduction ... 139

4.2 The System Overview ... 139

4.3 System Components .. 140

4.3.1 Weather manager ... 140

4.3.2 Db server .. 143

4.3.3 Class config .. 143

4.4 The Embedded Mobile Agent (EMA) Implementation 143

4.4.1 Static agent ... 143

4.4.2 Mobile Agent ... 144

4.4.3 Agent server ... 144

4.4.4 Agent Creation ... 144

4.4.5 Agent Removal .. 144

4.4.6 Migration Process .. 144

4.4.7 Agent action ... 145

4.4.8 System Installation Procedure.. 149

4.5 Performance model of the Proposed System and JADE 149

4.6 Simulation and Analysis of Results .. 150

4.6.1 Service Delay versus Number of hosts .. 151

4.6.2 Memory utilization versus the number of nodes.................................... 154

4.6.3 Denial of service versus number of request per service 157

4.6.4 Fault tolerance .. 160

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

x

4.6.5 Turnaround Time ... 163

4.7 Statistical Analyses ... 166

4.7.1 T-Test and Correlation ... 166

4.7.2 Student‟s Independent T-Test .. 168

4.7.3 Interpretation of Results ... 168

CHAPTER FIVE: SUMMARY, CONCLUSION AND RECOMMENDATION

5.0 Introduction ... 173

5.1 Summary ... 173

5.2 Contribution to Knowledge ... 175

5.3 Conclusion ... 175

5.4 Recommendations for Future Research .. 176

REFRENCES ... 177

Appendix A .. Error! Bookmark not defined.

Source Code Listing ... Error! Bookmark not defined.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

xi

LIST OF FIGURES

Figures Page

Figure 2.1: Bus Topology 15

Figure 2.2: Ring Topology 17

Figure 2.3: Star Topology 18

Figure 2.4: Mesh Topology 20

Figure 2.5: Tree Topology 21

Figure 2.6 (a): Star Wired Ring Hybrid Topology 23

Figure 2.6(b): Star Wired Bus Hybrid Topology 24

Figure 2.7: Client/server Paradigm 30

Figure 2.8: Remote Evaluation Paradigm 30

Figure 2.9: Code on Demaand Paradigm 32

Figure 2.10: Mobile agent Paradigm 33

Figure 2.11: Agents Classification 37

Figure 2.12: Types of agents 40

Figure 2.13: Mobile agent system architecture 51

Figure 2.14: SISO itinerary pattern 69

Figure 2.15: SIDO itinerary pattern 69

Figure 2.16: Dynamic itinerary pattern 69

Figure 2.17: Itinerary implementation strategies 71

Figure 2.18: The architecture of Windows XP 79

Figure 2.19: Windows Service life cycle 82

Figure 3.1: Block diagrams the existing and proposed models 103

Figure 3.2: Internal structure of Static agent 105

Figure 3.3: Agent UML Class diagram 108

Figure 3.4: The conceptual model of the proposed system 110

Figure 3.5 Proposed embedded agent as Windows XP operating

 system service 111

Figure 3.6 Overall System Architecture 112

Figure 3.7 Interaction at the initiating host / origin 115

figure 3.8 Interaction at the receiving host 117

figure 3.9 Interactions at the receiving host flowchart 118

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

xii

Figure 3.10 Main loop of mobile agent 120

Figure 3.11 Mobile agent migration flowchart 122

Figure 4.1: Mobile agent control panel 141

Figure 4.2: Weather Manager 142

Figure 4.3: Mobile agent configuration panel 146

Figure 4.4: Searching with temperature range 147

Figure 4.5: Searching with atmospheric condition 148

Figure 4.6: Service delay versus number of hosts on the network 153

Figure 4.7: Memory utilization against number of nodes 156

Figure 4.8: Percentage denial of service for varying number of service 159

Figure 4.9: Failure recovery times for different number of nodes 162

Figure 4.10: Mobile agent turn around times for various

numbers of hosts visited 165

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

xiii

LIST OF TABLES

Tables Page

Table 3.1: Weather relation 125

Table 3.2: Agent environment relation 125

Table 4.1: Service delay for the two schemes 152

Table 4.2: Memory utilization against number of nodes 155

Table 4.3: Percentage denial of service for JADE and EMA 158

Table 4.4: Fault tolerance measured in terms of failure recovery

 times for JADE and EMA 161

Table 4.5: Turnaround times for JADE and EMA systems 164

Table 4.6: Statistics of data 167

Table 4.7: Correlations analysis Table 169

Table 4.8: Sample Test Table 170

Table 4.9 T-Test Sample test 171

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

xiv

ABSTRACT

Mobile Agent Technology (MAT), remote method invocation and remote procedure

calling are the three most widely used techniques for information storage and retrieval

in network environments. Previous studies have shown that MAT provides a more

efficient and dynamic approach to information storage and retrieval than others.

However, for mobile agents to effectively perform their various tasks, a static agent

platform must be installed on the computers. These platforms consume more memory,

increase access time and prevent other tasks from running on the computer. Therefore,

an alternative framework that will eliminate the problems associated with agent

platform is imperative. Consequently, this work was aimed at developing a more

efficient framework for mobile agent system deployment as an operating system

service.

Two classes of existing information retrieval agents were adapted to develop

Embedded Mobile Agent (EMA) system. The EMA was embedded into the Windows

Operating System (OS) kernel, so that it could run as a service for information

retrieval. This was done to eliminate the overheads associated with the middleware

provided by agent platforms. The targeted OS were Windows XP, Windows Vista and

Windows7. Mathematical models were simulated to assess the performance of EMA by

measuring service delay, memory utilisation, fault tolerance, turn around time at fixed

bandwidth with varying number of network nodes, and percentage denial of service.

Denied services were generated by a random number generator modelled after the

Bernoulli Random Variable with 0.1 probability of failure. The model‟s performance

was then compared with Java Agent DEvelopment framework (JADE), a widely used

open-source existing mobile agent system running on platforms. The implementation

was done using four computer systems running the targeted Windows on an existing

local area network. Analysis of data was done using descriptive statistics and

independent t-test at p = 0.01.

The EMA model effectively retrieved information from the network without the agent

platform, thereby reducing access times and saving memory, regardless of the version

of the Windows OS. The mean service delay for EMA (15067.5 ± 8489.6 ms) was

lower than that of JADE (15697.0 ± 8844.5 ms). The embedded agent requires 3 KB of

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

xv

memory to run compared to JADE platform requiring 2.83 10
3

KB. The mean fault

tolerance in terms of fault recovery time for EMA was approximately 50% that of

JADE (327.8 ± 193.1 ms). The mean turn around time for EMA was 499.7 ± 173.0 ms

and JADE was 843.3 ± 321.6 ms consequential to the time JADE spent activating

platforms. The mean percentage denial of service for EMA was 14.3 ± 9.8 while JADE

was 24.7 ± 18.5. Memory requirements and service delay increased with increasing

number of nodes while others show no systematic change. For all the parameters

tested, there were significant differences between the two schemes.

The embedded mobile agent provided more efficient, dynamic and flexible solution

compared to Java Agent DEvelopment framework for distributed information retrieval

applications. It could be incorporated into new versions of operating systems as

operating system service for universal distributed information retrieval.

Keywords: Mobile agent technology, Embedded mobile agent, Operating system

service, Java agent development framework.

 Word count: 497

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

1

CHAPTER ONE

INTRODUCTION

1.0 Background of the Study

Information is an essential component of any establishment; their survival depends

largely on information production, dissemination, consumption and sharing.

Information technology has made it possible to access and use information from

different sources regardless of their physical location and this is achieved by the

increased penetration and use of the Internet (Dale and DeRoure, 1997). Technological

advancements bring with it a technological change in businesses and system

operations, and information access requirements have given rise to an environment

where computers work together to form a network (Seng, 1999).

 Computer network is a set of interconnected autonomous computer systems that

allows computing resources to be shared (Ferouzan and Fegan, 2007). Shared resources

could be data, files, and services like database systems, e-mail services or hardware

like printer, modem and so on. The use of computers to form networks results into

distributed systems. A distributed system is a computing facility built with many

computers that operate concurrently, are physically distributed, have their own failure

nodes, have independent clock and are linked by a network (Ashvin, 2004). Adewunmi

(2002) described distributed system as a generalised transparent system consisting of

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

2

collection of sites connected by a communication network, over which processing logic

and/or data is shared based on usage. In distributed environments, each computer is

capable of communicating with the others, programs running on each computer can

share information and request task to be executed. Some of the objectives of distributed

systems are to connect users in open and scalable manner, to make resources easily

accessible and reasonably hide the fact that resources are distributed across network

(Tanenbaum and Steen, 2007). Distributed systems increase reliability and availability

of services, resources can be shared by all computers, increase the speed of processing

compared to the old centralised system, reduce communication costs, and have high

processing capacity and are expandable (Tanenbaum and Steen, 2007). Distributed

systems assume a static configuration of execution environment, and various

distributed applications running on a node are bound to such node. This assumption

was confronted by developments that introduced mobility in the distributed systems.

This form of mobility dynamically changes the locations of the components of an

application; this is often called code mobility (Picco et al., 2001). Code mobility is a

concept that involves communicating entities in a mobile code systems exchange

programs instead of simply data (Fuggetta et al., 1998). The essence of code mobility

is to transport some resource-accessing mobile code units from one host to another, and

then execute these code units on the resource-bearing host (Fong, 2003). Distributed

operating systems employ process migration mechanisms, allowing an operating

system process to move from one machine to another and resume execution, the

migration is transparent. Code mobility offers a lot of advantages to distributed

systems, among the numerous advantages are: support for deployment and upgrade of

distributed applications, services on the systems can be customized, it improves the

robustness of the system to failure and provides support for disconnected operations

(Fuggetta et al., 1998). In distributed systems, services can be executed when all the

elements required are located at the same host, i.e. resources, know-how or procedure

and computational capability are on the same host. The most widely used paradigms

for distributed applications are client/server, remote evaluation and mobile agent

paradigms (Vitek, 1997; Lange, 1998; Neeran and Anand 1998; Bellavista et al.; 2000

and Bellavista et al., 2001).

The client/server paradigm dominated the scene for a long time (Seng, 1999; Braun and

Rossak, 2005). In this arrangement, there is a server that contains resources and it is

willing to share the resources with others that may need them and a client that requests

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

3

resources or services (Lange, 1998). Each request/response has to be a complete round

trip on the network. Several technologies supported the client server paradigm, such as

the Object Request Broker‟s CORBA, Remote Procedure Call (RPC) and Remote

Method Invocation (RMI) (Lange, 1998). According to Aderounmu et al. (2006), the

last two technologies have particularly improved this paradigm. In RPC, the client

calls a remote procedure over a socket connection using protocol known to both

parties, as if it were a local procedure. RMI is an object oriented version of RPC, in this

case, clients invoke remote objects of the server as if it were a local object running in

the same virtual machine (Oyatokun, 2004).

Remote Evaluation Paradigm (REV) was proposed as an alternative to client-server

and was first introduced as a concept by Stamos and Gifforf in 1990 (Neeran and

Anand, 1998; Bohoris, 2003). The client in REV has the necassary procedure but lacks

the processing capability and resources. The remote evaluation involves transmission

of the code containing the required logic with initial parameters from the client

computer to the server for execution and the result of the execution is returned to the

client computer (Bohoris, 2003).

Another model is the Code on Demand paradigm (CoD), in which the client has the

processing capability and local resources but does not have the procedure to access and

process the resource (Lange, 1998). The procedure is obtained from the server when

needed and execution begins on the client as soon as it receives the procedure. CoD has

not received so much attention in recent times because of the non-availability of code-

servers.

Further steps from the client-server introduced mobile agent technology from the

software agents in the field of artificial intelligence. Mobile agent paradigm consists of

a named object that migrates through the network with its code, data and authority of

its owner (Wenjuan et al., 2009). Mobile agents once dispatched from their origin, are

detached from the origin and can make multiple hops before returning to the origin

with the results of the computation (Lange, 1998).

The client/server paradigm relies so much on the network connections between the

server and client, in which case the network connection has to be maintained

throughout the period of communications. Whereas, technology has evolved over the

years to favour connectionless systems, the introduction of wireless systems and

mobile computing e.g. the mobile phones, PDA and other handheld devices do not

favour connection oriented system. In this part of the world, network connection is

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

4

unreliable and inconsistent, these and the fact that distributed systems have increased in

complexity and size do not favour client/server paradigm. Mobile agent paradigm was

proposed as an alternative to client server paradigm for distributed applications

(Aderounmu, 2001; Seng, 1999; Dale and DeRoure, 1997). It offers flexibility on the

reliance on network connection (Aderounmu, 2003), once launched, can be

disconnected, it keeps performing its tasks and can be reconnected to receive the result

at a later time (Dale and DeRoure, 1997). Mobile agent is an object that migrates

through many nodes of a heterogeneous network of computers under its own control in

order to perform tasks using resources of these nodes (Roberto, 2001). Biermann

(2004) defines mobile agents as autonomous software capable of performing

computational tasks on behalf of another software or human user. In the distributed

system research community, it is widely accepted that, mobile agent is a named object

that has code, persistent state, data and a set of attributes (e.g movement history,

authentication keys) and can move or transport itself from one host to another as

needed for accomplishing its tasks (Lange, 1998; Roberto, 2001). Outtagarts (2009)

defines mobile agent as a computer entity capable of reasoning, use the network

infrastructure to run in another remote site, search and gather the results, cooperate

with other sites and return to its home site after completing the assigned tasks. Mobile

agents paradigm provides infrastructure for executing automous agents and also

migrate them between computers connected by a network. Mobile agents have been

defined differently by different researchers, but all have agreed that mobile agents have

code, certain data and can move from node to node using an existing network

infrastructure.

Mobile agents offer an improved performance in managing distributed systems,

facilitate access to multiple information sources and facilitate scalability (Seng, 1999;

Finin and Nicholas, 2000; Aderounmu, 2001; and Roberto, 2001). Mobile agents have

the potentials to improve the speed and efficiency of computation by moving

computation to data, thus eliminating unnecessary and massive data transfer over the

network. According to Sridhar and Vikram (2001), they are viable tools when

information needed is vast and widely distributed, and in applications or services that

need to learn and improve over time.

 Mobile agent paradigm has been recognized as a viable tool and a promising approach

for building distributed applications (Aderounmu, 2001; Bellavista et al 2001;

Aderounmu et al, 2006; Stoian and Popirlan, 2010). Agents solve complex software

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

5

problems in distributed environments where protocols, operating systems, hardware

and runtime environments are heterogeneous. Mobile agent has been successfully

applied to many distributed applications such as information retrieval and management,

electronic commerce, network management, supply chain management and a lot more

(Outtagarts, 2009). Meanwhile, there are some major setbacks affecting mobile agent

that have prevented it from being widely employed. These include; security,

complexity and lack of standard (Fortino and Russo, 2003, Tudor et al., 2004). The

complexity and sophistication naturally led to several attempts to simplify and extend

agents‟ functionality, thus attention shifted to enhancing specific aspects of agents and

providing necessary security for mobile agents, agent platforms and hosts on which

they execute. The versatility of mobile agent paradigm also increased research interest

in enhancing mobile agents in the area of agent communication and agents‟ structure so

as to extend their functionalities. However, mobile agents operate only on computers

with the agent platform previously installed, which consumes more memory, increases

access time and prevents other tasks from using the visited computer. This study

focuses more on developing an approach that eliminates the use of agent platforms and

make agents interact directly with the operating system on the host computer, to

eliminate the overheads associated with agent platforms.

 1.1 Rationale for the Research

The explosion in the information available in widely dispersed locations through the

use of Internet and the exponential increase in the number of users require an efficient

and rapid way to store and retrieve the information (Dale and DeRoure, 1997). Mobile

agent technology has been adopted to store and retrieve information efficiently and

quickly from widely dispersed users (Clark and Lazarou, 1997; Htoon and Thwin

2008). The existing mobile agents require that an agent platform be installed on the

computer on which they are expected to run. These platforms consume memory,

increase access times, prevent user from performing other tasks on the computer and

the mobile agents are limited in operations to the platforms on which they are bound to

operate. There are a number of these platforms; unfortunately, these platforms are not

usually interoperable with one another, in the sense that, mobile agent built on one

platform cannot operate on another platform (Pinsdorf and Roth, 2002; Zeghache et al,

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

6

2002; Grimstrup et al, 2002). Thus, the flexibility, scalability and interoperability

expected of mobile agents in distributed environment are challenged. This necessitates

a new way of deploying mobile agents that could perform their tasks without going

through agent platform. To reduce the heavy reliance of mobile agents on agent

platforms installed on the computers, mobile agents can be made to interact directly

with the Operating System, since all computers run an Operating System.

The direct interaction of mobile agents with the Operating System has several

advantages compared to the existing ones interacting with agent platforms. These

include:

 Reducing the memory requirements for the entire system by eliminating

installation of mobile agent platforms which resides in the memory

 Reducing the access time for mobile agents to perform their tasks via direct

access to the Operating Systems and eliminating the time required to activate

agent platform.

 Reducing the number of denied services in the overall system, since Operating

System runs continuously, operating system services are privileged programs

that could run in real time.

 Increasing the fault tolerance capability and robustness of the system, taking

advantage of the auto-safe and auto-recovery facilities provided by the

Windows operating System.

 However, the computer system through the Operating System is vulnerable to

malicious agents‟ attack, thus requiring additional security component at an

additional cost.

Based on the above advantages that outweigh the disadvantages, this work proposed an

embedded mobile agent for information retrieval.

1.2 Statement of the Problem

Major challenges in information retrieval are efficiency and effectiveness of retrieval,

in other words, retrieving relevant documents in real time and with minimum cost

possible. Development of a distributed information retrieval system requires more

efficient technologies to ensure real time retrieval of relevant information. Features

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

7

such as efficiency, effectiveness, precision and recall should be related to all retrieval

with distributed information retrieval systems.

To deal with the ever increasing amount of information available on the Internet,

mobile agent technology has proved to be effective (Clark and Lazarou, 1997).

However the complexity of mobile agent technology raises certain issues on scalability,

reusability, interoperability and fault tolerance. The restriction placed on mobile agent

by the agent platform that must be previously installed on the computer before mobile

agent could execute is a great challenge.

To deal with the problem of lack of interoperability, the embedded mobile agent offers

the possibility of mobile agents interacting directly with the Operating Systems on the

computers they are to run. The existing mobile agents require agent platforms to be

previously installed in the computers on which they are to run; this agent platform

needs to be explicitly initiated before receiving and providing runtime execution for

incoming mobile agents and could executes only mobile agents designed specifically

for it.

Embedded mobile agent takes advantage of the fact that all computers run an operating

system and attempts to make agents part of the operating system. The kernel mode of

the operating system (specifically Windows Operating System) is extended. The focus

of this research is to eliminate the static agent previously installed in memory and make

mobile agents interact directly with the operating system. To achieve this, a lightweight

static agent is made available to run in the kernel mode as part of Windows O/S in

form of operating system service.

1.3 Research Aim and Objectives

The aim of this research is to formulate a robust framework for mobile agent system

deployment as an operating system service for information storage and retrieval

capable of accessing heterogeneous information in a distributed environment.

The specific objectives are to:

a) formulate an enhanced architectural model for mobile agents that can be

embedded into the kernel mode of windows operating system

b) deploy the mobile agent designed in (a) through the operating system without

passing through the agent platform

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

8

c) develop a model for information retrieval with a view to specifying

performance parameters

d) develop an information retrieval performance model and measurement factors

based on (c) above.

e) simulate the performance measurement factors based on (c) and (d) above.

1.4 Research Methodology

This study was executed in phases and the objectives are achieved through stages.

Several techniques were combined to achieve the set objectives, among which are

literature review, design, implementation, experimentation and evaluation of the

proposed embedded mobile agent. They include:

a) An extensive review of existing models for information storage and retrieval

and mobile agent technology.

b) Developing an enhanced mobile agent model for information storage and

retrieval.

c) Specification of the various performance parameters such as:

 Memory utilization

 Service delay

 Fault tolerance

 Denial of service

 Turn around time.

d) Simulation and program development to implement (b) and (c) above using

object oriented programming language specifically Java.

e) Performance evaluation of the developed system with an existing system was

carried out.

1.5 Scope and Limitation

This work covers the design and implementation of embedded mobile agent for

distributed information retrieval. A static agent was provided and embedded in the

kernel mode of the operating system, as an operating system service, the targeted

Operating Systems was Windows XP and was extended to Windows Vista and

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

9

Windows 7. The popularity of Windows Operating system in this part of the world and

the opportunity Windows provide for programmer to make software available in its

kernel mode motivate the choice of Windows. An attempt is made to extend the

services of Operating System at the kernel mode and not to program the operating

system. This work however does not cover security of operating system, and the

implementation is limited to a local area network.

1.6 Arrangement of the Thesis

The rest of the thesis is arranged as follows: Chapter two contains an extensive and

state-of-the-art review of relevant literature which includes the theory of mobile agent,

existing systems of mobile agents for information retrieval, existing agent platforms.

The theoretical aspect of information retrieval and different methods of retreival as

well as work related to this topic are reviewed. The design of the proposed system is

presented in chapter three, which include the architecture of the proposed system, the

structure of the enhanced agent as well components interactions. The implementation

of proposed system is presented in chapter four, a demonstration of the functionality of

the proposed system is also presented. Chapter four also presents the performance

evaluation of the proposed system against that of an existing system, the results of the

performance are presented in graphical form for the simulated criteria, which are

service delay, memory utilisation, denial of service, fault tolerance, turn around time

and is followed by discussion of results. Chapter five concludes the work, summarizes

the main discussions and contribution of the work and makes suggestions for further

research.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

10

CHAPTER TWO

LITERATURE REVIEW

2.0 Introduction

This chapter presents the background concepts of the work and state of the art review

of literature on information retrieval, software agents and theoretical aspects of mobile

agents. These include a survey of the existing agent systems for information retrieval,

existing agent platforms, and some deficiencies in the existing systems that motivated

the need for this study. This chapter is aimed at describing information retrieval

systems using the mobile agent paradigm and introduce the central focus of this

research.

2.1 Overview of Information Technology

Information technology (IT) has become an important and famous aspect of study in

today‟s world and is increasingly moving to the core of national competitiveness

strategies around the world. IT is the field of study that deals with the use of computers

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

11

and telecommunications equipments to store, retrieve, transmit and manipulate data

(Daintith, 2009). The Information Technology Association of America has defined

information technology as the study, design, development, application,

implementation, support or management of computer-based information systems,

particularly software applications and computer hardware (Proctor, 2011). According

to Margaret (2005), IT is a term that encompasses all forms of technology used to

create, store, exchange and use information in its various forms (business data, voice

conversations, still images, motion pictures, multimedia presentations, telephony and

computer technology). Meanwhile, information is any meaningful data or message

content (Sullins, 2012) and it forms the fulcrum of any establishments. The survival of

any establishments depends largely on information production, dissemination,

consumption and sharing. IT comprises of anything related to computing technology,

such as networking, hardware, software, the Internet or people that work with these

technologies. Technology is dynamic, it advances with time, the technological

advancements bring with it a technological change in businesses and system

operations, and information access requirements have given rise to an environment

where computers work together to form a network (Seng, 1999). In the same vein,

information technology provides access to information from different sources

regardless of their physical location and this is achieved by the increased penetration

and use of the Internet (Seng, 1999). As a consequence, information sharing and

dissemination are now on a global scale, made possible by the interconnection of

several computers and computer networks.

2.2 Computer Network

Computer network is the interconnection of two or more autonomous computers that

allows sharing of computing resources. The shared resources could be data, printer,

modem or services such as e-mail, database systems (Ferouzan and Fegan, 2007).

Networking essentials defines network as a group of computers that are wired together

in some fashion which enables sharing of information and services (Shinder, 2001).

Networking is the concept of connecting group of autonomous computers together with

the aim of sharing resources and services and interacting through a shared

communications link (Peter, 2012). The major goals of computer network are:

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

12

i. Resource Sharing: resources such as programs, data and hardware peripherals

are made available to users on the network regardless of the location of the

resources and the user.

ii. High Reliability: computer network provides high reliability by providing

alternative sources of supply, there could be multiple copies of resources, both

hardware and software resources, such that if one is not available, the other

copies could be available.

iii. Cost Reduction: small computers have a better price/performance ratio

compared to larger ones. Personal computers cost significantly lower than large

mainframes, and a connection of few of them will achieve and even exceed the

capability of large and expensive mainframe computers. Moreover, several

resources on the network are shared, limited number of these resources is

needed and cost of procuring more is thus saved.

iv. Communication Medium: computer network provides a powerful

communication medium. An update on a file or database on the network can

be seen by other users on the network immediately.

v. Improved Performance: the performance of a computer network can be

improved as work load increases by adding one or more processors at a

relatively low cost.

2.2.1 Classification of Computer Networks

Computer networks can be classified according to range or distance covered,

transmission technology, functional relationship and network topology. This section

examines the classes of computer networks based on range and topology.

Range of networks classifies network based on distances covered and the network

physical sizes. These are:

i. Local Area Network (LAN): consists of a small group of computers and

communication devices interconnected within limited geographical area such as

a building or a campus not more than one kilometre (Tanenbaum, 2003). LAN

uses digital transmission and transmits bits serially rather than in parallel. LAN

is owned, controlled and managed by the organisation running it. LAN differs

from other classes of network in their size which is restricted, transmission

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

13

technology that consists of a cable to which all the machines are connected,

mainly Ethernet and token ring (Tanenbaum, 2003). A LAN is a switching

system that

a. employs digital rather than analogue transmission

b. transmits bits serially rather than in parallel

c. employs typical clock rates of one to twenty billion per seconds

d. is relatively noise free compared to analogue voice communication

lines, bit error rates of one in one billion are typical; and

e. switches packets or frames of bits, rather than holding transmission

bandwidth for the duration of a communication session (Stuck and

Arthurs, 1985)

ii. Metropolitan Area Network (MAN): connects two or more LANs usually

within a city, using a high-capacity backbone technology such as fibre optical

links. MANs are characterized by very high-speed connections using fibre optic

cable or other digital media. Its communication links and equipments are owned

by either a consortium of users or a network service provider who sells services

to users. A well known example is the cable television (Tanenbaum, 2003).

iii. Wide Area Network (WAN): is a group of interconnected LANs over a large

geographical area, often a country and continent (Tanenbaum, 2003). WAN

exists in an unlimited geographical area; the machines are connected by a

communication subnet. The subnet is made-up of two separate elements:

transmission lines that move bits between machines and switching elements

which are specialized computers connecting a number of transmission lines.

Internet is the largest WAN known, spanning the entire globe. The machines

are owned by the customers and the communication subnet is owned and

operated by an Internet Service Provider (ISP). It uses technologies like

Asynchronous Transfer Mode (ATM), frame relay for connectivity over long

distances and router to connect LANs to WAN. Other technologies include

SONET (Synchronous Optical NETwork) and SDH (Synchronous Digiatal

Hierarchy) that provide high speed communication over fibre-optic networks

and leased lines for point to point link from the communication subnet to the

customers.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

14

2.2.3 Computer Network Topology

Computer network topology is the logical arrangement of nodes, cables and

connectivity devices that make up the network. The most common network topologies

are bus, ring, star, mesh and tree topologies, this section briefly discuss these

topologies.

(i) Bus Topology: all nodes and devices are connected to a common shared

cable (called the backbone) as shown in Figure 2.1. Bus network broadcasts

signals in both directions on the backbone cable, enabling all devices to

directly receive the signal. Bus is cheap, easy to handle and implement,

requires less cable, and avoids data collision since one computer transmits

at a time and suitable for small networks. It uses Carrier Sense Multiple

Access with Collision Detection (CSMA/CD) technology to avoid collision

which also limits the size of the network to 2,500 meters (Shinder, 2001).

However, the cable length is limited which limits the number of nodes that

can be connected, it only performs well with a small number of nodes and

fault diagnosis and fault isolation are difficult. A bus is a passive topology

because the computers do not regenerate the signal and pass it on as it is

done in ring, thus weakening the signal strength over distance and this is

called attenuation. Furthermore, if there is a break in the cable, the

computers on the opposite sides of the break cannot communicate and two

new ends are not terminated and the resulting signal bounce can bring the

entire network down (Shinder, 2001).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

15

Figure 2.1: Bus Topology (adapted from Feyadat, 2008)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

16

(ii) Ring Topology: each node is connected to its neighbour on both sides as

shown in Figure 2.2. Ring network is implemented using token ring

technology, in which a small data packet (token) is passed around the

network continuously and any device willing to transmit reserves the token

for the next trip, then attaches its data packet to the token. Ring topology

presents an orderly network, only the node holding the token can transmit

data, and it is easier to manage than bus network. Ring network however

has a single point of failure, and any change made to the network nodes

affects the performance of the entire network. Fault detection and fault

isolation are difficult in ring network. In addition, it is difficult to add more

computers to a ring network, because the cabling runs in a closed circle, it is

necessary to break the ring at some point to insert the new computers. This

means the network is out of commission while the addition is made

(Shinder, 2001).

(iii) Star Topology: all devices are connected to a central hub which acts as a router

to transmit messages. The star network is easily extendable, fault diagnosis and

fault isolation is easy, failure of one station does not affect any other or the

performance of the network and it is fast. Star topology is more fault tolerant

than bus and ring, if one computer is disconnected, only that computer is

affected, and the rest of the network can communicate normally. Star topology

also offers ease of reconfiguration, adding more computers to the network or

removing computers is as simple as plugging in and unplugging a cable

(Shinder, 2001). However, star network as depicted in Figure 2.3 requires more

cable and additional cost of the central hub and if the hub fails, the entire

network fails.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

17

Figure 2.2: Ring Topology (adapted from Feyadat, 2008)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

18

Figure 2.3: Star Topology (adapted from Feyadat, 2008)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

19

(iv) Mesh Topology: is an all-channel topology in which every node is

connected to every other node, illustrated by Figure 2.4. Mesh can be either

a full mesh in which each node is connected directly to every other node or

partial mesh in which some nodes are connected to all other nodes, and

some are connected to only those with which they exchange the most data

(Rouse, 2010). Message sent on a mesh network can take any of several

possible routes to its destination, thus no traffic problems. Mesh network is

fault tolerant, point to point links make fault identification easy, however,

installation is complex as each node is connected to every node, and this

makes managing the network difficult in addition to high cabling cost

(Maninda, 2012).

(v) Tree Topology: is a hierarchical topology that can be seen as a group of star

topologies arranged in hierarchy as illustrated by Figure 2.5. The tree

topology arranges links and nodes into distinct hierarchies in order to allow

greater control and easier troubleshooting. Tree is particularly useful in

schools where each department can be connected using star topology and

they can be connected to the big network in some way (Maninda, 2012).

Tree topology provides point-to-point wiring for individual segments and

all computers in the network have access to their immediate and larger

networks, on the other hand, tree topology is difficult to configure and wire

than other topologies and if the backbone breaks, the entire network goes

down.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

20

Figure 2.4: Mesh Topology

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

21

Figure 2.5: Tree Topology (Adapted from Winkelman,1997)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

22

(vi) Hybrid Topology: combines two or more basic network topologies in a way

that the resulting network does not exhibit one of the standard topologies.

According to Oak (2011), hybrid topology results from the combination of

two or more different basic network topologies. Common examples are star-

wired ring network and star-wired bus network as described by Gilani

(2012).

Star-wired ring consists of two or more star topologies connected using a

multistation access unit (MAU) as a central hub, illustrated in Figure 2.6(a).

Star-wired bus combines two or more star topologies connected using a bus

trunk which serves as the network‟s backbone, as shown in Figure 2.6(b).

Hybrid topology is extremely flexible and very reliable and is able to utilize

the strongest aspects of other networks e.g. signal strength (Lister, 2012).

Hybrid provides multiple pathways for data transmission between network

nodes and the failure of one node does not affect network performance.

Hybrid networks are versatile and can be adapted to a variety of network

requirements and sizes

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

23

Figure 2.6(a): Star Wired Ring Hybrid Topology (adapted from Feyadat, 2008)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

24

Figure 2.6(b): Star Wired Bus Hybrid Topology (adapted from Feyadat, 2008)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

25

The use of computer networks resulted into distributed systems. Ashvin (2004) defined

distributed system as a computing facility built with many computers that operate

concurrently, are physically distributed, have their own failure nodes, have independent

clock and are linked by a network. According to Adewunmi (2002) distributed system

is a generalized transparent system consisting of collection of sites connected by a

communication network, over which processing logic and/or data is shared based on

usage. In distributed environments, computers are connected through a communication

network (serial lines, Ethernet, ATM e.t.c), processing and/or data are spread

geographically. Each computer is capable of communicating with the others, programs

running on each computer can share information and request tasks to be executed.

Some of the objectives of distributed system are to connect users in open and scalable

manner, to make resources easily accessible and reasonably hide the fact that resources

are distributed across network (Tanenbaum and Steen, 2007). Openness means each

component can interact with other components and scalablity implies ability of the

system to be easily altered to accommodate changes in the number of users, resources

and computing entities. Distributed systems increase reliability and availability of

services, resources can be shared by all computers, increase the speed of processing

compared to the old centralised system, reduce communication costs, and have high

processing capacity and are expandable (Tanenbaum and Steen, 2007). Managing

distributed systems involves a lot of movement of codes or data within the network,

this led to the introduction of code mobility concept (Fuggetta et al., 1999). Code

mobility is a concept that involves communicating processes in mobile code systems

exchanging programs instead of simply data. Code mobility is aimed at transporting

some resource-accessing mobile code units from one host to another, and executes

these code units on the resource-bearing host (Fong, 2003).

2.3 Software Agents

Software agents have been defined severally by different researchers and groups,

especially in the artificial intelligence community where it originated from. Franklin

and Graesser, (1996) defined an autonomous agent as a software entity situated within

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

26

and a part of an environment that senses that environment and acts on it, over time, in

pursuit of its own goals and so as to effect what it senses in the future.

Software agent has been widely accepted to reflect the above definition and also

incorporate two common types of agents, the Mobile Agents and the static Intelligent

Agents (Franklin and Graesser, 1996). Mobile Agents can migrate from one computer

to another through the network to perform tasks on behalf of its owner, they provide

opportunities to access remote computers on a network. Mobile agents provides for

easy programmability of remote nodes by migrating and transfering functionalities

required. The intelligent agents executes from their origin and depend on cooperation

with other agents often in a generic manner through an agent communication language.

Static intelligent agents can collaborate to devise or negotiate solutions for complex

application scenarios (Bohoris, 2003). From the definition above it can be inferred that

software agents execute in an environment or place, are proactive and reactive based on

the situation in the environment, possess goal directed behaviour and are persistent.

Agents are different from conventional software in several ways, researchers in the

area such as Jennings and Wooldridge (1998) and many others agreed on three major

attributes that are used to distinguish agents from conventional software, these are

autonomy, proactiveness and reactiveness.

Autonomy is usually cited as the significant property that distinguishes agents, i.e

ability of the agent to act independently without human intervention, which implies

that the agent can make its own decision. There are different definitions for autonomy,

according to Shoham (1993), the sense of autonomy is not precise, but the term is taken

to mean that the agents‟ activities do not require human guidance or intervention.

Huhns and Singh (1997) introduced five degrees of autonomy, absolute, social,

interface, execution, and design. Conventional software does not have this attribute, its

behaviour is imperatively declared. Proactiveness is the ability of agents to perform

their tasks in a goal oriented manner. Proactiveness enables agents to take the initiative

rather than acting simply in response to their environment. Agents act to satisfy a set of

goals, this implies that the agent is aware of its goals, conventional software also have

goals but the goals are implicit. Reactiveness enables the agent to perceive its

environment and respond to changes that may occur in a real time.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

27

2.3.1 Distributed System Paradigms

Movement of software did not start with mobile agents, there was an incremental

evolution of mobile abstraction from client/server paradigm and remote evaluation

paradigm. Distributed operating systems employ process migration mechanisms,

allowing an operating system process to move from one machine to another and

resume execution. Mobile code is a technique by which code, not just data, is

transferred from source to destination where it is executed; in this case migration is

transparent. According to Halls (1997) mobile code are data that can be executed as a

program, and opined that the code can be pre-compiled for immediate execution on the

recipient‟s processor, compiled upon receipt for subsequent execution or interpreted by

the recipient. Fuggetta et al. (1998) defined code mobility as the capability to

dynamically change the bindings between the code fragments and the location where

they are executed. Code mobility offers a lot of advantages to distributed systems,

among the numerous advantages are: supports for deployment and upgrade of

distributed applications, services on the systems can be customized, it improves the

robustness of the system to failure and provides support for disconnected operations in

addition to load balancing (Fuggetta, et al., 1998; Picco, 2005). The rationales for

mobile code as identified by Picco (2005) are: to move the knowledge close to

resources and to enable client customization of the access to remote resources. In

distributed systems, services can be executed when all the elements required are

located at the same host, i.e. resources, know-how and computational capability are on

the same host (Braun and Rossak, 2005; Fuggeta et al, 1998). Mobile code system is

therefore classified with respect to which element is relocated, this is the basis of the

classes of distributed application techniques. The following section examines the

classes of distributed application techniques.

I. Client/Server Paradigm

In the client/server paradigm, the server contains the procedure (know-how, i.e, code),

processing capability and advertises the set of services it is willing to provide to the

client, the client on the other hand needs certain services but does not have the

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

28

resources nor the procedure to process them, it requests for these services from the

server (Lange, 1998). The client and the server processes communicate either by

message passing or remote procedure calls (RPC). In this paradigm, the code is

stationary with respect to execution; the request is packaged with the service name and

some additional parameters (Braun and Rossak, 2005). Client/server has received

support from a number of technologies such as, the Remote Procedure Call (RPC),

Remote Method Invocation (RMI) and the Object Request Broker‟s CORBA (Lange,

1998).

Remote Procedure Call: the client communiacates with the server over a socket

connection using a protocol known to both parties such as HTTP (Hyper Text Transfer

Protocol), TCP (Transmission Control Protocol) or (User Datagram Protocol) UDP.

Both client and server have to be aware of the socket level details, the details are

abstracted and the request is made to look like a local procedure call from the

viewpoint of the client. Most RPC implementations use stub procedures, a client

making a remote procedure call is actually calling a local stub. The client stub parcels

up the procedure name and parameters, converts them to form suitable for transmission

(marshaling), build a network message and sends the message to the remote machine

through a protocol that have been agreed upon previously. When the server stub on the

remote machine receives the message, it demarshals the message, extracts the

procedure name and parameters and invoke appropriate procedure. The server stub

waits for the procedure to finish and then sends a message with the result to the client

stub, which later returns the result to the client (Oyatokun, 2004). RPC supports

modular and hierarchical design of distributed systems, i.e., server and client are

separate entities. However, it is difficult to send increamental results from server to

client, RPC favours short results rather than bulk data transfer, and there is no way to

pass pointers or procedure references to the server. In addition, client is limited to the

operations provided by the server, thus client need to make several remote procedure

calls as illustrated by figure 2.7, and bring intermediate data across the network on

every call.

The remote method invocation (RMI) is the object equivalent of RPC. In RMI, the

server defines objects that clients can use remotely. Clients can invoke methods of

remote objects as if it were a local object running in the same virtual machine as the

client, Figure 2.7 shows an illustration of this technique. RMI allows a java method to

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

29

obtain a reference to a remote object and invoke methods of the remote object as easily

as if the remote object existed locally (Aderounmu et al, 2006).

II Remote Evaluation Paradigm

Remote Evaluation (REV) was proposed as an alternative paradigm to client/server

approach and was first introduced as a concept by Stamos and Gifforf in 1990 (Neeran

and Anand, 1998; Bohoris, 2003). REV uses client and server stubs just like the RPC

and can be used with any language. In REV, the client has the procedure necessary for

the service but lacks the processing capability and resources, the server on the other

hand, does not provide a suitable application-specific service that the client can use.

Therefore, the client sends fragments of its procedure to the server to execute;

resources on the server are used as illustrated by Figure 2.8 and the result is returned to

the client. REV can be incorporated into any programming language so the

programmer can use any language most appropriate for the application. Gray (1997)

argues that all functions and variables referenced in the procedure must be provided at

the server or included in the procedure, making the semantics of a passed procedure

different from that of a local procedure. This is because the passed procedure cannot

access functions and global variables defined in the caller. In REV, the code fragment

is mobile and it is sent from the client to the server for execution. Example of REV is

the servlet that is uploaded from client to server (Pleisch, 1999).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

30

Server

Requests remote services/logic (invoke

remote method)

Services Procedure and
processor Resources

Client

Figure 2.7: Client/server paradigm

Client
Server

Procedure

Resources
and processor

Figure 2.8: Remote Evaluation Paradigm (REV)

Uploads procedure to remote server

fexecution

Returns result

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

31

III Code on Demand paradigm (CoD)

The client has the processing capability and local resources in its execution

environment but lacks the procedure to access and process the resources (Lange, 1998).

Meanwhile, there is a server that has the needed procedure and is willing to share same.

The procedure is obtained from the server when needed and execution begins on the

client as soon as it gets the neccessary code (Figure 2.9). The client does not need to

install the code since all the necessary code can be downloaded on request. In CoD,

code fragment is mobile and it is sent from the server to the client. Examples of a code-

on-demand application is java applets (Fischmeister, 2004; Braun and Rossak, 2005)

and it can be downloaded from a Web server to a browser to be executed as part of an

HTML page (Pleisch, 1999).

IV Mobile Agent Paradigm

Mobile agent is a special type of mobile code, an entire computational entity migrates

through the network with its code, data and authority of its owner (Wenjuan et al.,

2009). Mobile agents once dispatched from their origin are detached from the origin

and can make multiple hops before returning to the origin with the results of the

computation. Mobile agent is different from the others, (Client-server, Code on demend

and remote evaluation) in the sense that the associated interactions involve the mobility

of an entire computational component (Pleisch, 1999). In REV and CoD, the focus is

on the transfer of code between components, whereas, in mobile agent, (Figure 2.10), a

whole computational component, with its state, needed code and resources required to

perform the tasks are moved to a remote site (Carzaniga et al, 1997). Mobile agent

initiates its migration whereas, other software components e.g the browser, initiate the

migration of CoD. In addition, code migration in CoD is unidirectional, from the server

to the client and is bound to that client and dies when the client terminates, whereas

mobile agents can make multiple hops and return to the origin before it is disposed of.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

32

Client Server

Requests procedure/code

Code migration

Resource and
processor

Procedure/code

Figure 2.9: Code on Demand (CoD)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

33

Agent migration

code

Resources and
processor

Resources and

processor

Resources and
processor

Figure 2.10: Mobile Agent paradigm

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

34

2.3.2 Characteristics of Agents

(i) Agents exhibit certain features that are suitable for a wide area mobile

networking environment. Agent research community, (Wooldridge and

Jennings, 1995; Franklin and Graesser, 1996; Biermann, 2004) agree that an

agent can exhibit several but not all of the characteristics listed below:

(ii) Mobility: ability to move under its own control from one machine to another in

a network. The agents‟ ability to carry code and data across network nodes

underlies their suitability for a transient environment (Franklin and Graesser,

1996; Bellifemine et al, 2007).

(iii)Migration: it can suspend its execution at the hosting machine, transfer its

current state (data) and code to a different host and resume its execution there,

using its own resources.

(iv) Flexibility: agent algorithms may be dynamically modified according to

pertinent environmental conditions, such as network congestion, node failures,

and user environment (Franklin and Graesser, 1996).

(v) Concurrent problem solving: agents provide a clear, natural paradigm for

performing tasks that may have several concurrent aspects.

(vi) Autonomy: agents must be able to decide where and when to migrate during the

accomplishment of its mission without user‟s intervention (Dale and DeRoure,

1997; Jennings and Wooldridge 1998; Bohoris, 2003; Bellifemine et al., 2007).

(vii) Goal oriented: agents exhibit goal-oriented behaviour such that their

actions can cause positive changes to the environment (Franklin and Graesser,

1996; Bohoris, 2003).

(viii) Navigability: to support the decision-making process of the agent

(where and when to migrate), the objects must have the knowledge of its

objectives and plan as well as parameters related to its environment.

(ix) Security: agents must be protected from malicious hosts and hosts must be

protected from malicious agents or viruses (Biermann, 2004).

(x) Fault tolerance: Mobile Agent System (MAS) must provide resources to the

agent programmers in order to help them in the detection of hardware and

software errors, once an error is detected, the agent can perform the necessary

procedures to overcome these errors e.g. notify the other agents about the

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

35

failures, move to an alternative resources, and wait until a resource becomes

active again (Dale and DeRoure, 1997).

(xi) Performance: the moving process of an agent must be efficient, in a way to

compensate its use, when compared to other paradigms. The agent needs to be

small. According to the requirement of the application being developed,

allowing its fast transfer between nodes of a network. The agent also may have

to be able to execute in machine with possible memory and processing

restriction, e.g. mobile computers and handheld computers.

(xii) Communication/collaboration: a mobile agent can communicate with

other agents on the local host or remote machine to achieve its goals (Bohoris,

2003), Bellifemine et al. (2007), as well as Dale and DeRoure, (1997) call this

feature social ability. Agent constantly migrate and do not have a fixed address

on the network; such agents usually need location and tracking mechanisms e.g.

of forwarding or actualizing the same service. Communication can be done in

asynchronous way (based on datagram) and synchronously using RPC or shared

files or resources.

(xiii) Adaptability: agent must be sensitive to diverse traffic conditions,

connections and topologies of a computer network as well as to the diversity of

resources available in each node (Braun and Rossak, 2005). Mobile agent

platform can provide this information to the agent, the information is processed

and used in the decision making process related to the migration, fault

tolerance, operation mode, (connected / disconnected) of the agent (Bohoris,

2003).

(xiv) Multi platform support: distributed systems are sometimes

heterogeneous set of hardware and software. This feature supports the agents‟

ability to execute in different Operating Systems and computer architecture.

(xv) Reactivity: often agents are required to anticipate future situations and

respond to changes in their environment (Bohoris, 2003).

(xvi) Pro-activeness: agents do not only act in response to its environment

but is able to exhibit goal-directed behavior by taking the initiative (Wooldridge

and Jennings, 1995; Biermann, 2004)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

36

2.3.3 Types of Agent

Software agents can be placed into different classes, there are several dimensions to

classify existing software agents. Franklin and Graesser (1996) suggested classifying

according to agent properties (mobile, learning etc), the tasks agents perform

(information gathering, email filtering), their control architecture (planning, adaptive)

and type of control mechanisms (algorithmic, rule-based or fuzzy). Nwana (1996)

classified agents according to their properties; this section examines various classes of

agents based on Nwana (1996) typology as illustrated in Figure 2.11.

(a) Mobility

Agents are classified into static and mobile agents based on their ability to move

around the network (Nwana, 1996).

(i) Static agents do not move around a network. They execute on the host system

where they reside, hence are not equipped with a mobility mechanism (Lange,

2004).

(ii) Mobile agents: their predominant feature is the ability to transport between

nodes on a network or between nodes across networks (Biermann, 2004). They

are not bound to the host that initiates them (Lange, 1998), consist of mobility

mechanism that enable them roam the network, interact with foreign hosts,

perform the required tasks on behalf of its user and return to the origin host

with the result of its computation.

(b) Responsiveness

Agents are classified into deliberate and reactive agents based on their response to the

environment in which they are embedded, this classifies agents (Nwana, 1996).

(i) Deliberate agents: originate from the deliberative thinking paradigm. The

agents have an internal symbolic reasoning model and they plan and

negotiate to achieve coordination with other agents (Nwana, 1996).

(ii) Reactive Agents: do not contain internal symbolic models of their

environments, instead, they respond in a stimulus-response manner to the

present state of the environment in which they are embedded (Nwana,

1996).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

37

Figure 2.11: Agents Classification (Adapted from Nwana, 1996)

Software Agents

Mobility Responsiveness Behaviour Constitution

Static Mobile Deliberate Reactive Collaborative Interface Hybrid Heterogeneous

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

38

(c) Constitution

Agent system may be distinguished by its structure and composition. Using these

criteria, agents are classifed as hybrid or heterogeneous.

(i) Hybrid agents combine two or more agent philosophies or types into a single

agent so that the benefit of each agent type is maximized and the weaknesses

are minimized (Nwana, 1996).

(ii) Heterogeneous agents system consists of integrated set-up of two or more agent

types including hybrid agents, incorporated into a single system (Nwana, 1996).

As a result, the agents can interoperate, thus the cost of maintaining and

rewriting legacy systems is reduced.

(d) Behaviour

Agents may be classified with several attributes, it is generally accepted that software

agents should exhibit the following (Nwana, 1996; Franklin and Graesser, 1996):

(i) Autonomy: agents act autonomously to pursue their given goal; they take

initiatives to pursue their goal without human intervention (Biermann, 2004;

Nwana, 1996).

(ii) Intelligence or adaptation: agents are capable of adapting to the environment

they find themselves and learn from experience and the user models. They learn

as they interact with the environment (Nwana, 1996; Wooldridge and Jennings,

1995)

(iii)Cooperation: software agents use standard languages and protocols to cooperate

with human agents and other software agents to achieve their goal. This is

supported by agent communication languages and protocol, and is the main

function of FIPA (Foundation for Intelligent and Physical Agent) according to

Bellifemine et al., (2007).

Based on these three components of behaviour, software agents are categorized

according to Nwana (1996) and as depicted in Figure 2.12 as:

(i) Collaborative agents: emphasize both autonomy and cooperation with other

agents to perform their tasks. They may also need to have “social” skills in

order to communicate and negotiate with other agent. Collaborative agent

system believes that a group agents function beyond the capabilities of the

individual members. Collaborative agents are suitable for problems that are too

large for a single system to handle and problems that are distributed in nature. It

is believed that they can overcome resource limitation and system failure

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

39

(Nwana, 2006). However, coordination among multiple agents, particularly

when they are autonomous and heterogeneous is a challenge.

(ii) Collaborative learning: emphasize intelligence (adaptive) and cooperation more

than autonomy (Nwana, 1996).

(iii)Interface agents: these emphasize autonomy and intelligence in order to

perform useful tasks for their owner. They learn by observing and imitating the

user, through feedback from the user or by interacting with other agents. The

main challenge is how to assist users without bothering the user and how to

learn effectively (Nwana, 2006).

(iv) Smart or intelligent agent: are cooperative, autonomous and intelligent.

These distinctions however are not definitive, its only that each type places more

emphasy on the intesecting features than the other feature. For example, collaborative

learning agents place more emphasy on cooperation and learning than on autonomy,

this does not imply they are not autonomous.

2.4 Mobile Agent Technology

Mobile agent technology facilitated by recent advances in computers, communications

and artificial intelligence, provides an attractive framework for the design and

implementation of communicating applications in general and distributed knowledge

networks in particular. The computational model based on mobility, can be seen as a

replacement, refinement or extension of the traditional client/server paradigm. The

mobile agent framework emerged in the pursuit of open and decentralized models

relevant to the dynamic and distributed nature of computations on the Internet.

A mobile agent can be defined as a named object that contains code, persistent state,

data and a set of attributes (e.g movement history, authentication keys) and can move

about or transport itself from one host to another as needed to accomplish its tasks

(Wenjuan et al., 2009). It is commonly agreed that mobile agent is an object that can

migrate through many nodes of a heterogeneous network of computers under its own

control, with its code, data and execution state in order to perform tasks using resources

of these nodes (Roberto, 2001). Mobile agent can suspend its execution on an arbitrary

point and transport itself, during migration the agent is transmitted completely, (code,

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

40

Figure 2.12. Types of agents (adapted from Nwana, 1996)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

41

data and execution state) and at destination, execution is resumed either at exactly the

point it was suspended (strong migration) or at some predetermined point (weak

migration).

Mobile Agent System (MAS) is the computational framework that implements the

mobile agent paradigm, and it provides services and primitives that help in the use,

implementation and execution of system development using the mobile agent paradigm

(Roberto, 2001). Dilyana and Petya,(2002) defined Mobile Agent System (MAS) as a

distributed execution environment for mobile agents. MAS provides two types of

services: the basic services are services that are vital for the survival of mobile agent

(white page services) and the enhancing services that provide utilities that make mobile

agent more efficient in different ways but are not vital in the same way as the basic

services (yellow page services).

The mobile agent technology research receives so much attention due to its several

advantages it provides over the client server technology for distributed systems (Stoian

and Popirlan, 2010; Singh et al., 2012). Mobile agent expends low bandwidth since it

only moves when neccessary can continue execution even when disconnected from the

network (Aderounmu, 2001), it has ability to clone itself to perform parallel execution,

implementation and deployment is easy, and it is reliable (Lange, 1998). The basic

motivation behind agent‟s migration is to perform access and information processing

locally to a resource or the user, instead of remotely. On the other hand, mobility raised

security and efficiency issues.

2.4.1 Strength of Mobile Agent Paradigm

A significant number of benefits of mobile agents have been identified by various

researchers such as Chess et al., (1994); Lange, (1998); Lange and Oshima, (1999),

from the studies of mobile agents technology against alternative paradigms for

distributed system such as the Client-server paradigm. Lange (1998) and Lange and

Oshima (1999) identified seven good reasons for using mobile agents and these are

supported by a good number of other researchers in the area, these include:.

(i) Reduce network load: distributed system often require multiple interactions to

complete a task. Using mobile agent allows users to send conversation to a

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

42

destination host, so that all interaction can take place locally, hereby, reducing

network traffic (Chess et al. 1994; Lange, 1998; Bohoris, 2003). Instead of

moving large amount of data from remote host and then processing it at the

receiving host, an agent sent to the remote host can process the data in its

locality and return with only the results.

(ii) Overcome network latency: in critical real time systems, immediate response to

important event is required. Controlling the decision of such systems remotely

through the network can involve significant latencies (delay) which is

unacceptable for some real-time systems. Mobile agent can be dispatched from

a central controller to act locally in critical real-time system and thus respond

immediately to real time systems that require immediate response (Lange,

1998; Pleisch, 1999, Bohoris, 2003).

(iii)Encapsulate protocols: when data are exchanged in a distributed system, each

host has the code that implements the protocols needed to properly code

outgoing data and interpret incoming data (Bohoris, 2003). The continuous

evolution of existing protocols (to accommodate new requirements of

efficiency and security) in distributed systems however, makes it very

cumbersome to upgrade protocol code properly in each host. Mobile agents are

able to move to remote hosts in order to establish „channels‟ based on

proprietary protocols (Lange and Oshima, 1999; Pleisch, 1999).

(iv) Execute asynchronously and autonomously: these attributes favour mobile

agent in wireless networks. A continuous connection may not always be

feasible with wireless connection due to its fragile expensive nature. The

mobile device user can insert the task into a mobile agent, which can be

dispatched into fixed network and operate asynchronously and autonomously to

accomplish its task (Biermann, 2004, Braun and Rossak, 2007). The mobile

user can reconnect and collect the agent with the result later (Lange and

Oshima, 1999). This makes mobile agent paradigm especially desirable in

Nigeria where the network connections are unreliable and often insufficient.

(v) Adapt dynamically: mobile agents have the ability to sense their execution

environment and take decisions based on that dynamically (Lange, 1998). In

case of a mobile agent moving to a number of host nodes, it can adapt its future

behaviour according to information that it has already collected and stored in its

state (Braun and Rossak, 2007).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

43

(vi) Naturally heterogeneous: mobile agents are generally independent of the

computer configuration and transport. Because mobile agents are generally

computer and transport layer independent (dependent only on their execution

environments), they provide optimal conditions for seamless system integration

(Lange, 1998; Lange and Oshima, 1999).

(vii) Robust and fault tolerant: the ability of mobile agent to adapt

dynamically to adverse situations or events makes it easier to build robust and

fault tolerant systems (Lange, 1998). In a fixed network, by dispatching mobile

agent to execute locally on a remote host, its operation continues even in the

face of network failure that makes remote communication unavailable (Bohoris,

2003).

2.4.2 Issues Associated with Mobile Agents

Mobile agent technology has received a lot of attention in the past especially in the

academic community, but it is yet to be adopted in the commercial and industrial

communities (Pinsdorf and Roth, 2002; Bohoris, 2003). This is attributed to a number

of issues associated with mobile agent technology introduced by its complexities,

autonomy and mobility (Kotz and Gray, 1999; Bohoris, 2003; Tudor, et al., 2004,

Singh et al., 2012). Some of these issues are discussed in this section:

(i) Lack of standard and interoperability has greatly hindered the global acceptance

of mobile agent technology (Bohoris, 2003; Tudor et al., 2004, Singh et al.,

2012). Efforts made by the FIPA (Foundation for Intelligent Physical Agent)

and OMG MASIF (Mobile Agent System Interoperability Facility) to provide

standards for agents and agent platforms (Fortino and Russo, 2003) are yet to be

generally adopted. MASIF‟s effort is directed at making mobile agent platforms

interoperate, while FIPA has come up with certain specifications for agents‟

communication (Bellifemine et al, 2007).

(ii) Lack of killer application. All the applications the mobile agent technology has

been applied to can also be solved by other technologies like the client/server

technology. Presently, there is no application that can only be achieved through

the use of mobile agent paradigm (Bohoris, 2003). Mobile agent paradigm has

only been proved to have superior performance at handling such applications,

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

44

such as reduced network load, reduced latency, increased fault tolerance and

better adaptation to failure.

(iii)Limited practical experience: There has been a good theoretical base for mobile

agent paradigm but real world application and practical assessment of mobile

agent technology has been limited (Jansen et al., 1999). Most of the mobile

agent applications that have been built are in laboratories and are for academic

research purposes. One of the factors responsible for this is its complexity.

(iv) Complexity: mobile agents coding and deployment are complex processes,

some inherent capabilities, such as moving and cloning, also add to the

complexity of the design and development process (Jansen et al., 1999).

(v) Performance overhead: mobile agents reduce bandwidth utilization and network

latency but often at the expense of increased utilization of resources at network

nodes (Bohoris, 2003).

(vi) Getting ahead of evolutionary path: Bohoris (2003) is of the opinion that the

direct shift from client/server to mobile agent paradigm for distributed

applications is too sudden and its unlikely and that the evolutionary path takes

time and will most likely move gracefully from centralized protocols, to

distributed object frameworks, followed by mobile code solutions and later by

mobile agents.

(vii) Security is an important issue in mobile agent paradigm, the agents need

to be protected from other malicious agents, hosts need to be protected from

malicious agents and agents also need protection from malicious host (Fortino

and Russo, 2003). Researches have shown that the first two can be achieved

through cryptography and authentication, while the last is difficult to achieve

because the agent must be interpreted on the host before it can execute. There is

little that can be done to secure the agent form the host other than using trusted

hosts.

In addition, Giovanni (2004) identified ten reasons why agents fail; these include

difficulties of design, inability to outperform other mechanisms such as remote

evaluation, difficulties of development, testing and debugging, difficulty involved in

authenticating and controlling agents. Others are lack of ubiquitous infrastructure;

mobile agents can be brainwashed, they cannot keep secrets and are suspiciously

similar to worms.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

45

2.4.3 Security Issues with Mobile Agent Technology (MAT)

As good and effective as the MAT is, with all its benefits, it introduces new security

threats from malicious agents and hosts. It also introduces an additional complication

in the sense that, as an agent traverses multiple machines that are trusted to different

degrees, its state can change in ways that adversely impact its functionality (Farmer et

al., 1996). Security threats of mobile agent technology have been generally classified

into three categories; these are disclosure of information, denial of service and

unauthorized access (Admassu, 2008; Nitin et al., 2011). Wayne (2000) introduced an

interference or nuisance as the fourth class. Security concern of mobile agent

technology is in various dimensions, between the agent and the agent platform,

between various agents and the network. The agent platform can be compromised by

visiting agent; an agent may be compromised by the platform or other agents and the

network may be compromised by incoming agent, common security threats to mobile

agents are presented under these scenarios.

2.4.3.1 Agent to agent platform

A malicious agent has two major lines of attack on the platform, to gain unauthorized

access into the platform and to use this unauthorized access in an unexpected and

destructive way (Jansen et al., 1999; Wayne, 2000). Possible threats of this category

include:

Masquerading: the agent poses as another agent to gain access to services or data at a

host it is not authorized to and to shift blame for actions (Biermann, 2004).

Denial of service: agents may attempt to consume or corrupt a host‟s resources to

prevent other agents from accessing the host services (Wayne, 2000). Host can ignore

an agent‟s request for services or access to resources, i.e., block agent execution.

Unauthorized access: agents can gain access to sensitive data by exploiting security

weaknesses or interfering with another agent to gain access to data, information

residing at the platform can be disclosed or altered. Depending on the level of access,

agent may be able to completely shut down or terminate the agent platform.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

46

2.4.3.2 Agent Platform to Agent

The security threats in this category are difficult to detect and prevent because the

platform has full access to both agent data and code (Admassu, 2008). The platform is

responsible for accepting and executing the mobile agent, this makes visiting agent

open to attacks from the platform (Biermann, 2004). A receiving platform can easily

isolate and capture an agent, extract information, corrupt or modify its state or code.

Threats in this category are:

Masquerading: Host could assume false identity in order to lure agents, and extract

sensitive information from the agent. When an agent arrives at a host, it expresses its

code, state and data, malicious host can modify agent‟s code, state or data without

being detected (Nitin et al 2011). According to Admassu (2008), this attack has more

to do with the capability of a visiting agent to correctly identify and authenticate its

executing host, while it is on it.

Denial of Service: a host may ignore service requests, introduce unacceptable delays

for critical tasks, refuse to execute agent‟s code, or terminate an agent without

notification (Admassu, 2008). The host may also deadlock other agents while

competing for same resources or livelock by generating more work continuously .

Eavesdropping: with agents that are interpreted, the host can inspect their internal

algorithms and data. This is serious in mobile agent systems as agent platform has

access to the agent‟s code, state and data (Admassu,2008). The platform can monitor

communications, read instructions executed by agent, read all unencrypted data; the

visiting agent may be at the risk of exposing proprietary algorithms, trade secrets and

transmit privilege information (Wayne, 2000). The platform can also infer secrete

information from service requests and identity of the agents it communicates with

(Wayne, 2000; Admassu, 2008).

Alteration: hosts can change an agent‟s internal data, state, code or results from

previous processing to influence the agent. According to Wayne (2000) alteration can

only be detected but cannot be prevented, since the agent‟s code and data can be

interpreted by the host.

2.4.3.3 Agent to agent

Agent can exploit the security weakness of other agents through any of the following

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

47

Masquerading: agent assumes the identity of another agent; this harms both the

attacked agent and the agent that is impersonated (Wayne, 2000).

Repudiation: after agreeing to some contract, an agent can subsequently deny that any

agreement ever existed or any event or action ever happened or a legitimate transaction

ever occurred (Wayne, 2000), it can also modify the conditions of the contract.

Denial of Service: agent can debar other agent from executing its task by sending

repeated messages to another agent (Wayne, 2000). This can cause undue burden on

message-handling techniques of the system and monetary loss if agent is being charged

for resource-utilization.

Unauthorized Access: agent may get hold of and modify another agent‟s data or code it

has no right to (Wayne, 2000). An agent may directly interfere with another agent by

accessing and modifying agent‟s data or code which in turn changes the agent‟s

behaviour.

Eavesdropping: a malicious agent may use platform services to eavesdrop on intra-

platform messages of an unsuspecting agent (Wayne, 2000).

2.4.3.4 Other Entities against Agent System

Some other entities both outside and inside the agent framework may attempt to attack

the agent system, and carry out actions that could harm or disrupt the agent system

(Wayne, 2000).

Masquerading: an entity may disguise itself to intercept or gain access to inter-agent

and inter-platform communication for example through replay or forgery (Wayne,

2000).

Eavesdropping: an entity may eavesdrop on messages in transit to and from a target

agent or platform to gain information (Wayne, 2000).

Alteration: an entity may intercept agents or messages in transit and modify their

contents, substitute other contents or simply replay the transmission dialogue at a later

time in an attempt to disrupt the synchronization or integrity of the agent framework

(Wayne, 2000).

Denial of service: service can be denied the entire agent system through available

network interfaces (Wayne, 2000).

Biermann (2004) categorized these threats using their modes of attack which are

fundamental requirements of computer network users. These threats are directed at

attacking the following:

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

48

 Integrity: attacks against integrity interfere with the agents‟ execution. Sub-

classes in this class are integrity interference and information modification

 Availability: an authorized agent is prevented from accessing objects or

resources to which it should have legitimate access. In this class, denials of

service, delay of service and transmission refusal are typical sub-classes.

 Confidentiality: a host illegally accesses the resources of mobile agent. The

three sub-classes that are identified are eavesdropping, theft and reverse

engineering

 Authentication: agent is unable to correctly identify and authenticate its

executing host. two subclasses identified here are masquerading and cloning

2.4.4 Protection Methods Against Security Threats

To deal with security, different protection measures have been proposed, these

measures provide either detection or prevention of the threats named in the previous

section. Mobile agent system (MAS) needs to provide the following security

mechanisms:

Privacy and Integrity: agents carry their state and data; these data can have sensitive

information. Agents must be programmed in order to apply different levels of access to

the information they convey, according to the level of confidentiality of the host.

Techniques applicable include contractual agreement, trusted hardware and trusted

nodes (Borselius, 2002). Mobile agents system must also provide support for the

detection of attacks.

Authentication of agents and servers: MASs have to prevent malicious agents from

being confounded as authorized application agents. It must also avoid malicious hosts,

receive authorized agents from the system. Mechanisms that allow identification (e.g

digital signature) and certification of the servers as well as the agent or the user that the

agent represents, have to be supported.

Authorization and access control: the access for some resources of the system must be

restricted in MAS. Agents can be configured to respect policies of quota of occupation

in the disk and can have the limited access of write to disk or create connections in the

network. Execution tracing has also been proposed (Borselius, 2002) to detect

unauthorized modifications of agents.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

49

Auditing and metrics: agents consume resource such as network bandwidth, disk space

and CPU during its life. These resources have to be monitored in a way to provide

information to the agents and to administrators of the distributed system.

Agents‟activities can be monitored by setting limits for each of the resource and

auditing the activities of agents.

Having said so much about mobile agent, it should however be noted that mobile agent

cannot operate without an underlying system which provides services for running the

agent code, migrating the code and accessing management information in network

nodes. Such a system is called Mobile Agent System (MAS). The functionalities of

MAS can also be achieved by a static agent previously installed for the same purpose.

2.5 Mobile Agent Platform

The agent platform is the execution environment for agents, it is the underlying system

which provides services for running the agent code, migrating the code and accessing

management information in network nodes (Pears, 2005). According to previous works

(Tudor et al., 2004; Pears, 2005), it has been established that agent platform provides

common functionalities that support the migration of agents, the communication

between agents, various programming/interpreted languages and various forms of

security. A good number of mobile agent systems such as JADE, Agent TCL,

Grasshopper, Aglet e.t.c, are in existence nowadays, but each operates independent of

the other, this hinders the interoperability of mobile agents. Most agent platforms offer

enoumous flexibility at the cost of usabilty, where the user gets tanggled in aspects that

are completely irrelevant to his application, thereby losing focus. To support this

Tudor et al., (2004) says some mobile agent platforms offer extended built-in

functionality at the price of interoperabilty in which case the user has several

predefined agent services to chose from and plug in his application but he is confined

to that specific agent platform. Often times, a lot of adjustments are made to cutomize

either the platform or the agent to make them compatible one with another, which leads

to loss of functionalities thus reducing the efficiency and effectiveness of the whole

system.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

50

2.5.1 Mobile Agent Platform Architecture

The architecture of agent platform consists of an agent server which runs within an

interpreter and is capable of hosting mobile agents implemented in the interpreted

language. Pears (2005) defines agent server as a server process that runs at hosts

willing to accept mobile agent. The agent server provides a mobile agent interface

through which the mobile agent requests for communication and migration from the

agent server, and the transport interface, from where the agent server sends and

receives mobile agent over a secure communication channel. Figure 2.13 describes the

architecture of typical Mobile Agent System, consisting of agent server, mobile agent

management, mobile agent interface and transport interface. The transport interface

uses TCP, a reliable connection oriented protocol. Agent management manages mobile

agent initiation, suspension, resumption and termination, as well as routing requests to

the transport and communication manager. Transport manager captures and restores

mobile agent state (data variables, code and execution states). Communication manager

is resposible for mobile agent communication with local agents. Communication

between agents is made possible using method calls or shared memory.

2.5.2 Mobile Agent Systems Interoperability

Agents need to communicate with one another in the process of working together to

achieve a common goal, agent paradigm of software development believes that

communities of agents are much more powerful than any single agent, which

necessitates interoperation of agent systems. Interoperability in mobile agent

community focuses on the execution environment and standardization of certain

aspects and features of agents while in the non-mobile agent contex the focus is on

communication, that is effective exchange of information and knowledge content of

agents. Interoperability has been defined by Pinsdorf and Roth (2002:1) as follows:

Two mobile agent systems are interoperable if a mobile agent of one system

can migrate to the second system, the agent can interact and communicate with

other agents (local or even remote agents), the agent can leave this system, and

it can resume its execution on the next interoperable system.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

51

Figure 2.13: Mobile Agent System Architecture. (Adapted from Pears, 2005)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

52

Research works are currently going on in the area of mobile agents‟ interoperability,

several solutions have been proposed but they lack the necessary flexibibility to

provide adequate degree of interoperability among the available MASs (Fortino and

Russo, 2003). Interoperability is paramount to the global acceptance of MAS in

heterogeneous and open distributed environments where agents must interact with

other agents to fulfil their tasks and visit different agent platforms to access remote

resources.When mobile agents migrate to a new host, the platform on the host provides

execution environment, the mobile agent might execute code, make remote procedure

calls to access resources on the host, collect data or initiate another migration process

(Zenghache, 2002). Problems arise from the fact that not all platforms for mobile

agents are the same and thus, cannot provide necessary services for non-compliant

mobile agents. Mobile agents differ in architecture and implementation; this impedes

interoperability, rapid proliferation of agent technology and growth of the industry

(Milojicic et al, 1998). Interoperability is directed at making an agent system accept

and support the running of agents from another agent system and vendor, support the

transfer of agent to other agent systems and find other agents and agent systems. To

achieve these, mobile agent paradigm has to clearly define the following: agent

management, agent transfer, agent and agent system name, agent system types,

authority and location syntax. MASIF (Mobile Agent System Interoperability Facility)

attempts to standardize some aspects of this execution environment to provide for

mobile agents to interoperate (Zeghache, 2002; Schoeman and Cloete, 2003), while

FIPA (Foundation for Intelligent Physical Agent) attempts to standardize certain

aspect of mobile agent (Bellifemine et al., 2007).

Grimstrup et al. (2002) proposed an Interoperability Application Programming

Interface (IAPI) that supports registration, lookup, messaging, launching and migration

of agent across different patforms. The system was implemented on Grid Mobile Agent

System (GMAS). The design added three layers to the MAS layers: Foreign2GMAS

(foreign MAS API to GMAS API translation), GMAS2Native (GMAS API to Native

API translation), and common communication and discovery service, another two

components are added to the participating MAS, Agent Luncher and Gateway. Any

MAS willing to host foreign agents implements GMAS2Native translator, agent

launcher and gateway while a MAS that wishes to send its agent to operate on another

MAS implements Foreign2GMAS translator and gateway. The solution was tested with

Java based MASs D‟Agent, EMAA(Extensible Mobile Agent Architecture) and

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

53

NOMADS (Network Object Mobile Agent System). The system only enabled agent

migration among diverse agent platforms but the agents may fail to execute due to

difference in the level of the java API. D‟Agent uses JDK 1.0.2 while EMAA and

NOMADS support Java 2. The performance of the system was also slow, the additional

layers on the platforms being the major factor.

Secure and Open Mobile Agent (SOMA) (Bellavista et al., 2001) is another attempt at

achieving interoperability, it was developed in compliance with both CORBA

(Common Object Request Broker Architecture) and MASIF. SOMA uses a

CORBABridge which consists of CORBA client/server which simplifies the design of

SOMA entities as CORBA client /server and MASIFBridge which implements the

MASIF functionality. The MASIFBridge is limited to only one place per domain in

order to reduce the overhead it would have introduced, CORBA client is lightweight

and it is extended to many places in the same domain. SOMA achieves interoperability

with java-based mobile agents, agents can move, execute and interact, meanwhile the

nodes in the system are grouped into domains, each domain has a default place that

houses the MASIFBridge which controls the interdomain routing. This implies the

success of the interoperability in the system lies with the default place, the system has a

single point of failure. The security and fault tolerance of the system is important for

interoperability to be fully attained, SOMA achieves security but it is not fault tolerant.

Moreover, the MASIFBridge introduced a considerable overhead.

Fortino and Russo (2003) proposed a java-based framework for interoperability among

java-based mobile agent systems. The framework consists of three software layers, the

Interoperable Mobile Agent Layer (IMAL), the Adaptation Layer (AL) and the

Platform-dependent Mobile Agent Layer (PMAL) which constitute a considerable

overhead. At the same time, a Mobile Agent Bridge must be developed for each agent

platform to be able to migrate; this constitutes an additional overhead on the system.

The framework permits interoperability of execution, migration and interaction of java-

based mobile agent systems.

Based on the shortcomings of the above interoperability models, there is a need to find

a common platform on which agents from different platforms and vendors with

different design and architecture can communicate, execute and interact without fear of

risk or vulnerability to failure and other attacks.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

54

2.5.3 Standardization of Mobile Agent Systems

There are several well known mobile agents‟ architectures, all built to serve the same

purpose but they have many differences in term of technology, interpreted languages,

concepts, architecture and implementation (Mitrovic et al., 2011). Some of these

systems were developed in academic environments others were developed in industry.

According to Nikos et al, (2003), some of these systems have disappeared such as

Telescript, Odyssey and others will yet disappear while others will emerge in the

future. Nevertheless, there are several issues that need to be sorted to make mobile

agent technology widely accepted as highlighted by Stoian and Popirlan (2010), they

include, supports for secure and efficient execution, standardization, appropriate

programming languages and coordination models. Agent research community is aware

of the fact that various languages with different programming paradigm such as

procedural, object oriented, functional languages, will be used to implement agents,

harware configurations and Operating Systems will also differ for different vendors,

and agents are expected to be autonomous. The major challenge is to make agents

socialize regardless of their language, architecture, concepts and implementation

differences. There is a need to set up stardards that these agents and agent platform

willing to interoperate must conform to. Standardization aims at finding a uniform

platform for agents and agent systems to cooperate to achieve a common goal

irrespective of their vendors, design, architecture and implementaion. The

standardization issue of mobile agent is tackled by FIPA (Bellifemine et al., 2007)

while the standardization of MAS is handled by the Object Management Group MASIF

(Zeghache et al., 2002).

2.5.3.1 Foundation for Intelligent Physical Agent (FIPA)

FIPA is an international association established in 1996 with the aim of developing

and setting computer software standards for heterogeneous and interacting agents and

agent-based systems. FIPA evolved in stages and has since inception produced a set of

specifications that went through three stages of review, FIPA‟97, FIPA‟98 and

FIPA2000 (Bellifemine et al, 2007). FIPA defines a set of full standards for both

implementing systems within which agents could execute, that is agent platform

architecture and specify supports for agent communication, agent management, and

agent message transport.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

55

FIPA‟97 was identified as a collection of seven parts; the first three specify the core

middleware technologies of agent management, agent communication and

agent/software interaction. The remaining four are personal assistant, personal travel

assistance, audio-visual entertainment and broadcasting network provisioning and

management.

FIPA‟98 consists of many improvements on FIPA‟97, the basic agent management

mechanisms were extended, new interaction protocols and human-agent interaction

were introduced and work started on agent security management and ontology service

to host.

FIPA2000 added a new dimension to agent technology; it was directed at promoting

technologies and interoperability specifications that facilitate internetworking of

intelligent systems in commercial and industrial enterprises. FIPA2000 focused on

high-level semantic-based communications, interoperability between agents rather than

platforms and agent agreements and interactions over an extended period of time.

FIPA2000 remains the current specification though a lot of improvement has been

made to it since it was adopted by IEEE in 2005, and named FIPA-IEEE. The focus

presently is on agents and web service interoperability, human-agent communication,

mobile agents and peer-to-peer nomadic agents. Some of the important achievements

of FIPA in agent technology since inception are listed below according to Bellifemine

et al (2007):

i. A set of standard specifications supporting inter-agent communication and

key middleware services.

ii. An abstract architecture providing an encompassing view across the entire

FIPA2000 standards. This architecture underwent an incomplete reification

as a Java Community Project known as the Java Agent Services (JAS) Java

Specification Requests (JSR82).

iii. A well-specified and much-used agent communication language (FIPA-

ACL), accompanied by a selection of content languages (e.g. FIPA-SL) and

a set of key interaction protocols ranging from single message exchange to

complex transactions.

iv. Several open source and commercial agent tool-kits with JADE generally

considered as the leading FIPA-compliant open source technology available

today.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

56

v. Several projects outside FIPA such as the completed Agentcities project that

created a global network of FIPA-compliant platforms and agent application

services.

vi. An agent-specific extension of Unified Modelling Language (UML), known

as Agent Unified Modelling Language or Agent (AUML).

2.4.3.2 The Central Concepts of FIPA

Several agent-related ideas were proposed during the evolution of FIPA, but the

standardization specification task was mostly concerned with agent communication,

agent migration and agent architecture.

A. Communication

Agents are distributed code processes that are made up of two parts, components and

connectors, the components that produce and consume messages which are exchanged

through the connectors. FIPA specifies languages, message sequencing, ontology,

protocols, it specifies communication between agents and has an associated formal

semantics in what is known as FIPA-Agent Communication Language (FIPA-ACL).

FIPA-ACL is grounded in speech act theory which states that messages represent

actions or communicative acts also known as speech acts or performative (Bellifemine

et al, 2007). For an agent to be FIPA compliant it must be able to receive any FIPA-

ACL communicative act message and at least respond with „not understood‟ if it

cannot process the message. FIPA communication can be separated into seven sub-

layers as identified by Bellifemine et al., (2007), although O‟Brien and Nicol (1998)

identified five sub layers, within the OSI or TCP/IP application layer:

1. Transport: the lowest application sub-layer protocol is the transport protocol.

FIPA defined message transport protocol (MTP) for IIOP (Internet Inter Object

Request Broker Protocol) Inter and Intra-Operability Platform (IIOP, 1999),

WAP and HTTP.

2. Encoding: FIPA defined several message representations for using higher-level

data structures including XML, string and Bit-Efficient, instead of simple byte-

encoded messages. Bit-Efficient is intended for use when communicating over

low-bandwidth connections.

3. Messaging: in FIPA, message structure is specified independent of particular

encoding to support flexibility. This is important because it is necessary to

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

57

specify certain key parameters in addition to the content to be exchanged such

as the sender or receiver, message type, time-out for replies.

4. Ontology: defines the vocabulary and meaning of the terms and concepts used

in the content expression. Individual term and concept contained in the content

of a FIPA message can be explicitly referenced to an application-specific

conceptual model or ontology. FIPA allows the use of ontology when

expressing message content but does not specify any particular representation

for ontology nor provide any domain-specific ontology. It is possible to

reference Web-based ontology if required.

5. Content Expression: defines the grammar and associated semantics for

expressing the content of a message. The content of FIPA messages may take

any form, but FIPA has defined guidelines for using general logical formulae

and predicates and algebraic operations for combining and selecting concepts.

FIPA-SL (FIPA-Semantic Language) is mostly used for expressing contents

with examples of logic formulae: not, or, implies, equiv etc and example of

algebraic operators: any and all.

6. Communicative act (CA): defines the type of communication being performed,

FIPA classifies messages in terms of its action or performative, implies,

request, agree and refuse are examples of communicative act.

7. Interaction protocol: defines the social rules for structuring the dialogue

between agents. FIPA defines several interaction protocols specifying typical

message exchange sequences such as request, which describes one party

making a request of another which in turn should agree or refuse to comply.

Interaction protocols provide structure for the dialogue between agents while

others are contained in each FIPA ACL message (O‟Brien and Nicol, 1998).

B. Agent management

Agent management is a framework within which FIPA compliant agents can exist,

operate and be managed. It establishes the logical reference model for the creation,

registration, location, communication, migration and operation of agents (Bellifemine

et al, 2007). The agent management reference model consists of agent that resides in an

agent platform, with a number of services it can render; each agent has an identity AID,

by which it is uniquely identified. The agent platform has an agent management system

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

58

that contains the descriptions of agents and one or more directory facilitators that

contain the description of agent services. These components are described below:

Agent Platform (AP): provides the physical infrastructure in which agents are

deployed. It consists of FIPA agent management components, the agents and

other support software. One agent platform may be spread across multiple

computers.

Agent: resides in an agent platform and offers computational services that can

be published as a service description. Agent has one owner and an identity

which can be described by FIPA agent Identifier (AID) that labels an agent so it

is distinguished from the others.

Directory Facilitator (DF): is an optional component of an agent platform that

provides yellow page services to other agents. DF maintains an accurate,

complete and updated list of agents and must be able to provide current

information about agents in its directory without bias to all authorized agents.

An agent that wishes to publicize its services finds a suitable DF and requests

registration of its description. The DF is committed to the act of registering and

not the agent, the agent can request deregistration of a description should the

DF fail to broker information relating to the agent. The agent may request the

DF to modify its agent description at any time, or issues a search request to a

DF to discover descriptions matching supplied search criteria.

Agent Management System (AMS): is responsible for managing the operation

of agent platform such as creation and deletion of agents, controlling the

migration of agents to and from the platform. All agents register with the AMS

in order to get an AID, the AMS keeps these AIDs as directory of all agents

present in the platform and their current state. The AMS can request any agent

to perform specific management function and could enforce the operation if the

request is ignored. Only one AMS can exist on a platform and if the platform

spans multiple machines, the AMS is the authority across all the machines.

Message Transport Service (MTS): is a service the agent platform provides to

transport FIPA-ACL messages between agents on any given platform and

between agents on different platforms. FIPA compliant message is presented in

a transport envelope and comprises of the encoded message (payload) that

consists of the message content and message parameter such as the sender and

recipient of the message.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

59

C. Agent Abstract Architecture

An abstract agent architecture was created and standardized as a means to avoid the

impact on platform implementations of incremental revision to main specifications.

The most important mechanisms such as message transport and directory services are

abstracted into a unified specification. The goal of this approach is to permit the

creation of systems that seamlessly integrate within their specific computing

environment while interoperating with agent systems residing in separate environments

(Bellifemine et al., 2007). The architecture defines how two agents can locate and

communicate with each other by registering themselves and exchanging messages.

Agents communicate by exchanging messages which represent speech acts and which

are encoded in an agent communication language. Services provide support services for

agents and include the standard services of agent directory services, message transport

services and service directory services. FIPA Abstract Architecture specified agent

message structure, message transport service, agent directory services and service

directory services.

The first official specification proposal of Process Documentation Template was

released in 2010, revised in 2011 and final version was released the same year which

was later approved in the year and became the IEEE FIPA Experimental specification

document XC00097A (Cossentino, 2011).

2.5.3.3 Mobile Agent Systems Interoperability Facility (MASIF)

MASIF is the first standard for mobile agent systems which was adopted by the Object

Management Group (OMG) in 1988 (Braun and Rossak, 2005). MASIF addresses the

interface between agent systems, it defines agent system as a platform that can create,

execute, transfer and terminate agents. MASIF is a collection of definitions and

interfaces that provides an interoperable interface for mobile agent systems (Milojicic

et al, 1998). MASIF aims at achieving interoperability between agent platforms written

in the same language but by different vendors. According Braun and Rossak (2005)

MASIF focuses on standardizing three things and Milojicic et al, (1998) believe they

are four:

i. Agent management: manages different systems through the included standard

operations such as creating agent, suspending, resuming and terminating agents

ii. Agent transfer: provides a common infrastructure for agent's applications to

freely move mobile agents among different but compatible agents systems.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

60

iii. Names for agents and agent systems: mobile agents cooperate with other agents

and agent systems, there is therefore a need for standardized syntax and

semantics to identify one another and communicate.

iv. Agent system type and location syntax: the agent transfer cannot happen unless

the agent system type can support the agent. The location syntax is standardised

so that agent system can locate each other (Milojicic et al, 1998).

MASIF however, does not cater for agent communication because it is addressed by

CORBA (Common Object Requst Broker Architecture) extensively (Braun and

Rossak, 2005). Very few platforms are MASIF compliant because of its closeness to

CORBA.

MASIF has three components, CORBA services, Mobile Agent Facility (MAF) and

Object Request Broker (ORB). CORBA provides the common services, ORB

provides the communication infrstructure while MAF defines the fundamental

functions of a mobile agent system which includes MAF Finder that registers and

unregisters agents and agent systems and locate agents and agent systems dynamically

and MAF Agent System that requests and provides services (Milojicic et al, 1998).

Request services could be data, classes, creating agents, moving agents out and

services provided could be transfering agents, creating agents, assigning authority,

authentication, terminating or resuming agent running, transfering data, classes

forwarding data or classes to agents, processing received data or classes.

2.6 Multi-Agent Systems

The explosion of available information in widely dispersed location, and distribution of

enterprise operations have given rise to distributed problems that require distributed

computations. Distributed computations are often easier to understand and develop

than complex centralized computation that is adapted to solve distributed problems, at

other times; centralized computation may not even be possible. Especially, when the

necessary information is stored in large and complex systems that are geographically

dispersed, manipulating such complex systems will require intelligent and distributed

techniques. Mobile agents have been adopted as one such technique. Advance in the

complexity of information systems increase the problem solving scope which single

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

61

agents could no longer cope with, this led to building systems that consist of multiple

agents.

Multi-agent systems have been defined by Sycara (1998), as a loosely coupled network

of software agents that interact to solve problems that are beyond the individual

capabilities or knowledge of each problem solver. These problem solvers are agents

that are autonomous and heterogeneous in nature. According to Shoham and Leyton-

Brown (2009), multi-agent system consists of multiple autonomous entities with

different information and diverging interests. In essence, multi-agent system consists of

a number of autonomous agents interacting with one another. It is commonly agreed

upon in the agent research community that a community of agents working together

performs better than a single intelligent agent. The need to use agent technology to

build sophisticated software to solve complex problems of the real world led to the use

of multi-agent systems. Multi-agent system emphasizes that the agents concerned are

computational information entities. For these agents to successfully interact, they will

require the ability to communicate, cooperate, coordinate and negotiate with one

another. This is the focus of Distributed Artificial Intelligence (DAI).

2.6.1 Motivation for Multi-Agent System

The motivations for the increase in multi-agent research identified by researchers are

numerous and diverse, but most (Sycara, 1998; Shoham and Leyton-Brown, 2009)

agree on the ability of multi-agent system to perform the following:

 to solve problems that are too large for a centralized agent to solve, because of

resources limitations or the shear risk of having one centralized system that

could be performance bottleneck or could fail at critical times.

 to allow for the interconnection and interoperation of multiple existing legacy

systems

 to provide solutions to problem that can naturally be regarded as a society of

autonomous interacting components –agents.

 to provide solutions in situations where expertise is spatially and temporally

distributed

 to provide solutions that efficiently retrieve, filter, use and globally coordinate

information from sources that are spatially distributed.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

62

 To enhance overall system performance in terms of: (i) computational

efficiency (ii)reliability (iii) extensibility (iv) robustness (v) maintainability (vi)

responsiveness (vii) flexibility (viii) reuse.

2.6.1.1 Characteristics of Multi-agent Systems

Sycara (1998) identified four major characteristics of multi-agent system as follows:

 Autonomy: each agent has incomplete information or capabilities for solving

the problem and thus has a limited view point.

 There is no system global control

 Multi-agent Systems are generally open and data are decentralized

 Computation is asynchronous

There are two categories of multi-agent systems depending on the mode and level of

interactions of the component agents; these are cooperative and competitive multi-

agent systems.

Cooperative Multi-agent system: the agents share the same desire and pursue common

objectives in an unknown environment.

Competitive Multi-agent system: the agents cannot be assumed to have same desire or

objectives, even in situations where agents are best off cooperating, they may not

realize it or may not behave as if their interests are aligned.

2.6.1.2 Application of Multi-Agent Systems

Multi-agent systems have been applied in a wide area of human endeavour, some of

which identified by researchers such as Sycara (1998) are highlighted below:

 HealthCare system: multi-agent systems have been used for patients scheduling

and management, senior and community care, medical information access and

management, and decision support.

 Telecommunication: multi-agent systems have been used effectively for

managing distributed networks and realization of advanced telecommunication

services.

 Traffic and transportation: for distributed vehicle monitoring and air traffic

control and monitoring, such as OASIS which is a sophisticated agent air traffic

control system based on the Believe-Desire-Intention model.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

63

 Industrial applications: multi-agent systems have been successfully applied to

industrial process control, system diagnosis, manufacturing, transportation

logistics and network management.

 Information management: multi-agents are used for searching and filtering

mass information from the Internet, electronic commerce and automated

business processes, business process management, supply chain management.

 Multi-Robotic systems: multi-agent systems are used for distributed planning

techniques for coordinating different robot, for example in MISUS multi-agents

are used for scientific exploration with cooperating rovers.

2.6.1.3 Advantages of Multi-Agent Systems

Multi-agent systems offer a number of advantages that make them more desirable than

the single agent systems, some of these advantages are highlighted below:

 Distributes computational resources and capabilities across a network of

interconnected agents.

 Allows for the interconnection and interoperation of multiple existing legacy

systems.

 Multi-agent system models problem in terms of autonomous interacting

component (agent), which proves to be a more natural way of representing task

allocation, team planning, user preferences, open environment and so on.

 Multi-agent system performs at a relatively high speed

 It allows reuse of components (agents)

 It is highly reliable.

2.6.2 The Agent Framework Design

The proposed system is a multi agent system with the agents designed using the

itinerary pattern. There are basically eight kinds of agent design patterns: itinerary,

branching, star-shaped, master-slave, MoProxy, meeting, Mutual Itinerary recording

and facilitator (Emerson et. al., 2003). Aridor and Lange (1998) identified nine patterns

that were grouped conceptually into three, and Danny (2008) also agrees with the

classification, the classes are travelling, task and interaction. The travelling patterns

include Itinerary, Forwarding and Ticket. In the task patterns two specific patterns are

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

64

identified, Master-Slave and Plan. A set of five patterns identified within the

Interaction patterns are Meeting, Facilitator, Locker, Messanger and Organized group.

The basic idea of design patterns according to Emerson et. al., (2003) is to define

general solution models for common problems that are found in a given context.

Design patterns make the development of applications easier, present a better

understanding of the project, increase flexibility and promote reuse of components

(Ajay et al, 1999: Silva and Delgado, 1998; Emerson et. al., 2003).

I. Itinerary pattern

Itenerary pattern provides a way to execute the migration of an agent, which will be

responsible for executing a given task in remote hosts (Emerson et. al., 2003). The

agent will create the itinerary object and initialize it with a list of destinations to visit

sequentially and a reference to the agent. The agent will dispatch itself to the next

available destination in its itinerary or back to its origin. The agent receives an itinerary

on the source agency indicating sequence of agencies to visit. Once in an agency, the

agent executes its task locally and continues on its itinerary. After visiting the last

agency on its itenerary, the agent goes back to its source agency with the result (Aridor

and Lange,1998; Danny, 2008).

The itinerary pattern is used when there is a need to hide the details of an agent‟s tour

from its behavior in order to promote modularity of both parties. It is also used when

there is need to provide a uniform interface for sequential traveling of agents to

multiple hosts and to define tours that can be shared by agents (Emerson et. al., 2003).

The itinerary pattern was chosen for this study because of certain attributes inherent in

it, among these are the fact that it supports variations in routing, it makes it easy to

provide such variations by simply replacing one itinerary object with another or by

defining itinerary subclasses, the agent class however, is not modified. Itimerary

patterns also facilitate sharing of tours by different agents. This is made possible by

sharing itinerary objects, although not simultaneously, for example, two agents may

use the same tour to multiple users‟ desktops with different messages. The itinerary

pattern also simplifies the implementation of sequential tasks, tasks can be

encapsulated in special task objects while an itinerary class is extended with an

interface to associate task objects with destinations. The itinerary object keeps track of

the current tasks to perform. When the agent is dispatched to a new destination, it

simply triggers the execution of the current task saved by its itinerary object.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

65

II. Branching Pattern

The agent receives a list of agencies to visit and clones itself according to the number

of agencies in the itenerary. Then each clone will visit an agency of the received list,

execute its corresponding task and notify the source agency when the task is

completed. This pattern splits the tasks that can be executed in parallel (Emerson et. al.,

2003).

III. Star-shaped pattern

The agent receives a list of agencies it has to migrate to. It migrates to the first

destination agency, executes a task, goes back to the source agency. The agency repeats

this cycle until it visits the last agency on its list (Emerson et. al., 2003).

IV. Master-Slave

The master slave pattern defines a scheme whereby a master can delegate tasks to a

slave agent. A master delegates a task to be performed on a given agency to a slave

agent, in order to continue executing other tasks that cannot be interrupted (Emerson et.

al., 2003). Master-Slave also improves performance, a master agent can continue to

perform other tasks in parallel with the slave agent. The master agent creates a slave

agent, the slave agent visits the remote host, accomplishes the task and returns to the

master with the results of the tasks (Aridor and Lange,1998). The master agent receives

the results from the slave agent. The slave agent then destroys itself. The Master-Slave

pattern is used when an agent needs to perform a task in parallel with other tasks for

which it is responsible and when a stationary agent wants to perform a task at a remote

destination. The Master-Slave pattern provides a fundamental way to reuse code among

agent classes. However, the behaviour of a slave agent is not dynamic, as it is fixed at

design time. An agent cannot be transformed into a slave at runtime nor can a slave

agent easily be assigned to perform new tasks.

V. MoProxy pattern

The MoProxy (mobile proxy) pattern is used to control access to a resource (Ajay et

al., 1999). When an agent needs a resource, it asks the Resource Granter (RG),

indicating the desired permissions. Then, the resource granter returns a mobile proxy

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

66

for the agent with desired access right on the resource, in order to access the resource

with the desired permissions depending on the restrictions of the resources. This

prevents the agent from directly accessing the resource. This pattern is unique in that

the mobile proxy can move along with the agent. If the resource moves, the mobile

proxy keeps track of the resource, it moves along with the agent and provides the agent

with controlled access to the resource at any location. Thus mobile proxy provides

location transparent controlled access to an agent.

VI. Meeting pattern

The meeting pattern presents a way to promote local interactions between agents

distributed on the network(Emerson et. al., 2003). Such interactions allow the

execution of given tasks as well as the optimization of results. The meeting pattern uses

the notion of meeting to synchronize various agents which were initially at different

hosts, so they can visit a virtual place and find one another. The meeting agent, who

will meet others, has a meeting object that keeps the place and the identification of the

meeting. In this way the meeting agent requests from the meeting object the place of

the meeting and then migrates to it. Each agent dispatches itself independently to the

meeting place, where it will use the unique identifier to locate a specific local meeting

manager object to register itself (i.e add itself to a list of agents that have arrived at that

host). A meeting manager that manages the meeting notifies the agents already

registered in the meeting place about the arrivals and departures of new ones (Aridor

and Lange, 1998). Departing agents unregister themselves before leaving the meeting

place. The meeting object intermediates the register of the agent on the manager.

Through the use of unique identifiers, multiple meetings can take place simultaneously

at a single host. Meeting objects can be distributed by messages or located in central

directories. The meeting pattern is used where there is a need for agents on different

hosts to interact locally, and the overhead of travelling to a central place and interact

locally is less than associated with remote communication. It is also used when agents

cannot interact remotely, since they are located behind firewalls or on hosts with

unreliable and low-bandwidth network connections, or if their origins are disconnected

for the network, e.g. laptops. One solution is for these agents to dispatch themselves to

a remote host where they can interact more efficiently. Meeting pattern is also used

when agents need to access local resources on a given host, in this case the agents need

to interact locally with the service provided by a given host.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

67

VII. Facilitator pattern

Defines an agent that provides a name service and localization of agents with specific

abilities thus facilitating the localization of a given agent (Emerson et. al., 2003). It is

often convinient to assign a symbolic name to an agent in order to locate it on a later

occasion.

VIII. Mutual Itinerary Recording

Is a general schema that guarantees the itinerary of a given agent will be registered and

tracked by other cooperative agent and vice-versa, in a disposal of mutual support

(Emerson et. al., 2003). When an agent is moving between platforms, it carries the

information from the last platform, the current and the next ones to the cooperative

agent through an authenticated channel. The agent keeps the register of the itinerary

and it always compares the itinerary that it possesses with the received one. When an

inconsistence is detected it should be treated . e.g it would either disallow the agent to

visit the platform that caused the inconsistency or suspend the functioning of an agent

or send the agent back to the source agency.

The use of mobile agent design patterns presents solutions that can be reused, avoiding

loss of time and efforts to investigate problems that have already been solved.

2.6.3 Mobility Strategies

There are two types of agent migration proposed in the existing mobile agent platforms

depending on what is transported with the agent code, these are strong and weak

mobility. The state of a mobile agent is divided into two parts, the runtime state which

contains all information for the control of a mobile agent such as program counter and

stack, and the data state which contains information such as the local variables and

resources (Genco, 2008). Both strong and weak migration save states and later restore

the state previously saved before the agent starts execution.

Strong migration: the agent migrates with its execution state, both runtime state and

data state are saved and transported to the destination with the agent‟s application code

. After migration, it can re-obtain the state before migration and resume execution from

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

68

the point where is was suspended. D‟Agent (Agent TCL) implements strong migration

because of the Tool Command Language it uses. It uses agent_jump statement for

migration and execution continues with the statement following the agent_jump

statement.

Weak migration: the agent migrates with its code and transferable resources, i.e only

the data state is saved and transported to the destination. On the destination node, the

agent is launched from the main application and it re-executes from the beginning and

its execution context is re-initialized. This work like other Java-based agents,

implements the weak migration strategy in which the migration is performed by

executing the runAndMove() method inherited from the MobileAgent class.

2.6.4 Mobility Patterns

Itinerary is a set of sites that a mobile agent has to visit. Itinerary of an agent can be

static i.e fixed at the time of agent initialization or dynamic in which case it is

determined by the Mobile agent itself. Order is the order/sequence in which a mobile

agent visits sites in its itinerary, order could also be static or dynamic. Based on these

two concepts, the mobility patterns of an agent can be categorized into the following:

i. Static itinerary: The itinerary of the mobile agent is known a priori and cannot

change. Static itinerary can further be classified based on their order as

ii. Static Itinerary Static Order (SISO): the order in which an agent completes

its itinerary is static and known a priori, as illustrated in Figure 2.14. Applicable

implementation strategies include sequential client server, sequential mobile

agent. An example is an auction agent that is required to visit a set of auction

sites in a specified order.

iii. iii Static Itinerary Dynamic Order (SIDO): the order in which an agent

completes its itinerary is dynamically decided by the agent, as shown in Figure

2.15. Available implementation strategies include sequential client server,

Sequential mobile agent, parallel client server, parallel mobile agent. Example

is a shopping agent which finds the cheapest price of an item from a set of on-

line shops.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

69

H1 H2 H3 H4

Itinerary

 Order: H1 H2 H3 H4

H1 H2 H3 H4

 Figure. 2.14: SISO itenerary pattern

H1 H2 H3 H4

Itinerary Order: H1 ?

H1 H2 H3 H4

Figure 2.15: SIDO itinerary pattern

H1 H2 H3 H4

Itinerary H1 ? Order: H1 ?

H1 H2 H3 H4

Figure2.16: dynamic itinerary pattern

C

c

C

c

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

70

iv Dynamic Itinerary

The itinerary of an agent is not known a priori but it is dynamically determined

by the agent itself, however, the first site should be known a priori, illustrated in

Figure 2.16. Available implementation strategies for dynamic itinerary are

sequential client server, sequential mobile agent. Dynamic itinerary also implies

dynmamic order. An example is a shopping agent that is required to find a

particular product, a shop that does not have the product can recommend

another shop and the recommended shop is included in the mobile agent‟s

itinerary dynamically.

2.6.5 Itinerary Implementation Strategies

Sequencial Client Server: is based on the traditional client server paradigm. The

client makes a request to the first server returns with the result of processing to the

client, makes a request to the second server and returns to the client and so on until the

list of servers in its itenerary is exhausted, as shown in Figure 2.17 (a).

Sequential Mobile Agent: only one mobile agent moves from its sourcce to the first

host in its itinerary and then to the second host and so on, as shown in Figure 2.17 (b),

until it visits all the hosts in its itinerary and then returns with the result to the source

host.

Parallel Client Server: is also based on client server paradigm. The client initiates

parallel threads of execution instead of sequnetial requests, where each thread

concurrently makes a request to one of the servers and processes the reply as shown in

Figure 2.17 (c).

Parallel Mobile Agent: with this approach, the client initiates multiple Mobile Agents,

each of them visits a subset of the servers in the itinerary, as shown in Figure 2.17 (d).

The Mobile Agents each return to the client and pull their results together to complete

the task.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

71

(a) Sequential Client Server (b) Sequential Mobile Agent

 H1 H2 H3

 H1 H2 H3

 1 2 1 2 1 2 1 2 1

2 1 2

 (c) Parallel Client Server (d) Parallel Mobile

Agent

C: Client H: host computer

 : Mobile Agent Message Exchange/MA movement

1 2 3..... Sequence of messages / MA movement

Figure 2.17: Itinerary implementation strategy

C

c

C

c

C

c

H1

11

H2
H3

C

c

H1
H3

H2

1

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

72

2.7 A Survey of Mobile Agents Systems

This section examines the most common Mobile Agents Systems currently available

and attempt to describe them as brief as possible in detail.

 2.7.1 JADE: Java Agent Development Framework

JADE is a software platform that provides basic middleware-layer functionalities, it

contains two parts: a platform for agent following FIPA standard, and a software

package for java agent development. JADE according to David, 2004: Bellifemine et

al, 2007: and Giovanni, 2009, is an open source FIPA compliant agent platform that

supports implementation and desktop deployment of software agents using an

extensive developer‟s toolkit and compatibility with standard and heavier java

environment. The main objective of JADE is to simplify the development of agent

applications in compliance with the FIPA specifications for interoperable intelligent

A significant merit of JADE is that it implements this abstraction over a well-known

object-oriented language, java, providing a simple and friendly Application

Programming Interface (Bellifemine et al, 2007). JADE like other agent platforms,

provides services necessary for agents execution in the network, allows agents to

dynamically discover other agents and communicate with one another. JADE supports

mobility of code and execution state, as well as complex conversations by providing a

set of skeletons or typical interaction patterns to perform specific tasks, such as

negotiations, auctions and task deligation.

JADE platform is composed of agent containers that can be distributed over the

network. Agents live in containers which are the Java processes that provide the JADE

run-time and all the service needs for hosting and executing agents. The set of active

containers is called platform, there is main container which is the first container to be

lunched and other containers are launched from the main container (Bellifemine et al,

2007: Giovanni, 2009, and Wenjuan et al, 2009). Agent Management System (AMS)

and Directory Facilitator (DF), are parts of the platform, there is only one AMS on one

platform, which offers the white page service and agent lifecycle service, and maintain

the directory of agent identifier (AID) and the state of agent.

To process a mobile agent‟s request to move, JADE executes the following algorithm

(i) Suspend the agent (halt the agent‟s thread)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

73

(ii) Identify the agent‟s state

(iii) Serialize the agent class and state

(iv) Encode the serialized agent class and state according to the transport protocol

(v) Provide authentication information to the server

(vi) Transport the agent

Before accepting the agent, the receiving agent system verifies that it can support the

agent profile (agent system type, language and serialization method). If it does, the

following algorithm is executed

(i) Authenticate the client sending the agent

(ii) Decode the agent

(iii) Deserialise the agent class and state

(iv) Instantiate the agent

(v) Restore the agent state

(vi) Resume agent execution.

For communication and transport JADE implements all standard Message Transport

Protocol (MTP) defined by FIPA, HTTP, HTTPS, IIOP, JMS (Java Message Service)

and Jabber XMPP (Extensible Message and Presence Protocol) and other proprietary

protocols like the IMTP (Internal Message Transport Protocol).

2.7.2 Grasshopper

Grasshopper is the first mobile agent platform that complies with MASIF and FIPA

standards developed by IKV Technologies. It is being continuously developed since

1997 and is offered as a free product for educational use. The entire platform is

implemented in Java, the environment is built from one region registry and several

agencies, which can be compared to agent platforms in agent system (Wallin, 2004).

Grasshopper contains several services which are security, registration, persistence,

management, transport and communication, it also provides developers with interesting

features, including graphical user interface to manage agents, agencies and region.

Grasshopper supports a number of transport and communication protocols, with the

default proprietary protocol based on TCP/IP, and it also has supports for RMI/JRMP

and CORBA/IIOP. Agent mobility in grasshopper is weak code mobility, thus agent

state is restarted each time it migrates to a new location. Grasshopper uses Secure

Socket Layer (SSL) protocol to protect agents during migration, certificates in

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

74

authentication and cryptographic algorithms for encrypting the data packets under

transmission (Wallin, 2004). However, a call to an agent which is moving can end up

executing on the copy of the agent at the origin, which will be removed once the agent

arrives at its destination (Gupta and Kansal, 2011).

2.7.3 Agent Tcl (D’Agents)

Agent Tcl system was developed at Dartmouth College to address the weaknesses of

existing mobile agent systems (Syed et al., 2000) and it focuses on five research areas,

these are (i) performance, (ii) support for multiple languages (iii) cryptographic

authentication and restricted execution environments to protect a machine from

malicious agents, (iv) economic-based models to limit an agent‟s total resource

consumption across multiple machines and (v) networking sensing, navigation and

planning services (Gray, 1997). Agent Tcl is an agent support environment, the

platform is written in C programming language and the agents are written in TCL (Tool

Command Language). Agent Tcl is similar to other mobile agent systems but it

distinguishes itself with it combination of multiple languages (Tcl, java and scheme), a

simple but effective security model and its simple migration mechanism (agent_jump)

and both low and high-level communication protocols. Agent TCL supports strong

migration with the agent_jump command which captures the current state of the agent

and transfers this state to a server on the destination host and execution continues from

the command immediately after the agent-jump command on the destination host (Gray

et al, 1996). Agent Tcl has a simple but effective security model, to protect migrating

agents and for authentication, it uses PGP (Pretty Good Privacy) for its digital

signatures and encryption (Gray et al, 1996), for transport and communication, it uses a

proprietary protocol over TCP/IP. Agent TCL has been used in information

management and information retrieval applications (Gray, 1995).

2.7.4 Aglet

The Aglet framework, developed by IBM (Tokyo research Laboratory) is a Java based

framework for mobile agents (Venners, 1997). An aglet is a combination of the applet

model and the agent model, in principle adding mobility to applets. Aglets‟ transport

and communication is based on Agent Transfer protocol, which is modelled over

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

75

HTTP protocol. Protocol capabilities are accessed through the Agent Transfer and

Communication Interface (ATCI), which allows an abstraction from the underlying

transport protocol. With Aglets, Java objects can be constructed that can move from

one host on the network to another. That is, an aglet that executes on one host can

suddenly halt execution, dispatch to a remote host, and start executing again. When the

aglet moves, it takes along its program code as well as the states of all the objects it is

carrying. Aglets have methods for creation, running, suspension, waking up, activating,

deactivating, cloning, dispatching to other hosts, retraction from other hosts etc. Along

with this it has methods where one can specify what the agent should do when it arrives

at a particular host.

2.7.5 TACOMA: Tromso And COrnell Moving Agents

TACOMA is a joint project of the University of Tromsø (Norway), and Cornell

University (New York) (Johansen et al., 1995; Outtagarts, 2009). Agents are written in

Tool Command Language (TCL), although they can technically carry scripts written in

other languages too, the current TACOMA supports Scheme, Perl, Python, Java and C,

TCL, though TCL remains the principal language. The TACOMA project‟s main

objectives were to investigate what services need to be provided in order to support

easy building of agents and how agents can be used to solve problems by Operating

Systems in the previous TACOMA versions. The basic concepts of TACOMA include

the following

o Agent: the computational or execution unit

o Folder: list of element each of which is an uninterrupted sequence of bits.

o Briefcase: collection of named folder (mobile agents carry them as they

migrate)

o Cabinet: collection of named folder statically stored in a given machine.

Cabinet are used to permanently store information in a given machine, so agent

can leave state behind in when it moves around.

o Meet: allows an agent to run another agent passing a briefcase as a parameter.

An agent's state is explicitly stored in folders, which are aggregated into briefcases. An

agent is created by packing the program into a distinguished folder called code. Next,

its intended host's name is stored in the host folder. Absolute migration to this

destination is requested using the meet primitive. A briefcase containing the code, host

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

76

and other application-defined folders is sent to this agent. Agents can also use the meet

primitive to communicate by co-locating and exchanging briefcases. Both synchronous

and asynchronous communication is supported. An alternative communication

mechanism is the use of cabinets, which are immobile repositories for shared state.

Agents can store application-specific data in cabinets, which can then be accessed by

other agents. Tacoma offers directory services through broker agents. These agents

maintain a database that provides services by which each agent can deal with other

agents. Tacoma does not provide automatic state migration rather agents need to

capture the internal state by themselves.

2.7.6 Telescript/Odyssey

Telescript is a framework and a scripting language for implementing mobile agents

developed by General Magic Inc. one of the inventors of the concept of mobile agents.

Telescript is an object-oriented programming language in which state-oriented

migration is seen as the basic operation which is provided by the go instruction and a

ticket argument that determines the destination site in "varying levels of specification"

(General, 1995). A Telescript engine exists at each site to accept and authenticate

migrating agents and to restart the execution of agents at the statement immediately

after the go command.

A telescript program consists of a collection of classes. These classes have properties

which are either operational or attributes and can be either private or public. The three

major concepts in the language are agents, places and go. Agent and places are

processes; agents are mobile while places are stationary. Agent Go to Places, where

they use places, services and or interact with other agents that are in the same place. An

agent always executes in the context of one or more enclosing place, places provide a

service for agent to interact with, places can be nested. Two telescript agents can meet

in the same place. Meeting agents can call each other‟s operations and meetings

motivate agents to migrate. They permit all interactions between two agents to be done

locally rather than remotely. Security is paramount in telescript, the server needs

protection from malicious agents, agents‟ information must be protected as they travel

from host to host. Each place has its own policies and each engine has an overall

security policy. The agent transfer is authenticated using RSA and encrypted using

RC4.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

77

Two concepts of telescript security are safety and security. Safety refers to features that

promote robustness and prevent accidents and security refers to features that provide

protection and integrity in the presence of malicious users. These security features

protects agents and places from each other. Every agent is uniquely identified by a

telename. A telename consists of an authority which identifies the owner of the agent

and identity which distinguishes an agent from another agent of the same authority.

Authority component is cryptographically generated and cannot be forged.

Telescript shares the concept of remote programming with Java, and when Java

became successful Telescript was re-implemented in Java and renamed Odyssey.

Odyssey uses the same travel metaphor as Telescript, and the agents themselves are

programmed in Java. One notable exception is that Odyssey does not have the go

instruction, since Java does not provide facilities for capturing an executing program's

complete state, making it impossible to implement the go instruction without

modifying the Java virtual machine. An Odyssey agent carries all of its objects along

with it, but it must either restart execution on the destination machine or follow an

itinerary in which specific methods are executed at specific destinations.

2.7.7 Voyager

Voyager is a java-based and agent-enhanced Object Request Broker (ORB), developed

initially by ObjectSpace Company in 1997 and currently by Recursion Software

Incorporated. The goals of voyager include enabling programmer to create state of art

distributed programs quickly and easily, while providing a lot of flexibility and

extensibility for the products that are being created with the voyager system (Syed et

al., 2000). Voyager is a commercial product with a free license allowing non-

commercial use of its core technology. It is entirely programmed in java and fairly

simple to use, it uses java syntax to create remote objects and move them between

applications. There are two main types of objects in voyager: applications (which act as

hosts) and agents (which can move between them), exchanging messages (Michael and

Takanori, 1997). Both applications and agents can instantiate objects or call methods

on remote hosts. The transport and communication is based on a proprietary ORB on

top of TCP/IP. One great advantage of voyager is its supports for both traditional client

server architecture and agent-based architecture.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

78

2.8 Windows XP Operating System

Operating system is a suite of software that controls and manages the hardware

resources, all the activities of the computer machine and provides common services for

computer programs. The structure of an operating system consists of two major layers,

the user mode and the kernel mode as shown in Figure 2.18. This study focuses on

Windows XP, which is a 32-bit pre-emptive multitasking operating system for Intel

microprocessors (Silberschartz et al., 2009). In Windows XP, the user mode is the

layer closest to the users, it consists of the applications that users run and support

programs for application. The kernel mode is the layer closer to hardware and it

consists of programs that help all the software running on the computer system to use

the hardware as well as device drivers (WIN133, 2009). Windows XP was chosen for

this study because it was created to work on almost all hardware platforms

(Silberschartz et al., 2009). Windows XP incorporates a Hardware Abstraction Layer

(HAL) which sits between the XP and the hardware, XP interacts with the HAL who

directly interacts with the hardware to perform any required hardware functions; the

XP kernel sits on top of the HAL (WIN133, 2009 and Silberschartz et al., 2009). The

kernel mode programs are trusted programs that perform privileged activities with the

computer‟s hardware. At the heart of kernel is the Microkernel which provides the

building blocks for all the Executive Services running in the Kernel mode. The

executive services on the other hand provide services for applications and together with

the microkernel make up the Windows XP kernel. Windows XP provides avenue for

extending the services for the executive services, in other words, applications can be

made available and embedded in the kernel of XP through the executive services that

will give an impression of programming the XP directly.

2.8.1 Windows Operating System Service

Operating System Services are long-running executable programs that run in its own

Windows session, without users‟ intervention, this is similar to Deamon in Unix

Operating Systems. They give the impression of configuring some part of the PC and

are managed by the Service tool in Windows Operating System where they can be

enabled and disabled. The service does not support user interface but Windows

operating system provides an opportunity for developer to build a user interface in it.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

79

I/O
Manager

Security
Reference

Monitor

IPC
Manager

Virtual
Memory
Manager

Process
Manager

Plug and
Play

Manager

Power
Manager

Window
Manager
and GDI

Computer Hardware

Executive Services

User Mode

Kernel Mode

Hardware Abstraction Layer (HAL)

Graphics
Device
Drivers

Object Manager

Device Drivers Microkernel

File
Systems

Win 32-bit
App

Win 32-bit
App

Win 32-bit
App

Win 32-bit
App

Win32
Subsytem

(Win32 API)

Figure 2.18: The Architecture of Windows XP (adapted from WIN133, 2009)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

80

These services can be automatically started at the boot of the computer, can be stopped,

paused or restarted without interfering with other users or applications.

Customised services are provided for Windows Operating System by setting up the

inheritance and other infrastructure elements. The service class is set up to inherit from

the ServiceBase class and a main method for the service project that defines the

services to run and calls the Run() method on them. Service must be created in a

Windows service application project that creates a .exe file when built and inherits

from the ServiceBase class. ServiceBase class provides a base class for a service that

will exist as part of a service application. In java programming language this class is

referenced by:

Public class Servicebase extends Component

A service can start manually or automatically. Windows provides an interface called

the Service Control Manager which manages the starting and ending of services and

projects containing Windows service have installation components that can handle

messages from the Service control Manager. The operating system service provided in

this work starts automatically at the boot of the computer on which it resides, it remains

active in the background until it is manually stopped or paused or the system shuts

down.

2.8.2 Peculiarity of Service Applicationn

Service application is distinct and it distinguishes itself from other applications running

on the computer by the following features:

(i) The compiled executable file that runs as service application project must

be installed on the server before the project can function meaningfully.

(ii) Installation components need to be created from service application

(iii) The main method for the service application must issue the Run command

for the services the project contains. The Run method loads the services into

the service control manager on the appropriate server. This method is

generated automatically from windows service project template.

(iv) Windows service applications run in a different window station than the

interactive station of the logged-on user.

(v) Windows service applications run in their own security context and are

started before user logs into the windows computer on which they are

installed.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

81

2.8.3 Service Control Manager (SCM)

SCM is a Windows System process that starts, pauses, stops and interacts with

Windows service processes. It maintains a database of installed services and driver

services, and provides a unified and secure means of controlling them. The database

includes information on each service, how each service should be started and thereby

controls access to the service. SCM is located in

%SystemRoot%\System32\services.exe executable and it starts at system boot. SCM is

a remote procedure call server, so that service configuration and service control

programs can manipulate services on remote machines. The main class involved in

service creation is defined as

System.ServiceProcesss.ServiceBase()

This class overrides methods from the ServiceBase class when creating a service and

define the code to determine how the service functions in this inherited class.

System.ServiceProcess.ServiceProcessInstaller () this class install the service

and

 System.ServiceProcess.ServiceInstaller() unistalls the service

2.8.4 Windows XP Service Lifecycle

As mentioned earlier, Windows Service is a long executable program running in its

own Window session without user‟s intervention. Figure 2.19 describes windows XP

lifecycle, the Windows Service is installed onto the system where it will run. This

process executes the installer for the service project and loads the service into the

Services Control Manager, the service is started. The start method passes processing to

the application‟s OnStart method and processes the defined code. A service can run

indefinitely untill explicitly stopped, paused or the computer shuts down.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

82

Figure 2.19: Windows Service Life Cycle

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

83

2.9 Introduction to Information Retrieval

This section examines information retrieval, its evolution over the years, concepts and

principles with other information that is needed to understand the topic. Information

retrieval deals with the recovery of documents from a document collection, for a given

user information need expressed in form of a query. Information retrieval starts when a

user issues a query i.e. a formal statement of his information need; the IR system

evaluates the query with reference to information collection and provides the user with

a set of data that answers the query.

2.9.1 Evolution of Information Retrieval

To have a good understanding of the evolution of information retrieval, a historical

survey of the major technological milestones is necessary. Lesk (1996) used the

analogy of Shakespeare‟s seven ages of man to describe and predict the evolution of

information retrieval based on the prediction of Vannevar Bush. Bush in 1945 set a

goal for fast access to contents of the old libraries which is expected to be achieved by

2010 (Lesk, 1996).

The childhood stage (1945 -1955), the idea was conceived due to information

explosion after World War II. Bush predicted that a time will come when computers

will be selecting their own data, perform complex arithmetic operations, record results

for future use and so on. The first IR system was built in the 1950s, it used indexes and

concordances.

The schoolboy stage occurred in the 1960s, many experiments were performed, the

first experiment used mechanical searching of manual indexing, keying in the

traditional indexes. The first large scale information system was built and the idea of

free text searching arose, i.e. complete retrieval of any document using a particular

word and no cost for manual indexing. The mathematics of recall and precision were

developed as measures of IR systems. New retrieval techniques such as relevance

feedback, multi-lingual retrieval were invented. 1960s also saw the beginning of

natural language question answering and AI researches began building systems to

retrieve answers instead of just documents. Most works in the 1960s were still research

and learning, there was no access to really large amount of machine readable text to

build large systems.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

84

The invention of word processing system and time-sharing systems in the 1970s led to

a lot of text in machine-readable form that started full text retrieval systems. As

research progresses, there arose the probabilistic information retrieval model which

involve measuring the frequency of words in relevant and irrelevant documents using

term frequency measures to adjust the weight of words. The term weighting techniques

improved the performance of IR systems over the simple word matching that was

prevalent.

In the 1980s the use of online IR expanded with availability of full text instead of just

abstracts and indexing and spread of outline retrieval into use by non-specialists. There

was increasing interest in new retrieval methods such as sense disambiguation using

machine-readable dictionaries and computational linguistics, and the statistical kind of

retrieval.

In 1990s, things seemed to progress well, more text were available online with full text

search algorithms for retrieval. The Internet put IR to test; everyone could access the

Internet and provide information freely as well as classify their information.

Information retrieval received a boom especially in the USA where it was suggested

that computer network could bring information close students, and digital libraries

were developed, this is the origin of distributed information retrieval.

The fulfilment of Bush‟s prediction came in 2000s, a lot of books are available online,

and some ordinary questions can be answered by referencing online materials instead

of printed materials. Research focused on multimedia retrieval i.e. retrieval of images,

sound and video which led to more serious image recognition and sound recognition

research that have been more promising than computational linguistics. New and

improved retrieval systems were developed to multimedia information retrieval.

In the year 2010s, the fulfilment of Bush‟s prediction is being exploited, a lot of

conversion to machine-readable forms have been done but not complete. Multimedia

information is available and easy to deal with. Research now focuses on improving the

IR systems and learning new ways to use the new IR systems.

2.9.2 Overview of Information Retrieval (IR)

Information retrieval deals with the recovery of documents from a document collection,

for a given user information need expressed in form of a query. Information retrieval

starts when a user issues a query i.e. a formal statement of his information need; the IR

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

85

system evaluates the query with reference to information collection and provides the

user with a set of data that answers the query (van Rijsbergen, 1997). According to

Hiemstra (2000), information retrieval system is a software program that stores and

manages information on documents; the system assists users in finding the needed

information and does not explicitly return information or answer questions. However,

in IR, query may match several objects with different degrees of relevance, the set of

result obtained are therefore, ranked according to the degree of relevance to the query.

There is no perfect retrieval system that would retrieve only the relevant documents

and no irrelevant documents; therefore measuring the degree of relevance of

documents forms a vital part of IR. It is useless to have so much information that is not

relevant; it is also not desirable to have unretrieved relevant information. The whole

process of information retrieval is summarised by William (2007) as

”A full-text search engine takes a user’s query q, consisting of discrete terms

{t1,............t|q|}; evaluates it against a document collection D, consisting of documents

{d1,,dN}; and answers it with a ranked list of documents {a1, ar}, ai ,

ordered in decreasing estimated relevance to the query q.”

 Query is the user‟s request to the computer in an attempt to communicate the

information need, and it is made up of distinct terms.

 Document is an item of whatever units we have decided to build a retrieval

system over. Documents are data objects, usually textual, though may contain

other types of data such as images, sound, video or mixed-media records.

 Document Collection is a group of documents over which retrieval is

performed.

 Information need is the topic about which the user desires to know more.

 Ranked list of documents are members of the document collection that are

found to be relevant to the user‟s query when a specific ranking algorithm has

been applied.

A document is relevant if it is one that the user perceives as containing information of

value with respect to their personal information need in other words, satisfying his

information need. Information retrieval systems are evaluated based on two criteria,

effectiveness and efficiency. An effective system returns results containing more

relevant documents and an efficient system incurs reduced costs while finding result

documents. The cost of a search according to Craswell (2000) includes several factors

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

86

such as computation or storage resources expended at client or server, network

resources such as bandwidth expended in their communication and monetary network

usage or per-search charges.

Most computer based retrieval systems store only a representation of the document (or

query), this representaion is neccessary because it speeds up the retrieval process.

Information retrieval systems must support three basic processes that are of major

concern: (i) how to represent each document (indexing), (ii) how to represent the user‟s

information needs in a form suitable for a computer to use (query formulation) and (iii)

the matching or comparison of the two representations. The matching process usually

results in a ranked list of documents with the most relevant documents towards the top

of the list.

2.10 DISTRIBUTED INFORMATION RETRIEVAL (DIR)

In this information age, there is an influx of information available on different sites

covering large geographical areas for ease of access, use and consistency. Distributed

Information Retrieval includes searching document collections in these various sites for

documents relevant to our information needs. Document collection can be a single

source, a single location e.g a library or a set of libraries in a local environment or a

wide-area environment like a corporate network or even the Internet. According to

Craswell (2000), document can be full text, bibliography, sound, image, video or

mixed-media records.

Existing information retrieval services centralize the indices in the servers such as

Google, collect the content information on the web servers by using web crawlers. Web

crawlers are computer programs that automatically browse the World Wide Web in a

methodical and orderly fashion, they are also called ants, automatic indexer, worms,

bots, web roborts or web spider. The process of scanning the WWW is called web

crawling or spidering.

An individual or organisation wishing to publish electronic documents set up a

document server, a user views such documents using a document client e.g a web

browser. To view a document, the client sends a request containing a document

identifier (such as Internet URL, keywords) and the document server returns the

document in question if available (Craswell, 2002).

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

87

A distributed information retrieval problem arises when a user has access to many

documents that are spread across several servers, as it is with the WWW, and requires

some systematic organisation or search facility to find relevant information. It is

possibile for a single IR system to request all documents from every document server

and perform its search task over the combined set or to set up various search servers on

the network, each covering documents from one or more document servers (Craswell,

2000). IR system available across the network is called a search server and it is

accessed through a search client. Systems which return search results, such as search

server, usually return to the user a results list ranked according to the order of their

relevance to the user query. If the list contains more relevant documents, the system is

more effective, and a system is more efficient if it involves reduced costs in finding the

ranked list. Users want a system that is both effective and efficient. Queries are almost

always less than perfect, they retrieve some irrelevant documents as part of the result

list and don‟t retrieve all the relevant documents in the collection. It is useless

retrieving so many documents that are irrelevant, at the same time relevant documents

that are not retrieved are useless. This leads to the measure of the performance of the

retrieval systems. Two major parameters are measured:

 Precision is the fraction of the documents retrieved that are relevant to the

user‟s information need, it is called precision at n or P@n. if we are interested

in raising precision, we need to narrow the query.

Precision =
 * + * +

 * +

 Recall is the fraction of the documents that are relevant to the query that are

successfully retrieved. It can be seen as the probability that a relevant document

is retrieved. In order to raise recall, we broaden the query.

Recall =
 * + * +

 * +

2.10.1 Information Retrieval Model

IR systems store a representation of documents as well as query, there are several of

such representations, each is helpful in developing specific information retrieval tools.

The representation takes different forms which are categorized on mathematical basis

consisting of set of theoretic models that represent document as sets of words or

phrases, and derives similarities from set theoretic operations on those sets and

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

88

occurence of terms, the search term either occurs or not. Common models are Standard

Boolean Model, Extended Boolean Model and Fuzzy retrieval. The Algebraic Models

represent documents and queries as vectors, matrices or tuples. The similarity of the

query vector and document vector is represented as a scalar value and measures the

frequency of term occurrences. Common models are Vector Space Model, Generalised

Vector Space Model, (Enhanced) Topic-Based Vector Space Model, Extended Boolean

Model, and Latent Semantic indexing (Latent Semantic Analysis). The Probabilistic

Models treat the process of document retrieval as a probabilistic inference, i.e.

Probability of occurence of terms. Similarities are computed as probabilities that a

document is relevant for a given query using the occurrence or non occurrence of

terms. Common probabilistic model are: Binary Independence Model, Probabilistic

Relevance Model, Uncertain inference, Language Models and Divergence-from-

randomness Model. In the following section we examine some of these information

retrieval models.

2.10.2 Boolean Retrieval Model

In Boolean retrieval model a query is posed in the form of a Boolean expression of

terms, i.e. terms are combined with logical operators AND, OR, and NOT (Manning et

al., 2009). Boolean model views documents as just a set of words and retrieves a

document if the expression of the query evaluates to true. Parenthesis can be used to

group keywords to specify the order in which the Boolean operators are applied and

also allows more complex query. The AND operator returns the intersection of the

document and query, OR returns the union of the two and NOT considers all the

document not in the specified set. The model keeps a dictionary of terms (vocabulary

or lexicon) using the inverted index concept and for each term maintains a list that

records which documents the term occurs in. Each item in this list is called a posting,

the list is then called a posting list or inverted list and all the posting lists taken together

are called postings.

2.10.2.1 Advantages and Disadvantages of Boolean Retrieval

The Boolean model is the first model for information retrieval and it ruled for a long

while. It uses the basic Boolean operators that users are familiar and comfortable with,

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

89

the associated merits and demerits as identified by Yepes (2009) and Craswell (2000)

include the following:

(i) Boolean model gives users a sense of control over the system.

(ii) It possesses a great expressive power and clarity; it is effective if a query

requires an exhaustive and unambiguous selection. It is clear why a

document has been retrieved given a query, and if the resulting set is too

small or too large, it is clear which operator will produce a larger or

smaller set.

(iii) Boolean model can also be extended with proximity operators and

wildcard operator, which gives it the capability to compete with other

models.

(iv) It is easy to implement and it is computationally efficient.

(v) However, Boolean model does not provide a ranking of the retrieved

documents according to relevance. A document is either retrieved or not.

(vi) The similarity function is Boolean, it looks for exact matches, and there

is no room for partial matches.

(vii) It is often difficult to translate queries into a Boolean expression.

(viii) In addition, the rigid difference between Boolean AND and OR

operators does not exist between these words in natural language which

makes it difficult for non-expert to use.

(ix) The query language is expressive but complicated, Boolean operators

may retrieve too much or too little.

 Despite these shortcomings, Boolean model is still being used by popular systems, it is

the standard model for the current large-scale, operational retrieval systems and many

of the major on-line information services use it, such as PubMed (Yepes, 2009).

2.10.4 Ranked Retrieval Models

Ranked retrieval models take care of the shortcomings of Booloean model, these

models take into account the number of occurrences of terms in the documents to

compute ranking. The ranked retrieval models return an ordering over the top

documents in the collection for a query, and are suitable for non experts who need not

use query language of operators and expression but their natural language. The size of

the result set is not a problem, because the models just return the top k results. One

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

90

prominent ranked retrieval model is the vector space model; this is described briefly in

the subsection that follows.

2.10.4.1 Vector Space Model

In this model, both the documents and the query are represented in multi-dimensional

vector space where each distinct term corresponds to a dimension and the document‟s

coordinate in that dimension is defined by the respective Wt,d value (weight of t in d)

(William, 2007). The vector space model procedure can be divided into stage:

 Document indexing which removes all the non-significant word in the

document, these are called the stop words.

 Similarity coefficients find the similarities between document and query by

using associative coefficients based on inner product of the document vector

and query vector, the similarity is the overlap of the two.

 Length normalization transforms the documents‟ vectors into unit vectors, this

compensates for the effect of document length on the vectors.

 Term weighting finds the weight associated with each term with respect to

relevance to the user‟s needs. Term frequency, collection frequency and

normalized length factor contribute to the term weighting calculation; product

of these three is the resulting term weight.

o Term frequency tf is the number of occurrences of term t in document d.

Term frequency is content descriptive for the document.

o Collection frequency is the total number of occurrences of term t in the

collection.

o Normalized length is the square root of the sum of squares of the document

frequencies.

 Document frequency df is commonly used in place of collection frequency, df is the

number of documents in the collection that contain term t. This factor assumes that the

importance of a term is proportional to the number of documents in which the term

appears. The idea behind document frequency is that terms that are very frequent in the

collection are less specific, this is expressed with the inverse document frequency (idf)

obtainable by the formular

)1.2.....(..............................)........./log(tt dfNidf 

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

91

each term in each document and query is expected to contribute a weight Wt,d to the

score of the document, and this is estiamted to be the combination of the term

frequency and the inverse document frequency.

 2.2..,, tdtdt idftfW 

This implies that the term‟s contribution is positively associated with the term‟s

frequency within the document (tf) and negatively correlated with the number of

documents it occurs in (idf) (Salton and McGill, 1983).

The similarity score between a document and a query is estimated as the closeness of

their respective vectors, the closer the two vectors, the more relevant the document is

estimated to be to the query. Documents are ranked in this vector space using the

cosine of angle between the vectors of the query and the documents in the collection.

 3.2..
.

.
),(

dq

dq
dqCos 

Where q is the query vector and d is the document vector

|q| and |d| are the Euclidean lenghts of the query and the documents respectively.

The combination of term frequency with inverse document frequency and length

normalization (tf-idf) has proved to be the superior weighting scheme with respect to

recall and precision.

2.11 Mobile Agent Architecture for Information Retrieval

Existing IR system based on client server paradigm consists of document servers set up

by some organisation or individual wishing to publish a set of electronic documents.

Documents in the document servers are viewed using the document client e.g. web

browser. To view a document, the client sends a request containing a document

identifier, e.g. Internet URL, to the server, which in turn searches its repository and

returns the result of the search to the client. An information retrieval system available

across the network is called the search server and needs a search client to access it. The

existing system uses a search broker, which is a sophisticated search client that acts as

an intermediary between a user searching for information and a set of search servers.

Given a query and a set of search servers, the broker selects a set of servers at random

that is likely to return relevant documents, queries them concurrently and produces a

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

92

single ranked results list. The search broker interfaces with various servers to retrieve

their results and then apply a result merging method on the returned set.

{S, q} (S‟,q) {(R1,R2,...................R|S‟|)q} RM

Where q is the query S: the search server. S‟: selected search servers best for

answering the query.

During server selection, the search broker selects a set of servers S‟, deemed best to

answer the query. The servers‟ choice depends on both effectiveness and efficiency. It

is usually assumed that all servers have equal search cost.

Using search broker however has certain flaws, these include the fact that at server

selection not all servers with relevant documents are selected. There is also the

possibility of selecting servers that have no relevant documents. A search server‟s

index can become out of date as documents change.

The rapid growth of the networked environments especially the Internet, enomous

available information widely dispersed, as well as quest for information across borders

and platforms has increased the complexity of information sources. The multitude,

diverse and the dynamic nature of on-line information sources however, make

accessing any specific piece of information a difficult task (Brewington et al., 1999).

The use of agents for information retrieval provides a viable solution to these issues.

Agents facilitates access to multiple information sources and the distributed nature of

agents facilitate scalabity in the networked environment (Finin and Nicholas, 2000).

Clark and Lazarou (1997); Htoon and Thwin (2008) identified certain functions

distributed information retrieval agents are expected to perform, they are as follows:

 Accept requests from human user or other agent client

 Translate these requests to language of the information source or one

understood by the information source

 Identify information source that contains information relevant to the request

 Pose the request to the source

 Collect the corresponding results from the sources

 Process the returned results

 Presents the result to the client.

selection Retrieval Mergin

g

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

93

2.11.1 Existing Agent Based Information Retrieval

Knowbot (Knowledge-Based Object Technology) collects information by

automatically gathering specified information from web sites. Knowbot provides a

single query language to access a variety of information sources and it serves as a

representative for the user (Finin and Nicholas, 2000). Knowbot is a combination of

data and a thread of control that can move among nodes in a distributed environment.

The Knowbot Operating System provides a runtime execution environment which

includes security mechanism, support for migration and facilities for communication

between Knowbot and other programs. Knowbot is written in an interpreted object-

oriented programming language called Python.

Metacrawler is a metasearch engine that queries a variety of search engines and

provides a uniform user interface for these search engines. It combines the top web

search results from different engines, downloads and scans pages if necessary (Finin

and Nicholas, 2000).

Letizia: is a user interface agent that assists users browsing the World Wide Web

(Lieberman, 2001). As the user browses, Letizia tracks user behaviour and attempt to

anticipate items of interest by doing concurrent, autonomous exploration of links from

the user‟s current position. People usually browse depth-first, Letizia browses breadth-

first, and it uses a variety of heuristics to identify interesting pages (Finin and Nicholas,

2000). When an interesting page is identified, it displays it in a separate browser

window. Letizia is implemented in Macintosh Common Lisp and it uses Netscape as a

web browser and user interface. The agent runs as a separate process, and

communication between Lisp and Netscape takes place using AppleEvents and

AppleScript interprocess communication.

Retsina is a multi agent system (task, interface, information, negotiator agents) that

cooperate with outlook based on Resource Description Framework (RDF) files to

check appointments for changes autonomously, contact data accessible quickly and

agrees with other Retsina users on appointments. It is a personal assistant agent.

However, the agent in this work is built to retrieve information from distributed

databases using certain key to search for the information. The agent is written in Java,

an object oriented programming language, it is a light-weight object embeded into the

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

94

operating system to run as part of the operating system and not on an existing platform.

Our effort is directed at making agents run without passing through an agent platform.

2.12 Related Works

The mobile agent technology is rapidly gaining acceptance as a distributed computing

paradigm, due to its ability to cope with the complexity in dynamic distributed systems.

Several works have been done in this area of research, a lot of its many capabilities are

yet to be explored. In retrospect, mobile agent has been applied in many areas of

research such as, information retrieval and management (Clark and Lazarou, 1997;

Brewington, et al., 1999; Teresa, 2006; Htoon and Thwin, 2008), electronic commerce

(Busch et al, 2002; Rahul and Scrdhar, 2001; Hartmut et al, 1998), grid job scheduling

(Iyilade, 2005; Enock and Munehiro, 2005), intrusion detection (Christopher and

Thomas, 2001), expert finder (Iyilade et al 2005), network management (Aderounmu,

2001, Bohoris 2003), traffic detection and management (Chen et al, 2009),

examination system (Gawali and Meshram, 2009), supply chain management

(Wenjuan et al, 2009) and many more. A lot of issues arose with use of mobile agent;

security, complexity and lack of standard. The complexity and sophistication naturally

led to many attempts to simplify and extend agent functionality, thus attention later

shifted to providing necessary security for mobile agents, agent platform and hosts on

which they execute (Biermann, 2004; Narjes et al, 2009; Ibharalu et al, 2011). The

versatility of mobile agent paradigm also increased research interest in enhancing

mobile agents in the area of agent communication (Priya et al, (2009)) and agent

structure (Stoian and Popirlan (2010)), in order to extend their functionalities. It is on

this note that an attempt was made to enhance the structure of mobile agents in order to

extend its functionalities in this research.

Clark and Lazarou (1997) developed a multi agent system to search for and retrieve

technical papers stored in databases distributed over the network. The system managed

sites as local deductive databases and WWW as distributed deductive databases.

Existing systems focused mainly on system architecture and agent responsibility

whereas this system combined the architectural, implementation and agent

functionality aspects of distributed information retrieval system. In addition, the system

also incorporated basic user interface agent class and adopted the browsing paradigm

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

95

for information retrieval. The system used prolog-like query formulation which

provides accuracy and expressiveness of user query, and the predicate set of prolog

query formulation corresponds to the attributes of the document these features combine

to enable the system produce precise answers. The system is fully distributed, scalable

and modular in nature. However, this system can be used only by professionals with

the knowledge of the document type, authors and topics, the query is also entered in a

Prolog-like form and these arguments must be supplied, which does not make it user

friendly.

Seng (1999) presented mobile agent technology for enterprise distributed applications:

an overview and an architectural perspective. The work shows the broad applicability

of mobile agent technology in the enterprise, and also explored the implementations of

this broad applicability from an architectural perspective.

Aderounmu (2001) developed intelligent mobile agent for computer network

performance management. The system consists of a static agent resident on each host

in the network and a mobile agent that migrates through the network to check the

performance of network resources such as, hard disk, random access memory, printer

availability. The mobile agents‟ codes were written in java and C++, and a mobility

infrastructure was developed on top of TCP/ IP to facilitate socket-based connection

between the source and the destination machines. The scheme was analysed against

client server RPC, an existing paradigm for information retrieval and it proved to be

superior with reduced bandwidth usage as the number of requests increases and

reduced percentage denial of services in the face of network failure. However, the

mobile agent can only execute on a host with its particular type of static agent installed

and the agent also gets lost in transit if a node in its itinerary is not available, agent

could not dynamically take alternative route. This work forms the background of this

thesis.

An intelligent agent architecture for DNA- microarray data integration was proposed

by Angeletti et al (2001). The agent architecture was proposed as communication and

coordination tool among distributed sites. The agent architecture was applied to the

case of expression of yeast genome, where several microarray hybridization

experimental datasets are available. Mobile agent was deployed to search data and

arrange genes according to similarities in their pattern of expression. The mobile agent

uses its query language to search and select the available distributed experimental data

by using Kohonen algorithm and related map.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

96

Rafael et al (2003) presented a multiagent architecture for information retrieval in

distributed and heterogeneous data sources. The work focused on the application of

multiagent system, it retrieved and classified medical information from two hospitals as

a decision support tool for doctors. The agent system was implemented with the

master/slave design pattern and the agents were built on top of IBM‟s aglet framework

named Tahiti Server. Aglet Tahiti Server placed a limitation on the system, in the sense

that the functionality of the system was limited to those supported by Tahiti Server.

The master/slave design pattern used generates so many slave agents that migrate

through the network at the same time, causing a significant bandwidth overhead.

Tudor et al (2004) proposed a framework of reusable sructures for mobile agent

development in an attempt to find ways of unifying mobile agent platforms. The

authors defined reusable patterns in the context of location, agent, message, behaviour,

agent idetifier e.t.c commomn to agent platforms. The implementation was based on

JADE platform, and was applied to assessment service in virtual learning environment

(VLE). The patterns separated the behavioural model from the actual skeleton of the

JADE platform. The system was made up of a server agent, whose behaviour was

distinctly defined, its observer behaviour checks periodically for the time of the

assesment, when it‟s time, it performs its itinerary behaviour and migrate to the next

node. On the destination node, it spawns a user agent, set it up with the task behaviour

to deliver the test to the user. The server agent detaches and migrate to the next

location perform the assignment until the final node before returning home. When all

the tasks are accomplished, the user agent on each host sends the user‟s answer to the

server agent that spawned it. The behaviour of the agents are separated from the agents

structure, thus any agent visiting a node can use these behaviours. Only one agent

migrates through the network on the departure trip, this saves network bandwidth.

However, all the spawned user agents have to return to the origination agent at the end

of the tasks, sending a lot of them almost at the same time, this puts a lot of load on the

network. There is also a problem of unbalanced load on the originating agent and its

node.

Mak and Fukuda (2005), developed a system “AgentTeamWork Grid” their system

consists of 4 types of agents (commander, resource, sentinel and bookkeeping agents)

using the branching pattern. The agents work together to download new resource XML

files from FTP servers. This system spawns many agents into the network at the same

time thereby putting additional load on the network bandwidth. At the same time,

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

97

because there are so many agents roaming the network concurrently, there is a high

likelihood of agents collition. Therefore, a collition detection and prevention

mechanism must be provided at an additional cost.

Rafal and Janusz (2006) proposed anonymity architecture for mobile agent systems.

The architecture consists of infrastructures for concealing the identity of the user and

the origin or base station of the mobile agents. The architecture consists of two

modules, one is the untraceability protocol infrastructure that is responsible for

obscuring agents‟ base addresses and the second is additional anti-traffic analysis

support which aims at protecting agents from traffic analysis attack. The infrastructure

was implemented for JADE using e-Health as their case study. The agent can be

mistaken for a malicious program and denied access.

Htoon and Thwin (2008) in mobile agent for distributed information retrieval

developed mobile agent on top of Aglet workbench to search for technical papers over

the network. The system was a multi-agent system consisting of seven kinds of agents

that work together to perfom the retrieval task across local and remote data repositories

and databases. Results showed that the download speed can be significantly improved

by mobile agents and that the download time does not depend on the size of the file or

information being downloaded, the turnaround time was significantly reduced. With

mobile agent approach, systems can be built in a truly distributed manner without a

central data repository or a potential single point of failure. The work focused on

controlling and managing distributed information retrieval processes. The system

consists of two types of agents roaming the network which puts additional load on the

network. Moreover, the agents are bound to Aglet workbench and are limited in

functionalities to those functionalities provided only by Aglet, in other words, they are

not interoperable with agent from other platforms and vendors.

Chen et al (2009) developed mobile agent system for distributed traffic detection and

management. It designed agent-based real-time traffic detection and management

system (ABRTTDMS). The authors integrated mobile agent technology with multi-

agent system to enhance the ability of the traffic management system to deal with the

uncertainty in a dynamic environment. The system was simulated through a laser-based

vehicle detection system as against the existing magnetic loop detectors and video

monitoring systems. The ABRTTDMS can integrate different detectors (such as laser

detector, loop detector, video camera detectors and other detectors) into one system by

wrapping them into agent-based sub-systems.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

98

Wenjuan et al (2009) presented the development of mobile agent system for supply

chain management and then presented a mobile agent system for supply chain

management in the case of flower trading. The mobile agents make some intelligent

activities in supply chain management automatically and intelligently, alleviating the

bottlenecks involved in SCM negotiation, decision making and collaboration. The

system is suitable for the rapid changing demand in global markets, dynamic and

changing business environments, agile capability, and flexibility associated with

current supply chain management. The work focused on application of agents to some

intelligent activities, mobile agents are built to deal with negotiation, decision and

collaboration intelligently and automatically. The agents written in java programming

language are built to run and execute on JADE platforms, security and improvement of

agent capabilities are intended for future research. The branching design pattern used

clones an agent up to the number of agencies required to visit and sends them all on the

network putting additional load on the network bandwidth.

 Gawali and Meshram (2009) designed an Agent-Based Autonomous Examination

System a multi-agent system containing main agent, mobile agent and stationary agent.

The system was developed to support the functionality of examination systems in Aglet

environment. The stationary agent authenticates candidates for valid user name and

password at user authentication and selection of subject, and database with the help of

mobile agent. After successful authentication and selection of subjects, mobile agent

collects questions, their alternatives and correct answers retrieved by stationary agent

from the database. As candidates answer the questions, main agent stores the answers

given by candidate in the database and updates the score. When the examination gets

over, the main agent processes the results and displays result.

Priya et al. (2009) proposed an enhanced communication scheme for mobile agent. The

frequent movement of agents poses challenges for the design of an efficient

communication protocol for mobile agents. The proposed scheme overcomes the

problem of overloading of the agent and provides a mechanism for mobile agent to

automatically update itself according to environmental changes in a predictable and

visible manner. It also reduce the resources overhead over the network dynamically by

temporarily destroying the idle agents and reconstructing them when needed.

Stoian and Popirlan (2010) proposed an enhanced mobile agent architecture which is

based on the existing agents but with some additional components. The system focuses

on agent architecture; it improves the structure of existing mobile agent adding

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

99

Recorded Agent Information which extends its functionality. The architecture proposed

is suitable only for hierarchical design patterns of mobile agent, it uses a master/slave

approach in which a master agent spawns and dispatches slave agents one each to all

other agencies. Results obtained showed that the efficiency of mobile agent can be

improved by enhancing its structure. Processing took a shorter period with the use of

the Recorded Agent Information provided to enhance the mobile agent. The Recorded

Agent Information includes learning and optimizing algorithm that learns from the

previous runs and makes use of optimal results for better performance. The work

involves sending so many slave agents on the network which consumes a lot of the

network bandwith. In addition to this, the agent pattern is not dynamic, each is defined

at design time and cannot change, slave agent cannot be made to act as the master

neither can master agent acts as slave agent. On the other hand, the work forms one of

the motivating factors for this research work, the fact that the functionalities of mobile

agents can be improved for greater efficiency by enhancing its architecture is a

motivating factor for this research.

2.12 Overview of Proposed Approach

The focus in this work however, is to enhance mobile agent to perform its assigned task

without having to go through the agent platform, emphasis is on mode of deployment

of mobile agents. The work is inspired by the need to improve the capability of mobile

agents, so that more of its numerous potentials can be exploited. This work is directed

at making the agent an operating system service. The target operating system is

Windows Operating System and Windows XP specifically. Operating Systems‟

services are long-running executable programs that run in its own Windows session,

without users‟ intervention. The motivations are to save time, reduce memory

requirements, enhance the heterogeneous property of the mobile agent since it is

platform (MAS) independent, as well as its portability across different organization

while conforming to the FIPA standards. The proposed embedded agent is provided

with a dynamic migration algorithm that enables it to determine alternative route to its

destination in case of failure of a node and report same on its return to the origin.

Further more, the system employed the itinerary design pattern, which limits the

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

100

number of agents roaming the network at every point in time to one type to conserve

the network bandwidth.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

101

CHAPTER THREE

SYSTEM DESIGN AND PERFORMANCE ANALYSIS

3.1 Introduction

This chapter discusses the design strategies for the proposed embedded mobile agent in

distributed information retrieval. It contains various stages of design and the

associations between different components of the proposed system. The chapter also

presents the conceptual design of the performance metrics that are used to evaluate the

proposed framework.

3.2 The Agent System Model

The proposed system architecture comprises of a light-weight static agent embedded in

the kernel mode of Windows operating system and mobile agent that moves between

network environments taking advantage of network resources to fulfil their goals.

Mobile agents are expected to have the ability to migrate to the appropriate location

when given the constraints of security, cost, distance and other factors and may contain

behaviour and some form of knowledge base. The behaviour specifies the agent‟s

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

102

reasoning ability and functionality and may also include its norms and belief. A typical

mobile agent contains an agent model, a life cycle model, a computational model, a

security model, a configuration model and a navigation model. Software agents for

information retrieval use human searching techniques and are able to learn from the

environment. They are capable of autonomous organisation of tasks, they can divide a

huge task into sub-task and distribute the problem for ease of computation.

The existing mobile agent for information retrieval framework consists of mobile

agents that execute on agent platforms previously installed on the computer machine.

The agent platform is installed in the memory on top of the operating system running

on the host and runs in the user mode; this obviously consumes memory, and increases

access time. An attempt is made to provide solution to these problems by designing a

light-weight agent as part of the operating systems to run in the kernel of the operating

system, to free memory and reduce access time. Figure 3.1(a) shows the block diagram

of existing system that uses agent platform while Figure 3.1(b) shows the block

diagram of the proposed architecture without the agent platform.

3.3 Proposed Embedded Mobile Agent (EMA)

The embedded mobile agent is proposed for information retrieval in distributed

environments. The embedded agent defined as mobile agent class with certain

attributes such as execution state, data, and the added enhancement. The added

enhancement is in the form of Terminate and Stay Resident (TSR) Program that

enables the mobile agent to directly interact with the operating system on any host in

the form of Windows Operating System Service. A lightweight static agent was

embedded into the kernel mode of the Windows Operating System. The agent is

automatically activated at the boot of the machine on which it resides; it runs in the

background continuously without interfering with the other user‟s operations until it is

restored. The mobile agent launched from a host moves through the network to the host

topmost on the list of its itinerary to retrieve information from distributed databases.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

103

(b)Proposed

Model

Memory Agent Platform

Operating System

Hardware

Memory

Operating System

Hardware

Static Agent

(a)Existing

Model

Figure 3.1: Block diagram of the existing and proposed frameworks

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

104

3.3.1 The Internal Structure of Agent

The embedded static agent is designed using the layered architecture. Each layer

represents a particular function, following the principles of layered architectures such

as the three layer architecture employed by (Ahmed, 2007 and Wenjuan et al., 2009).

The layered architecture is a programming is programming paradigm that uses different

layers to allocate responsibilities of an application. According to Spicer (2000), layered

architecture defines hierarchy among components and there are no direct software

dependencies up the architecture, that is, lower layers have no dependencies on higher

layers, which is important to the reuse of the architecture. This implies that one layer

can be modified without affecting other layers. In addition, layered architecture is easy

to design and implement once the layers and their interaction are clearly defined.

Based on this architecture the agent in this work is built to consist of three m ain

subsystems as depicted by Figure 3.2. The layers are knowledge formation process

layer, knowledge base layer and inference engine or decision making layer.

1. Knowledge formation process model: is a learning algorithm by which the

intelligence of the agent is learnt, it consist of the description of contents of the

information sources which includes description of the classes contained in the

information source and the relationship between these classes. It is used to

determine how to process an information request. Knowledge formation is

based on information transmission carried out through signals, in which the

information is stored with the help of a code. Knowledge involves three

processes, these are

(i) Encoding: generates knowledge encoded in forms that facilitate its

transmission to others.

(ii) Exploration: captures “search, variation, flexibility, discovery,

experimentation, innovation”. Exploration generates new, unsettled

knowledge with potentially high but certain returns.

(iii)Exploitation captures “refinement, choice, selection, efficiency,

implementation, execution”. Exploitation generates incremental knowledge

with moderate but certain and immediate returns.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

105

Agent interface

U
s
e
r

i
n
t
e
r
f
a
c
e

Knowledge
formation
process mod

Knowledge
Base

inference
engine
/decision
making

communication

Recognized Classification

read write

DataBase

Figure: 3.2: Internal Structure of static Agent

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

106

2. Knowledge base: consist of the intelligence of the agent, defines the agent‟s

area of expertise and the terminologies for interacting with that agent. In this

research work, the knowledge base consists of terminologies in the information

retrieval domain.

3. Inference engine: maps the query with the knowledge in the knowledge base to

make decisions; it describes the resources that are available to an agent to

answer information requests.

4. Communication: queries to an agent are expressed in the structured query

language (SQL). These queries are composed of terms in the general model,

therefore, there is no need for users or other agents to know or be aware of the

terms used in the underlying information sources. To make the database

available to the network of agents, a wrapper is built around the existing system

to turn it to an agent with access to that information. The wrapper built is a

relational database management system which is created and managed by

MySQL supported by XAMPP and communication between agents is via

message passing.

The knowledge formation process learns from the knowledge stored in the knowledge

base and the inference engine combines the learnt knowledge with the existing

knowledge to make decisions. The three layers interact with the agent interface through

communication. The database is outside the agent, but the agent can read from the

database and write to the database depending on the request. The user interface directly

interacts with the agent through the knowledge formation process and the recognised

class of relevant information, which is the output from the inference engine is related to

the user interface.

Database: is a large repostiory of data, all the data to be used by the system are stored

in the database, which maintains the integrity of data stored in it. The database consists

of weather data from different locations in Nigeria.

3.3.2 Mobile Agent Components

A mobile agent contains code, state information and attributes. The attributes of mobile

agent include its name which is unique for identification, the authority of the owner of

the agent and the agent system type. Code contains the logic of the agent, that is code

defines the behaviour or the required tasks of the agent, same type of agents use same

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

107

code. Code in an object oriented context means the class code necessary for an agent

execution (Lange and Oshima, 1999).

Data corresponds to the value of the agent‟s instance variables and include information

about the mobile agent such as its launcher, movement history, resource requirements

and authentication keys for use by the infrastructure, these are refered to as the initial

data. The data could also include results of the mobile agent‟s tasks on different nodes

visited, refered to as the generated or received data.

 The state information defines its changing variables, which enables mobile agent to

resume after moving to a new agent host, such as the stack pointer and program

pointer. The state means the attribute value of agent that help it determine what to do

when it resumes execution at its destination (Lange and Oshima, 1999). According to

Aderounmu (2001), state is needed for the agent to resume computation after

travelling.

Itinerary corresponds to the path that defines the agent‟s journey between different

hosts. The itinerary can be determined during creation by the agent‟s creator or at run-

time according to specific input variables as received during computation (Biermann,

2004). The agent itinerary in this work is defined at run time, by selecting the list of

agent_environments the agent should visit.

Name is a unique identity which depends on an algorithm that will, during the creation

of mobile agent, give it a unique identification for address and navigation. Agent needs

to be uniquely identified so that its owner can communicate with and control it while in

transit. The agent environment also needs to be uniquely named so that an agent can

specify its desired destination and its current location. The agent environments in this

study are given unique names, which corresponds to the name of the computer on

which the agent environment resides.

The agent class has attributes execute state, communicate, record and the list of tasks to

perform. The UML diagram (class diagram) of the embedded mobile agent is as

shown in Figure 3. 3. The agent map corresponds to the agent itinerary. Audit trail

tracks the operation of the agents such as acceptance or rejection on any host, delay and

time it starts executing and unavailable host.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

108

Figure 3.3: agent UML Class diagram

+Communicate()
+Record()

-Execute State
-Data
-TSR

Software Agent

+Register()
+Sign-in()

-Agent Map
-Path List

Static Agent

+Migrate()
+StartOnArrival()
+Make report()
+Agent Goal()
+ -task 1()
+-task 2()
+.()
+.()
+.()
+-task n()

-Agent Map
-Audit Trail
-Exception Handler

Mobile Agent

End1

End2 End3

End4

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

109

3.5 The architcture of the proposed system

The proposed system consists of a static agent embedded into the kernel of the

operating system on each host and the mobile agent that migrate through the network to

perform the assigned tasks. Figure 3.4 illustrates the conceptual model of the proposed

system; it consists of a lightweight (small size, precisely 1 KB) static agent embedded

in the kernel mode of the operating system on each site. The operating system logically

sits on top of the hardware that is connected to the network. Each visiting mobile agent

migrates through the network to a remote host and interacts with the static agent

seeking access and eventually, performing its assigned tasks on the host.

The structure of the proposed enhancement is depicted by Figure 3.5 which presents

the architecture of Windows XP operating system with the static agent embedded in the

kernel mode as an extension of its executive services.

The overall architecture of the system is illustrated in Figure 3.6; it consists of four

hosts connected to an existing local area network. The mobile agent from remote host

interacts with the static agent in the kernel mode of the visited host operating system,

giving an impression of the mobile agent directly interacting with the operating system.

The static agent is a Terminate and Stay Resident (TSR) program embedded in the

kernel of the Windows operating system; it is automatically started as soon as the

operating system boots. The static agent automatically closes when the operating

system shuts down and it can be explicitly shut down. The idea is to eliminate the

mobile agent platforms that are installed in the computer memory which consumes

memory and increases access time.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

110

Figure 3.4: The Conceptual model of the proposed system

 Mobile agent Agent itinerary Logical connection

Network

Hardware Hardware

User Applications User Applications

Site A, Agent A Site B, Agent A

Static AgentOperating
System

Operating
System

Static Agent

Legend

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

111

Figure 3.5: Proposed embedded agent as Windows XP operating system service

(adapted from WIN133, 2009)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

112

Figure 3.6: Overall System Architecture

Host computer with

embedded static agent Logical connection

Agent Itinerary Information exchange

Network

DB

DB

DB

Mobile agent with
request +itinerary

User A
(origin)

User B

User C

User D

Mobile agent with
search result

Static agent search
for itinerary

Moves to next
host with results

Reads files
from the DB

DB

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

113

In this work, the static agent performs a number of functions related to information

retrieval in distributed environment.

(i) It is responsible for listening to the port for incoming agent.

(ii) It negotiates passage to the destination host and ensures that the mobile agent is

successfully transferred. If the mobile agent is rejected, the static agent restarts

the mobile agent to allow it to choose another destination.

(iii)It validates and authenticates the incoming agent

(iv) It launches received mobile agents and provides runtime execution for the

mobile agent according to the level of trust given to the agent. The runtime

execution environment will depend on the access level granted to the mobile

agent and the functions it wishes to perform.

(v) It provides a registration to register the static and mobile agents and the

available resources.

Mobile Agent as the name implies is the computational element of the system that can

migrate between nodes on the network that is, it can move from node to node and

execute there as required to achieve its goals. The mobile agent is supplied with the list

of nodes to visit and the user query. When it arrives at the destination, it is recieved by

the static agent who authenticates and validates it. The static agent provides a runtime

execution for the mobile agent depending on the level of access granted it. The mobile

agent negotiates with the static agent giving the data for the search process, when it

gets the result of the process, it adds the result of the process to its bag. The mobile

agent initiates a move() to the next node in its itinerary. The mobile agent is saddled

with the following responsibility:

(i) Migrates from node to node in the network

(ii) Negotiates access with the static agent on the remote host

(iii) Negotiates with the database for the search process

(iv) Receives the required information and adds it to its bag.

(v) It autonomously determines the next node to visit and initiates a move

(vi) It returns to the originating host with the results of the search and disposes

itself.

Every remote node has a database, which is a repository of information about weather.

The database in each node is constructed with PhpMyAdmin in XAMPP for windows.

When the mobile agent states it requirements, the database is accessed and matches for

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

114

query terms are searched. Structured Query Languge (SQL) was used to create,

examine, manage and manipulate relational databases. SQL is a standardized query

language across different database vendors so that a program could communicate with

most database systems without having the needs to change commands.

Each node has the capability to accept and dispatch users‟ jobs or information needs.

Users send their requests to the static agent who searches its local files for remote sites

that are likely to have information relevant to the user‟s request. The static agent then

initiates a mobile agent, supply it with the user query and its itinerary. The mobile

agent initiates a move() and moves to the first host in its iteneray, performs its task,

adds result to its bag and moves to the next node in its itinerary.

3.6 Communication Pattern

The agents in the system communicate with each other using message passing, this is

necessary to accomplish their given tasks. Messages are used to transfer data between

the agents; messages have sender and receiver‟s addresses and the message contents as

parameter and are sent to a target destination. Message passing is a point-to-point

communication model which represents a simple connected undirected graph

(Chalopin et al., 2006). The vertices represent the processes at the nodes and edges

represent the communication link. Two vertices are linked by an edge if corresponding

processes have a direct communication link. This is suitable for the work in which

mobile agent from the origination node could visit remote nodes and execute there. The

following section describe the communication procedure.

3.6.1 Communication at the Initializing Node (Origin)

The interaction between the constituent components at the originating host is discussed

in this section and depicted in Figure 3.7. Conceptually, the user enters a query via the

user interface, the static agent interpretes and represents the query in a format

understandable by the agents and initiates a search of the local database for list of

resource servers. The static agent activates the mobile agent, supplies it with the

itinerary and request data. The Mobile Agent saves its current state, signs off the host

and takes its journey to the first location in its itinerary.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

115

Figure 3.7: Interaction at the initiating Host / origin

U
s
e
r

i
n
t
e
r
f
a
c
e

Operating
system

Query

Query

 Results

g

docum

ents

Request +itinerary

Search
result

To the Network

From the Network

User

Data
base

Static
agent

NETWORK

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

116

 The developed system uses a parametric search technique; the user enters the query by

selecting the search criteria, the weather condition or the temperature range, and

supplies the list of agent environments (nodes to visit i.e. agent itinerary). The static

agent interpretes and represents the query in a format understandable by the agents and

initiates the migration of the mobile agent. The mobile agent takes its itinerary and

negotiates passage into the network to accomplish its tasks.

3.6.2 Communication at Remote Host

On the remote host, the following interactions take place in concept and principle as

illustrated in Figure 3.8. The static agent on the remote host authenticates and receives

in coming mobile agent, initiates a search of its local files for the relevant information.

The mobile agent downloads the information and adds it as part of its bag. The mobile

agent moves to the next host in its itinerary. The mobile agent on reaching a new host

in its itineray, repeats the same process and moves to the next host until the last node in

its itinerary. It then returns home with the results in its bag and forward the result to the

static agent at the origin who displays the result to the user. The interaction takes place

by executing the following algorithm

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

117

Figure 3.8: Interactions at the receiving Host

Operating
system

Data-
Base

2.Initiates a search of the database

4. Reads files from DB

5..Return downloaded files

1.Incoming MA

with requests

6.Return results

3. Return list of
available resources

&resource server

Static
agent

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

118

Migrate to home host

Delivers message and dispose
self

end

Start

Incoming MA seeks
permision

Perform authentication

MA Valid?

Receive MA, interprete
request

yes

MA search the
DB

MA reads files from
DB

 write document
into MA bag

MA saves state and
signs off

Read itinerary

Last node?

Yes

Error reporting
exit

No

No

Figure 3.9: Interactions at the receiving host flowchart .

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

119

3.7 Agent information

The mobile agent has as part of its bag the address of the host where it is currently

located, the address of the host visited before moving to the current location, the host it

was able and unable to locate. The agent also has information about its current status

(either active or suspended). The algorithm for the agent‟s operation is as show in

Figure 3.10.

The user initiates the creation of a mobile agent at the home host. The mobile agent

loads its state and itinerary data. The agent saves its present state and initiate a move to

the first destination in its itinerary. On the new host, the mobile agent is authenticated

and given access, performs its assigned function and adds to its bag the obtained

results. It then checks its itinerary and proceeds to the next destination to perform

similar tasks and if all nodes have been visited, the mobile agent returns to source host,

and presents the results. The result is then displayed to the user.

Step 1: Incoming Mobile Agent seeks permission to perform its tasks. The static agent

receives and authenticate the incoming agent.

Step2: The static agent after recieving the requests interprets the requests and initiates

a search of the local database for available relevant documents.

Step3: The mobile agent queries the database using keywords

Step4: The search results are added to the mobile agent as part of its bag. The mobile

agent saves its current state, signs off the visited node, exit and continue in its itinerary,

and if it‟s the last node in its list, returns to the origin, delivers the result and disposes

itself. The interaction at the receiving node is summarized by the flowchart in Figure

3.9.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

120

Fig. 3.10 Main loop of mobile

agent

Display result

Yes

Principal launches a mobile agent

Perform local function

Return to manager

save current states

Initialization (load state)

Go to next node

Last

node?

Last
node ?

No

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

121

3.9 Mobile Agent Migration

Mobile agent migration desribes the process of packaging the code, data and execution

state of a mobile agent into a form that could be transported through the network. The

agent transfer process can be initiated by the agent itself, by another agent residing in

the same environment or by another agent or management outside the place. The agents

in this work were written in Java, which provides a standard feature for object

serialization. Java only requires the object to be implemented using the

java.i.o.serializable interface, and it automatically handles the serialization internally.

Serialization is the process of converting an object state into a form that can be

transmitted over a network connection and later restored at the other end by a process

called deserialization. An object cannot be instantiated without an associated class file

which represents the behaviour i.e methods. Java allows progarmmer to customize

class loading. Custom class loaders are used when the default java class loader cannot

locate a class in either the local cache or directories specified in the CLASSPATH

system variable. Therefore, the programmer can dynamically load the class from a

remote location over the network.

When an agent migrate, it takes with it, its code, its state of execution and transferable

resources as supported by Gherbi et al., (2009) and Mitrovic et al., (2011). Agent

migration operation is defined in the steps below and depicted in Figure 3.11.

(i) Naming: When the mobile agent on a home host is started, in this work it is

started by the static agent on the same host, who defines the agent name and its

own identity. This naming is important for identification and authentication of

the agent on other hosts to be visited. The agent identity is verified against the

registered agents in the agent base, if it is authenticated, its execution can then

be suspended.

(ii) Suspend execution: the current execution thread of the agent is suspended and

every thread is also suspended. This is necessary, so that the data and state are

frozen and cannot be modified.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

122

Agent Naming

identification

Agent authentic?

Serialize Agent

Migrate to new host

A
g

e
n

t
D

a
ta

-
b

a
s
e

HTTP

Deserialize Agent

identification

A
g

e
n

t
D

a
ta

-
b

a
s
e

Agent authentic?

Accept agent

Execute process

Oringinating Host Destination
Host

Dispose

Dispose

Suspend Execution

Encode Data

Resume Execution

Decode Data

Yes

No

No

Receive Agent

Yes

Figure 3.11: Mobile Agent Migration.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

123

(iii) Serialization: the agent is transformed into a stream of flat bytes consisting of

the agent‟s data and state information. It also captures the agent‟s state so as to

know the point of suspension.

(iv) Encode data: the current state of all variables (data) of the agent is serialized,

i.e. their current values are written to an external persistent representation. The

value of the agent‟s state is also stored.

(v) Migrate the agent: the serialized agent is transferred to the receiver using a

migration protocol, HTTP over TCP/IP in this case.

On the receiving host, the static agent listening to the port for incoming agent is

trigered and the following processes take place.

(i) Receive the agent: the serialized agent is received using the migration protocol.

(ii) Resume execution: the receiving host resumes execution on receiving the agent

(iii) Deserialize agent: the serialized agent is deserialized on the destination host, i.e.

the variables and execution state are restored from the serialized agent. The

result of this should be an exact copy of the agent that existed on the originating

host just before migration is initiated.

(iv) Decode data: associated data are decoded, i.e. the values of data written to an

external persistent representation are read at the destination host.

(v) Identify the agent: the agent is compared with the list of acceptable agent to the

system stored in the agent database of the destination host.

(vi) Authenticate agent: the received agent is authenticated, in case of modification

to prevent malicious agents from gaining access.

(vii) Accept agent: the agent is given access to the destination host‟s resources and

(viii) Execute process: the destination host resumes agent execution by starting a new

thread of control, the agent make use of the available resources to accomplish it

tasks.

3.11 Database Design

Database is a large repository of data and information and it is managed by the

distributed database management system (DDBMS). Distributed database is a database

that is spread across a network of computers that are geographically dispersed and

connected via a communication lines. The database must have a single logical data

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

124

model. A distributed database management system (DDBMS) governs the storage and

processing of logically related data over interconnected computer systems in which

both data and processing functions are distributed among several sites. The database in

this research work is a relational database in which the entities involved are represented

in tables with their attributes. This work uses the XAMPP for Windows 1.7.1 for its

database application. The XAMPP for Windows is developed basically for software

developers to run their Internet–based software before going to the Internet, in order to

debug and correct errors. XAMPP is a combination of different software packages

prominent amongst whom form the XAMPP acronym:

 X cross platform

 A: Apache HTTP server is a web server for WWW. Designed by Rober

McCool in 1995 written in XML and C, it is cross platform.

 M: MySQL database is a RDBMS that runs as a server providing multi-user

 access to a number of databases. It is named after developer Michael Widenius‟

daughter, My, SQL is Structured Query language.

 P: PHP: hypertext Preprocessor is a general purpose server-side scripting

language originally designed for Web development to produce dynamic Web

pages. PHP is imperative, object oriented, procedural and reflective designed by

Rasmus Lerdorf in 1995

 P: Perl: practical extraction and reporting language: is a high-level, general-

purpose, interpreted, dynamic programming language developed by Larry Wall

in 1987 as a general purpose UNIX scripting language to make report

processing easier.

The database is launched from the phpMyAdmin as tool and uses the (SQL) Structured

Query Language to query the database.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

125

The weather table

Table 3.1 Weather relation

 Weather [id, weather_temperature, weather_condition, weather_location]

Id Weather_temperature Weather_condition Weather_location

Table 3.1 stores the details of the weather, the location with their temperature and the

athmospheric conditions. The id is the identity of each location which is the serial

number, it is of integer type, can take as much as eleven digits and it automatically

increases. The temperature is the athmospheric temperature and can take up to eleven

digits while the condition states the athmospheric condition of the particular location,

which can be a city, town or village.

Agent Environment table

Table 3.2 Agent environment relation

 Agent-environment [id, agent_environment]

Id Agent_environment

Table 3.2 is the agent environment relation consisting of agent environment which is

the name or the IP address of the computers on the network, their id is their identity

which is the number given to each computer for ease of referencing.

3.12 Performance Evaluation

In this section, the performance of the proposed mobile agent against JADE an existing

mobile agent, running on an agent platform was evaluated.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

126

The performance parameters used are service delay, memory management, fault

tolerance, denial of service and turnaround time. Mathematical models were developed

for:

(i) Service delay against the number of nodes in the network for JADE and

embedded mobile agent

(ii) Memory utilization versus the number of hosts in the network

(iii) Percentage denial of service against number of requests

(iv) Fault tolerance in the face of power failure

(v) Turn around times for varying number of hosts visited.

3.12.1 Service Delay

This is referred to as the overall time required to execute a service. For the purpose of

this study, the following components of the delay are defined.

Waiting time: is the time interval between the arrival of a request at the destination and

the beginning of execution.

Activation time: is defined as the time taken to activate the mobile agent platform.

Activation of mobile agent platform is defined as the process by which the mobile

agent platform on the destination hosts senses and is triggered to receive agents for

execution.

Transfer delay: is the time interval between the generation of the last bit of packet at

the information source and the transfer of agent.

Service time: is the time taken to complete agent‟s requests i.e. time interval between

the beginning and end of execution of a particular service (st).

 Transfer delay is suffered twice, when the agent leaves its source on request operation

and when it leaves the destination on response operation. In this simulation, the transfer

delay consists of two components

(i) Time to save agents internal state (ts)

(ii) Time to sign off from agent platform (ti)

Activation time is the total time it takes the agent to be triggered i.e. the time interval

between when the agent arrives on a host and the beginning of its operation. The

activation time is broken down into the following components

(i) Time to accept and authenticate incoming agent (ta)

(ii) Time to provide a hierarchical name space for agent (tp)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

127

(iii) Time to allow agent migration and communication (tc)

(iv) Time to restore agent‟s internal state (tr)

Waiting time: the time interval between the arrival of a request at its destination and

the beginning of execution (tw).

Assumptions

Both systems operate on the same principle for transmission, both are java based

agents, therefore, the processing delays due to packet transmission through the network

is the same, and thus not considered.

For the first request tw = 0 since there are no previous requests

For the second request tw is the service time of the first request i.e.

 () () (3.1)

and for the third request tw is the sum of the service times for the first and second

requests

 () () () (3.2)

Assume the service times for all requests are equal and it is st, the total waiting time for

n requests follows an arithmetic progression with a common difference st.

Arithmetic progression

 (()) (3.3)

Where a is the first term corresponding to tw1 and d is the common difference

corresponding to st.

Therefore

))1(*2(2/ 1 stntwntwt 

(3.4)

but tw(1) = 0, then

 stnntwt)1(2/  (3.5)

Service time is the time taken to complete a request i.e time interval between the

beginning and end of execution of a particular request in a service, st. Assume each

request takes equal time to execute, then,

ststststst n  321

total service time will be

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

128





n

i

it stst
1 (3.6)

Therefore,

nststnstt  * (3.7)

JADE operates only on hosts with the Mobile Agent System (MAS) previously

installed; therefore it suffers a transfer delay equivalent to (time to save state + time to

sign off the platform)

 titsTD  (3.8)

The JADE needs to be activated on getting to its destination by the agent platform.

The agent is authenticated and accepted, a hierarchical name space is provided for the

agent before the agent is allowed to communicate and migrate and its internal state is

restored.

Activation time of the JADE is equivalent to

 trtctptaAT  (3.9)

The service time for n requests

 nststt 

waiting time

 stnntwt)1(2/  (3.10)

JADE suffers another transfer delay on the response operation

 titsTD 2 (3.11)

The total delay

2TDsttwATTDD ttTA  (3.12)

If we assume that equal delay is suffered during request and response operations, then

2TDTD 

Therefore

 ttTA sttwATTDD  2 (3.13)

 nststnntrtctptatits )1(2/)(2

 stnntrtctptatits)1(2/)(2 

 (3.14)

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

129

Proposed Embedded Mobile Agent (EMA)

The proposed agent connects directly with the operating system and needs no MAS. It

suffers a transfer delay that is equivalent to the time it it takes to save its internal state.

 tsTD 

Activation time

Since there is no agent platform, the mobile agent interacts directly with the operating

system on the destination host. Its activation time is limited to the time taken to

authenticate and accept agent and the time to restore the agent internal state.

 trtaAT  (3.15)

Service time for n requests remains the same as for JADE.

 nststt  ` (3.16)

Waiting time also remains the same

 stnntw)1(2/  (3.17)

Transfer delay on response operation is

tsTD 

The total delay for the proposed EMA agent is equivalent to

TDsttwATTDD ttTB 

tt sttwATTD  2

nststnntrtats )1(2/)(2

stnntrtats)1(2/)(2  (3.18)

Assuming X number of hosts are visited, the delay on X host will be X*DTA and

X*DTB.

))1(2/)(2(stnntrtctptatitsXDTA 

))1(2/2(stnntrtatsXDTB 

For simplicity, lets assume that it takes equal amount of time to save agents‟ internal

state and sign off from agent platform i.e

 httits 

also, lets assume

dttrtctpta 

 then

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

130

))1(2/44(stnnttXD dhTA ))1(2/)(4(stnnttX dh 

(3.19)

))1(2/22(stnnttXD dhTB ))1(2/)(2(stnnttX dh  (3.20)

3.12.2 Memory Utilization

This refers to the amount of memory space requirement for each mobile agent. This

performance is measured using the memory requirement for each system against the

number of nodes in the network. Agents tend to be small in size, they do not constitute

a complete application by themselves, but they form one by working with agent host

and other agents. Agents are small and have limited functionality on their own.

JADE

The communicating computers in the network have the mobile agent system MAS

(agent platform) previously installed on them to be able to communicate with the

mobile agent, the platform on one computer and several containers distributed over the

other computer systems in the network. For the purpose of this study and for

uniformity same size is assumed for both the platform (main container) and other

containers.

Assuming the size of the MAS is XMB

The size of the mobile agent code is YMB

Size of request or response is Rmb

On a machine, the memory space required by architecture A will be

 YXM A  (3.21)

If we assume n number of communicating computers

 RYnXTM A  (3.22)

and if we assume m number of requests and or response, then

mRYnXTM A  (3.23)

Note that mobile agent is assumed to be on one host at any point in time.

 Proposed Embedded Mobile Agent (EMA)

The proposed agent is enhanced with the capability to interact directly with the

operating system on any host and needs no MAS, rather a lightweight static agent

embedded in the operating system

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

131

Assume the size of the mobile agent code is YMB

Let the size of the embedded infrastructure, the lightweight static agent that runs as the

OS service be PMB, (P is so small compaired to the size of a MAS). This is because

the static agent runs continuously and will take a part of the main memory.

Then, the memory space requirement for the enhanced agent will be

 RPYM B  (3.24)

 Since there is no need for MAS

For m number of requests and n communicating computers

 mRnPYTMB  (3.25)

3.12.3 Denial of Service

Denial of service represents the fraction of unexpectedly terminated services out of the

total number of services executed during the simulation time. For example, a service

will be denied if while executing on a host, the computer shuts down, the execution is

terminated abruptly or a failure occurs at the node or the network fails. In this work, the

node shut down or node failure is simulated by a number generator that has a time

variant probability distribution modelled after the Bernoulli Random Variable with p

and q as the variables. Bernoulli Random Variable is a discrete probability distribution

which takes success probability p and failure probability q = 1 – p. The derivation of

this parameter is adapted from (Aderounmu, 2003).

To carry out this performance measure, we assume the probability of failure to be 0.1,

i.e. one in every 10 nodes fails, which implies that the service has a state that is

modeled after the BRV with p = 0.9 (90%) and q = 0.1 (10%).

So If X is a random variable with this distribution

pqXX  1)0Pr(1)1Pr(

The probability mass function of this distribution is

}{)(xXPxPx 
 (3.26)

Where x }1,0{

Generally, X can be an arbitrary real number,

0)(XPx

if the random variable X never takes the value of x.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

132

Note however that from the Normal Axiom for probabilities for any discrete random

variable X with

X = {,,........., 21 xx }

 1)(
1




i

ix xP (3.27)

The cumulative distribution function F is also given by







ax

xx xPaF)()(

 (3.28)

For the special case of Bernoulli Random Variable





1

0

1)(
i

ix xP

since i takes on values 0 and 1. Parameters p and q are defined as follows:

)1(xPP 

is a number in the range [0,1] and pq 1 , where the event 1{ 1  xX }

is called a success, or network availability and occurs with probability p.

The event }0{ 2  xX is called a failure and occurs with probability q. In the

simulation, it was assumed that the network has a state that is modeled after the BRV

with 9.0p (90%) and 1.0q (10%).

Let

)(0 tf A be a time variate function representing denial of service at time t for

architecture A

)(1 tf A be a time variate function representing successful services at time t for

architecture A

Then,

dttf

tf

t
A)(

0

0



represents the number of denied services between simulation times t0 and tf for

architecture A

Similarly,

 dttf
tf

t
A)(

0

1



represents the number of total successful services between the times t0 and tf spent for

architecture A. Hence, the total number of services during the period is given by:

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

133

 
tf

t
AA

tf

t
A

tf

t
A dttftfdttfdttfT

0

10

0

1

0

0))()(()()((3.29)

The percentage denial is thus given by

100*

)()(

)(

0

1

0

0

0

0








tf

t
A

tf

t
A

tf

t
A

A

dttfdttf

dttf
D (3. 30)

For architecture time span 0t and ft .

Introducing φ, the life of an agent on each node, which is the maximum time an agent

can spend on a node before moving to another. An agent may be denied services if the

system is busy doing something else or the user fails to explicitly lauch the host

platform or the agent exceeds the maximum allowable time on the host. The percentage

timed out services thus becomes,

 100*
)()(

)(

0

0

1

0

dttfdttf

dttf

tf
A

tf

t
A

tf
A











 (3.31)

The denied services due to agent time out is included in the total denial of service for

both architectures, therefore, the total percentage denied services becomes

 100*
)()(

)(

0

1

0

0

0

0








tf

t
A

tf

t
A

tf

t
A

JADE

dttfdttf

dttf
TD + 100*

)()(

)(

0

0

1

0

dttfdttf

dttf

tf
A

tf

t
A

tf
A









 (3.32)

It is also assumed that f is directly related to the probability distribution values of p

and q . However, EMA has the capability to take up part of the CPU time any time it

arrives its destination, it does not need human intervention, the agent starts execution

as soon as it is authenticated. Operating Systems services, being part of the Operating

Systems and running in the kernel mode, have higher priorities compared to other

applications on top of the operating system, the agent time out is equal to zero with

EMA, thus

 0100*
)()(

)(

0

0

1

0













dttfdttf

dttf

tf
A

tf

t
A

tf
A



 (3.33)

thus for EMA,

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

134

TDEMA =






tf

t
B

tf

t
B

tf

t
B

dttfdttf

dttf

0

1

0

0

0

0

)()(

)(
*100 (3.34)

3.12.4 Fault Tolerance

Fault tolerance is the ability of a system to respond gracefully to an unexpected

hardware or software failure. A fault tolerant system as in computer networks, has the

ability to continue operation in the event of a failure. Fault tolerance is a measure of

robustness or adaptability of a system to breakdown (Oyatokun, 2004). According to

Aderounmu (2001), a fault tolerant system degrades gracefully in the face of failure,

even though at a lower level of performance. Hosts, agent platforms or agents

themselves can fail by crashing, other faults could occur due to programming errors or

violation of security systems. Faults that occur in a platform cause all the agent on the

platform to fail, fault occuring on the computer host causes the platform to fail which

implies that the agents on the platform also will fail. Fault occuring in connection or

network will cause loss of message or mobile agents. In cases where the network is

unreliable and power supply is also unreliable, once the power supply is off the

computer host goes off and both the plaform and agents on it fail.

JADE

In JADE, once power fails, both the platform and agents fail, agents suffer abrupt

termination, this can lead to loss of agent in which case no state is saved. Failures

inherent in JADE inlude:

i. Platform failure: the JADE containers distributed over the network can fail, thus

all agents residing in the containers also fail. When the power is restored the

platforms need to be explicitly started or restarted by human user to continue

operation. The platform can also fail due to natural or artificial causes like

programming errors or violation of security systems.

ii. Host failure: the host computer on which the platform resides fails with power

failure, it can also fail due to other causes like virus attack, violation of security

systems and programming errors as well, which in turn causes the platform and

the agent on it to fail.

Assumption

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

135

Assume there are n failed platforms, time to a restore platform Tp, if we assume

uniform recovery time for all platforms, the time to restore n platforms will be nTp.

Let‟s also assume that there are L nodes that fail, and failure recovery time for each

node is equal and it‟s Th , then total recovery time for L nodes will be LTh. If the

time to restore an agent to continue its operation is Ta, then, the total recovery time

will be

 apphf nTnTTTLT )((3.35)

Let Tw be the time to restore power or total down time, adding Tw, then, equation

(3.35) becomes

 wapphf TnTnTTTLT )((3.36)

Proposed Embedded Mobile Agent

The proposed agent is running as a part of the Operating System, (OS service), it takes

advantage of the autosave and autorecovery facilities of Windows Operating Systems

to save states. Once the power supply returns, and the host is started, the agent‟s state

is restored automatically and the agent can continue its tasks without user‟s

intervention, since there is no platform involved, the failure is restricted to the host

alone. In case of a node failure due to other occurences, EMA can determine

alternative route to the next node in its itinerary. Mobile agents have the ability to

dynamically determine alternative route in the face of failure, in both cases mobile

agent could determine alternative route in the case of hosts‟ failure. If we assume a

probability of failure to be 0.1, i.e., one out of every ten hosts fails naturally, and the

node at which failure occurs is randomly generated.

Using the same notation as for JADE

Th time to restore the host, for L nodes, total time will be LTh

Ta is the time to restore agent

ahf TLTT  (3.37)

It also suffers a delay equivalent to the time to restore power, Tw

 wahf TnTLTT  (3.38)

Where Tw is the delay equals to the total down time. The EMA agents are

automatically restored as soon as the host is started, the time to restore the agent is

therefore equal to zero, thus the total recovery time for EMA will be

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

136

 whf TLTT  .(3.39)

The total down time and host recovery time in both systems are generated by a radom

number generator, unknown to the system apriori.

3.12.5 Turn Around Time

Turn around time is the interval between when the agent is sent form the origin to visits

remote nodes and when it returns with the result to the origin, in other words it is the

round trip migration time. The JADE agents when disparched, visits each node and

suffers a delay associated with the platform activation.

Assume time to travel between node A and node B is Tv, if it visits X number nodes, it

will take X*Tv time to visit all the X nodes, assuming the distances between the nodes

are equal, and the speed of the agent is constant. Assume it takes Rt time to return to

the origin. In jade the agent suffers a delay equivalent to the total delay measured in

(equation 3.19) above.

The total turn around time for JADE agent

 RtDTvX TA  (3.40)

Cosidering the network traffic and the bandwidth, the speed of the agent is directly

proportional to the bandwidth, speed is the distance covered per unit time, while the

bandwidth is the amount of data that can be transmitted in a fixed amount of time

measured in bit per second (bps), thus

Speed S = Distance / time = d/t . Time t to travel between a node P and Q is Tv

TvdS / (3.41)

 BS then, CBS  (3.42)

where C is the constant of proportionality and equating the two equations, we have

CBTvdS  /

 CTvdCTvdB /1//)/( (3.43)

Where B is the bandwidth and C is the proportionality constant, for simplicity, lets

assume C = 1, then

 TvdB / (3.44)

JADE

The total turn around time at varying bandwidth will be equal to

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

137

RtDBTvX TA )/1((3.45)

If RtTv  and

))1(2/)(4(stnnttXD dhTA 

Then,

RtstnnttXBTvX dh ))1(2/)(4()/1((3.46)

If we assume that it takes equal amount of time to transport agent between nodes and

on the return trip to the origin, i.e. Tv = Rt, then,

))1(2/)(4()/1()1(stnnttXBTvXTAT dhJADE  (3.47)

TvdB /

 it follows that,

 dTvTvdB ///1/1  then

))1(2/)(4()/()1(stnnttXdTvTvXTAT dhJADE 

(3.48)

if we lump all the requests into one service, i.e n =1, thus n/2(n+1)st = st, then

stttXdTvTvXTAT dhJADE ))(4()/()1((3.49)

Proposed Embedded Mobile Agent

Using the same assumption as used in JADE, EMA travels to a node in time

equivalent to Tv, it will visit X nodes in time X*Tv, its return trip is also equal to Rt,

the delay is equal to the total delay derived in equation (4.20). Considering the network

bandwidth, the total turn around time for EMA will be equal to

 RtTDBTvX B  /1 (3.50)

))1(2/22(stnnttXD dhTB  =))1(2/)(2(stnnttX dh 

 RtstnnttXBTvX dh ))1(2/)(2()/1((3.51)

Lets assume it takes the same amount of time to travel from node to node and back to

the origin,

 RtTv 

))1(2/)(2()/1()1(stnnttXBTvXTAT dhEMA 

(3.52)

Substituting Tvd / for B

))1(2/)(2()/()1(stnnttXdTvTvXTAT dhEMA 

(3.53)

If n = 1; then

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

138

))(2()/()1(stttXdTvTvXTAT dhEMA  .(3.54)

3.13 Conclusion

These design principles of the embedded mobile agent presented in this chapter

demonstrate the provisions Windows Operating System made to extend its services.

This implies that the operating system capability can be extended to run mobile agents

at the same time the functionality of mobile agents could be extended by improving its

architecture.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

139

CHAPTER FOUR

IMPLEMENTATION AND SIMULATION OF EMBEDDED

MOBILE AGENT

4.1 Introduction

This section presents the practical implementaion of the proposed system and its

functionality. The agents designed in chapter three are implemented in Java, an Object

Oriented Programming language. Java is chosen because of its unique capability for

network programming, its facility for object serialization and dynamic class loading.

The embedded mobile agent stores and retrieves weather information from dispersed

databases connected by a network, in this case a local area network. The chapter also

presents the results of performance analysis of the developed model.

4.2 The System Overview

This work is directed at retrieving weather information in particular. The system is

menu driven as shown in Figure 4.1, and consists of:

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

140

(i) Initialize Agent operation: takes the user to the agents‟ configuration module,

which is basically to search for weather information given certain criteria. The

module is parametric in nature; the user needs only select search options.

(ii) Update Agent store: takes the user to the weather manager‟s menu, where

weather information is stored in the databases.

(iii) Hide me: hides the mobile agent from the main window so user can do other

things.

(iv) Shutdown and exit: explicitly shuts down the agent. This can be restated by

launching the mobile agent from the desk stop explicitly and at the restart or

boot time of the computer.

4.3 System Components

The system model has the following components, a brief description of the system‟s

components is given.

4.3.1 Weather manager

 The weather manager is responsible for recording the weather information at a

particular location, e.g. temperature, arthmospheric condition. The weather manager

stores weather information in the database, as shown in Figure 4.2. The attributes

stored are the location: the town or city of interest, Temperature : the degree of hotness

or coldness of the location and the atmospheric conditions.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

141

 Figure 4.1 Mobile Agent Control panel

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

142

 Figure 4.2: Weather Manager

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

143

4.3.2 Db server

The computer in each location where the weather information is stored, the database

maintains the integrity of the information stored in the database. In this work,

phpMYadmin was used as Relational Database Management System (RDBMS) access

layer to store the databases created. It could be accessed through the xampp web server.

4.3.3 Class config

Class Config Creates the systems configuration, i.e the user interface, where the user

interacts with the agent system. This class consists of methods such as config(), the

control panel for the system, the control panel is menu driven, choices are made by a

click on the available options. The method setView() initiates the originating host

environment and opens the network port for communication. The updateView() is

called within the constructor to initialize the configuration form.

4.4 The Embedded Mobile Agent (EMA) Implementation

The system of agents implemented in this research work consists of the following:

 Static agent

 Mobile agent

 Agent server

This section presents the implementation details of these agents since their functions

are already discussed in the previous chapter.

4.4.1 Static agent

The static agent is written in java programming language and implemented on all the

machines in the system. The static agent is installed in the kernel of the operating

systems on which it resides, as an extension of the services of the operating systems. In

the configuration panel, the name of the machine where the static agent is installed is

specified, this is necessary for the agent to be able to communicate with incoming

mobile agents.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

144

4.4.2 Mobile Agent

The mobile agent in this work was written in java programming language, taking

advantages of java features for serializing and deserializing objects. The mobile agent

is received and interacted with by static agent in the kernel of the operating systems on

the host visited to read information from the databases of the visited hosts and presents

the result to the user.

4.4.3 Agent server

The agent server is implemented in java and is installed on all the machines in the

system; it is the interface between the static agent, mobile agent and the network. It

opens the port for connection and triggers the static agent to receive incoming mobile

agent. The agent server is started at the boot of the computer system.

4.4.4 Agent Creation

Mobile agent is coded through the MobileAgent class containing the logic of the agent.

This class trigers the listener methods in the whole system. It automatically initializes

and registers the agent and initialize the thread handling using any initialization

arguments supplied by the creator.

4.4.5 Agent Removal

The remove(host) class removes a host from the list of the agentEnvironment.

closeALL() in MobileAgent class (Superclass), officially closes a mobile agent

properly and saves its state. The method oos.close() closes object output stream while

soc.close() closes the socket. Closeoperation() closes the “Agent Configuration Panel”

and disposes the agent. The agent can also be disposed by the computer shut down.

4.4.6 Migration Process

The system Initiate migration via runAndMove() method, the agent Prepares for

moving, selects the next host to migrate to (selectHost()), Interrupts agent by stopping

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

145

the thread, serializes the agent (serializeAgent()) and transfers agent‟s data state and

additional info (agent id), registers its presence and throws exceptions in case the

destination host in unavailable (logStatus()). The hosts on the network are referenced

by the system names or their IP addresses. On its arrival at the destination host, it

creates a new instance at the destination with the serialized data and starts the thread of

the agent (new Thread(this).start()).

4.4.7 Agent action

After migration, the agent executes run() class which calls the initDB() method that

connects the agent to the Database, the logStatus() is initiated to indicate the status of

the connection to the database or otherwise. If the db is connected, the search can

begin. The seach action is implemented with SQL query embeded in the

btSearchActionPerformed(). Two options are available for the search, the temperature

and the weather conditions, rbTemp.isSelected() searches for temperature within

certain specified range, and rbCondition.isSelected() searches for wheather condition.

The btAddActionPerformed() method takes care of the scalability property of the

system, it joins new host(s) on the network to the system.

The Figure 4.3 presents the main window where the query is entered by the user. The

system is a parametric search system where the user only enters search parameters and

these are transformed into structured query language (SQL) by the system and a search

is initiated. The list of machines on the network is indicated by the agent‟s

environment, this implies the machines on the network have to be registered before

they can be visited. To the right of the window is the result window, where the results

of the search are to be displayed. The bottom part of the window is meant to present the

report of the search, which includes the host visited, the successful and unsuccessful

service requests.

Figure 4.4 presents search results with temperature while figure 4.5 presents the results

of searching using atmospheric condition.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

146

 Figure 4.3: Mobile Agent Configuration panel

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

147

Search example

Figure 4.4: Searching with Temperature Range

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

148

Figure 4.5: Searching with Atmospheric Condition

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

149

4.4.8 System Installation Procedure

 install Mysql and java compiler

 Use phpmyadmin to run the SQL in magents.sql

 Install MobileAgentSetup.exe (It will prompt you to run after installation. It

will fail)

 Goto start -> programs -> notepad; Right-click it and choose runas

administrator to open a blank notepad.

 From the blank notepad, goto File->open and navigate to the installation

folder(should be MobileAgent under Program Files if you do not change it)

 Look for the lib folder. Inside it is config.properties

 Edit this file change the host, username, port and password as apply to your

database.

 After change, save and launch MobileAgent from the desktop or restart your

system. If everything is fine, it will show in the system tray.

 If it fails to run or you encounter further problems, check the log file under the

user directory\MobileAgent\ for instance, on my system, the log is under

bosede\MobileAgent\.

4.5 Performance model of the Proposed System and JADE

This section presents a performance model of the proposed embedded agent with an

existing agent system, (Java Agent DEvelopment framework, JADE). JADE is a

widely accepted, open source FIPA compliant mobile agent platform and it is java

based thus providing simple and friendly Application Programming Interface.

Performance measurements tested includes service delay, memory utilization, fault

tolerance, denial of service and turn around time. Simulated results show that the

embedded agent offers a superior performance compared to JADE. It offers a lower

delay and turn around time, consumes less storage and has reduced percentage denial

of service.

Performance management includes a set of activities which ensure that goals of a

system are consistently met in an effective and efficient manner. The performance of a

system is used to denote its processing power, which is measured in terms of the time

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

150

used to solve a given problem or the size and number of problems solved in a fixed

amount of time. Performance also includes, the reliability of the system, for example its

availability and unavailability times or the times between failures and the functional

aspects of performance which includes the correctness of solutions and efficiency with

minimal discomfort or physical efforts, this is supported by Kotsis (1999). The

traditional performance evaluation of computer systems starts with the characterization

of the system under study and a characterization of the load. Then, a performance

model is built and performance results are obtained by applying performance

evaluation techniques which could be analytical, mathematical or simulation

techniques. This is necessary with a view to improving on the existing systems and to

define new techniques of solving computational problems taking advantage of

technological advancements. According to Aderounmu (2001), performance

management is necessary to perform some functions which include to:

(i) continuously evaluate the principal performance indicators of network

operation

(ii) verify how service levels are maintained

(iii) identify actual and potential bottlenecks and

(iv) Establish and report trends for management decision making and planning.

Stuck and Arthurs (1985) opined that it is necessary to analyze the performance of a

system model for two reasons, which are

i. to improve productivity: that is to increase the number of jobs done in the same

unit of time

ii. To add functionality: new functions will be performed that offer the potential

for new productivity gains or new revenue.

In view of all these, the researcher performed a performance analysis of the proposed

system using mathematical modelling and later compared the results with those of an

existing agent system, precisely JADE.

4.6 Simulation and Analysis of Results

Simulation is an attempt to model a real-life or hypothetical situation on a computer so

that the system can be studied to see how it works and behaves. Aderounmu (2001)

defined simulation as evaluation technique that represents the behaviour of a system by

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

151

a model in the time domain. Simulation is a powerful and versatile tool to carry out

experiments on the behaviour of a real world situation or system, either because the

actual system is too expensive to implement, very difficult or dangerous to achieve or

hazardous to human lives. The simulation technique is employed in this research work

to model the behaviour of the proposed system against an existing system for

information retrieval application. This section presents the simulation program

developed to provide performance evaluation of the proposed embedded mobile agent

(EMA) against that of an existing scheme (JADE).

4.6.1 Service Delay versus Number of hosts

Service delay was measured against the number of hosts on the network for the two

schemes. The mathematical models for the service delay for both JADE and EMA were

obtained in, Equations 3.19 and 3.20 respectively. In the simulation the researcher

assumed same number of requests for both schemes. Borrowing from the idea of El-

Gamal et al., (2007) and Mobaideen (2003), assumed time to save agent internal state

and time to sign off from the platform (th) = 5milli-secs, time to activate platform,

authenticate and accept agent (td) = 5milli-secs and service time (st) = 5milli-secs. The

mean service delay generated by EMA was 15067.50 while that of JADE was

15697.50, as derived from Table 4.1. The result of the simulation as shown in Figure

4.6 showed that the proposed scheme generated slightly lower delay compared to

JADE for lower number of nodes up to 40 nodes and clear differences began to appear

with increased number of nodes. This was due to the fact that both systems were agent

based and the agents in the two systems were written in the same programming

language, java. It can be deduced that the EMA generates lower delay as the number of

nodes to visit increases, it thus follows that EMA performs better with higher number

of nodes in the network.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

152

 No_of_nodes

JADE

 EMA

5

1495

1435

10

2990

2870

15

4485

4305

20

5980

5740

25

7475

7175

30

8970

8610

35

10465

10045

40

11960

11480

45

13455

12915

50

14950

14350

55

16445

15785

60

17940

17220

65

19435

18655

70

20930

20090

75

22425

21525

80

23920

22960

85

25415

24395

90

26910

25830

95

28405

27265

100

29900

28700

Table 4.1 Service Delay for the two schemes

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

153

0

5000

10000

15000

20000

25000

30000

35000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Se
rv

ic
e

 d
e

la
y

(m
ill

i-
se

co
n

d
s)

Number of hosts

JADE

EMA

Figure 4.6 : Service delay versus number of host on the network

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

154

4.6.2 Memory utilization versus the number of nodes

In measuring the memory utilization of the two approaches, the total memory

requirements for each scheme were compared. The total amount of memory required to

store the Jade platform and the containers on all the hosts involved in the system and

the memory requirement for the mobile agent at any point in time. The mathematical

model of the memory requirements was developed in Equations 3.23 for JADE and

3.25 for EMA. The size of the embedded static agent running was so small compared

to the size of the JADE platform, precisely 1KB (1022bytes) and the agent server was

approximately 2KB (1.27KB), totalling 3KB whereas the JADE platform required

about 2.83 10
3

KB. The enhaced mobile agent‟s size was approximately 6KB

(5.52KB) like other java based mobile agents. Bearing in mind that memory is an

expensive resource, the increased processing speed of EMA being a prime motivator.

Figure 4.7 shows the graph representing the memory requirements for both systems.

The simulation results from Table 4.2 show that the embedded Mobile agent scheme

utilized a small amount of memory compaired to JADE platform. EMA utilized a mean

of 132.50 units of memory while JADE required a mean of 380.00 units for a sample

size of 10 computers. The JADE system consumed a whole lot of memory for storage

of agent platform and JADE containers on all the systems the agent is to run and this

increased as the number of host on the network increased on the average.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

155

Table 4.2: Memory utilization against number nodes

 No of nodes

JADE

EMA

 ==

 5

155

110

 10

205

115

 15

255

120

 20

305

125

 25

355

130

 30

405

135

 35

455

140

 40

505

145

 45

555

150

 50

605

155

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

156

0

100

200

300

400

500

600

700

5 10 15 20 25 30 35 40 45 50

m
e

m
o

ry
 r

e
q

u
ir

e
m

e
n

t

number of hosts

JADE

EMA

Figure 4.7: Graph of memory utilization against number of hosts on the

network

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

157

4.6.3 Denial of service versus number of request per service

In this simulation, the researcher refers to an abrupt termination of service as denial of

service, the researcher measured the adaptability of the two systems at a fixed network

bandwidth. The numbers of failed and successful services were measured against the

total number of services to measure the percentage denial of service for the two

schemes. The mathematical model was developed for the two schemes in Equations

3.32 for JADE and 3.34 for EMA. The number of failed services was randomly

generated using a random number generator that follows the Bernoulli Random

Variable (BRV) with a probability of 0.1 failure. The result of simulation as presented

in table 4.3 shows an improvement in the reduction of denied services for EMA, with a

mean percentage denial of service at 14.28% while that of JADE was 24.74 %. From

the graph for the result as shown in Figure 4.8, it can be deduced that at every point in

time, the total number of services denied for JADE were higher because of the many

points of failure that contribute to services being denied. EMA on the other hand

showed a consistent reduction in the total number of services denied throughout the

simulation period with a maximum of 40.55% denied services while JADE is

inconsistent with a maximum of 72.56% denied services.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

158

Table 4.3: Percentage denial of service for JADE and EMA

 Noofservices JADE EMA

 1 11.93258 10.716640

 2 21.58643 12.784850

 3 58.66181 23.811520

 4 26.58483 11.414270

 5 32.61682 21.763570

 6 23.29993 13.281320

 7 59.20310 30.122150

 8 11.83280 1.854740

 9 25.30223 12.043000

 10 20.65293 8.570012

 11 16.06390 13.805890

 12 10.11700 9.797118

 13 8.65884 2.129710

 14 30.41261 22.685170

 15 8.01970 1.721273

 16 19.18677 17.108090

 17 20.58117 17.590060

 18 13.12286 9.622582

 19 4.30178 4.269979

 20 72.56191 40.552730

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

159

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p
e

rc
e

n
ta

ge
 d

e
n

ia
l o

f
se

rv
ic

e

Number of requests

JADE

EMA

Figure 4.8: percentage denial of service for varying number of

service requests

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

160

4.6.4 Fault tolerance

In measuring fault tolerance, the failure recovery times for various number of nodes

were measured. In cases of power failure,(which is an issue in this environment) JADE

agents suffered abrupt termination and this can lead to loss of agents in which case, no

state is saved, the platform needs to be explicitly restarted when power is restored.

When power fails, EMA saves states and automatically recovers when power is

restored this is enhanced by the auto recovery facility of Windows operating systems.

The result of simulation as presented in Table 4.4, EMA shows a superior performance

with a mean of 180.31, over JADE with a mean of 327.84, this was attributed to the

time it took to activate the platform and restart the agents on the platforms which did

not apply to EMA. The failure recovery time for EMA was about 50% that of JADE.

Figure 4.9 shows that as we have more nodes on the network, there is the possibility of

fault occuring which resulted in higher recovery times. The total failure recovery time

was generated by a number generator unknown to the system apriority. The failure

recovery times for EMA were almost linear for lower number of nodes up to 15 and

increased as the number of nodes increased.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

161

Table 4.4: Fault tolerance measured in term of failure recovery times for JADE and EMA

 Number-of-nodes JADE EMA

1 95.05459 94.51451

2 209.92050 126.65540

3 209.05810 26.24645

4 469.92660 234.80920

5 267.50970 114.05570

6 95.88279 86.98524

7 392.45230 116.65720

8 120.68890 94.61911

9 274.89330 194.70500

10 330.37450 76.50851

11 172.06060 73.40134

12 183.22440 120.36270

13 179.99110 140.36110

14 571.97770 260.50240

15 203.29790 148.71410

16 518.31100 348.45130

17 592.73400 366.86050

18 485.44400 313.15810

19 798.83160 363.56290

20 385.19440 305.05180

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

162

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fa
ilu

re
 r

e
co

ve
ry

 t
im

e
 (

m
ill

i s
e

co
n

d
s)

Number of nodes

JADE

EMA

Figure.4.9: Failure recovery time for different number of nodes

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

163

4.6.5 Turnaround Time

The turn around time is the total time it takes an agent to visit all the hosts in its

itinerary and return to the origin. In measuring the agent turn around time, the round

trip times of mobile agent were measured with respect to the number of nodes it has in

its itinerary to complete its tasks. The speed of the agent depends largely on the

network bandwidth and/or network speed. The network speed is simulated with a

stochastic model while measuring the times of agent itinerary. The result of simulation

as presented by the graph of Figure 4.9 shows that the turnaround time increased

linearly for the first three nodes, but as the agent migrates to more nodes the behaviour

is affected by the network bandwidth and it became nonlinear. The turnaround times

for EMA are consistently lower than that of JADE for same number of nodes, this

implies that the EMA agents ran and returned to the origin earlier than JADE agents.

The two schemes have similar behaviour because they are both java-based agents thus

reacted same way to network bandwidth, but the enhanced agent showed an

improvement in reduction of its round trip times. From the results as shown in table

4.5, the mean turnaround time for EMA was 499.71 while the mean for JADE was

843.33. This was attributed to the time JADE spent activating the platform on each

node. EMA agent took considerably lower times for its round trips at varying number

of hosts compared to JADE agent.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

164

Table 4.5: Turnaround times for JADE and EMA systems

Numberof

hosts JADE

 EMA

1

482.247

317.8067

2

761.4957

434.2923

3

1041.479

545.8186

4

378.6712

234.4612

5

1103.012

634.3623

6

617.6008

379.6173

7

646.1122

429.5757

8

955.9235

592.7742

9

854.1171

554.7585

10

932.2553

583.6081

11

489.4374

305.4458

12

1103.371

722.2738

13

414.1125

254.2512

14

1599.922

893.1526

15

1068.697

562.6228

16

769.3093

501.5302

17

868.3988

542.8115

18

953.6566

565.5141

19

1341.773

679.7233

20

485.0498

259.7475

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

165

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

tu
rn

ar
o

u
n

 t
im

e
(m

ill
is

e
co

n
d

s)

Number of nodes

JADE

EMA

Figure 4.10: Mobile agent turn around times for various number of host visited

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

166

4.7 Statistical Analyses

Statistical analyses were carried out based on the simulated data to determine the

significance level of the proposed system and the relationship between the proposed

scheme and the existing scheme. Independent T-Tests and correlation analyses were

performed on the data obtained in the previous section in order to ascertain the

significant difference level between the two schemes at a significance level of 0.01.

Student T-test (independent samples): compares two small sets of quantitative data

when samples are collected independently one of another. This fits the data obtained

from the simulation as the two schemes are independent of one another as well as their

data. The results are presented in the Tables 4.6 to 4.9.

4.7.1 T-Test and Correlation

The statistics of the two data sets are presented in table 4.6 below showing the mean,

standard deviation and the mean of standard error.

Statistical correlation is used to evaluate the strength of relations between two variables

or a set of data. According to Olubusoye et al (2001) correlation measures the degree

of linear association between two or more variables when a movement in one variable

is associated with the movement in another variable either in the same direction or the

opposite direction. One of the most common correlation coefficients, the Pearson

Correlation coefficient, P or r, which is sensitive to a linear relationship between two

variables, was employed in this analysis. Where P or r is the measure of dependence,

or the measure of the degree of correlation. The Pearson‟s correlation corresponds to

the following values

 +1: the case of perfect positive linear relationship

-1: the case of perfect decreasing or negative linear relationship

Values between -1 and +1: indicate degree of linear dependence and

0: the case of no relationships.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

167

Table 4.6: Statistics of Data

Samples Statistics

 Mean N Std. Deviation Std. Error Mean

Fault Tolerance JADE 327.8413968 20 193.07697001 43.17332298

EMA 180.3091321 20 109.14322721 24.40516753

Percentage Denial of Service JADE_1 24.7349991 20 18.51132154 4.13925733

EMA_1 14.2822339 20 9.84454775 2.20130780

Turn Around Times JADE_2 843.3319936 20 321.64317727 71.92160089

EMA_2 499.7073844 20 172.97856373 38.67918271

The Service Delay JADE_3 15697.5000000 20 8844.53927573 1977.69910502

EMA_3 15067.5000000 20 8489.57448875 1898.32656569

Memory Utilization JADE_4 380.0000000 10 151.38251770 47.87135539

EMA_4 132.5000000 10 15.13825177 4.78713554

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

168

Table 4.6 shows the analysis of data, the mean value of both systems for each of the

performance parameters, their standard deviation about the mean and standard mean

errors. Table 4.7 presents the result of the correlation analysis at a significance level of

0.01 for all the parameters tested. The results obtained show that there is a strong

positive to perfect positive correlations between the two systems for the parameters

tested.

4.7.2 Student’s Independent T-Test

The t-test compares two small sets of quantitative data when samples are collected

independently of one another. The t-test measures the level of significant differences

between two sets of data collected independently. T-test was also applied to the data

obtained for the performance metrics of the two schemes at a significant level of 0.01.

4.7.3 Interpretation of Results

1. For the fault tolerance of the two systems, the t-value of 5.726 and p-value of

0.000 indicate that the test is statistically significant. This implies that there is

significant difference between the two systems. The average fault recovery time

for EMA was (180.31 ms) and the standard deviation was 109.14 while that of

JADE was (327.84 ms) with193.08 standard deviation. The correlation value of

0.852 and p-value of 0.000 indicate that there is a strong positive significant

relationship between the two systems.

2. For the percentage denial of service for the two systems, the t-value of 4.533

and p-value of 0.000 indicates that the test is statistically significant. This

implies that there is significant difference between the two systems. The mean

percentage denial of service for EMA was 14.28 with a standard deviation of

9.8 while that of JADE was 24.73 with a standard deviation of 18.5. The

correlation value of 0.914 and p-value of 0.000) indicate that there is a strong

positive significant relationship between the two systems.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

169

Table 4.7: Correlations Table

 N Correlation Sig.

Fault Tolerance JADE & EMA 20 .852 .000

Percentage Denial of Service JADE_1 & EMA_1 20 .914 .000

Turn Around Times JADE_2 & EMA_2 20 .970 .000

The Service Delay JADE_3 & EMA_3 20 1.000 .000

Memory Utilization JADE_4 & EMA_4 10 1.000 .000

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

170

Table 4.8: Samples Test Table

 Paired Differences

95% Confidence Interval of the

Difference

Mean Std. Deviation

Std. Error

Mean Lower Upper

Fault Tolerance JADE – EMA 147.53226470 115.22369865 25.76480228 93.60591377 201.45861563

Percentage Denial of Service JADE_1 - EMA_1 10.45276525 10.31346517 2.30616092 5.62591498 15.27961553

Turn Around Times JADE_2 - EMA_2 343.62460911 159.42989310 35.64960786 269.00912232 418.24009589

The Service Delay JADE_3 - EMA_3 630.00000000 354.96478699 79.37253933 463.87136592 796.12863408

Memory Utilization JADE_4 - EMA_4 247.50000000 136.24426593 43.08421985 150.03672346 344.96327654

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

171

Table 4.9: T-Test Samples Test

 T Df Sig. (2-tailed)

Fault Tolerance JADE – EMA 5.726 19 .000

Percentage Denial of Service JADE_1 - EMA_1 4.533 19 .000

Turn Around Times JADE_2 - EMA_2 9.639 19 .000

The Service Delay JADE_3 - EMA_3 7.937 19 .000

Memory Utilization JADE_4 - EMA_4 5.745 9 .000

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

172

3. For the turn around times of the two systems, the t-value is 9.639 and p-value of

0.000 indicates that the test is statistically significant. This implies that there is

significant difference between the two systems. The mean turnaround time for

EMA was 499.71 ms with standard deviation of 172.98 while that of JADE was

843.33 ms with 321.64 standard deviation. The correlation value of 0.970 and

p-value of 0.000 indicate that there is a strong positive significant relationship

between the two systems.

4. For the service delay of the two systems, the t-value is 7.937 and p-value of

0.000 indicates that the test is statistically significant. This implies that there is

significant difference between the two systems. The mean service delay for

EMA was 15067.5 ms with 8489.57 standard deviation while that of JADE was

15697.0 ms with 8844.54 standard deviation. The correlation value of 1.000

and p-value of 0.000 indicate that there is a perfect positive significant

relationship between the two systems.

5. For the memory utilization of the two systems, the t-value is 5.745 and p-value

of 0.000 indicates that the test is statistically significant. This implies that there

is significant difference between the two systems. The mean memory

requirement for EMA is 132.5 bytes with 15.14 standard deviation while that of

JADE was 380.0 bytes with 151.38 standard deviation. The correlation value of

1.000 and p-value of 0.000 indicate that there is a perfect positive significant

relationship between the two systems.

The outcome of this work shows a significant difference between EMA and JADE in

terms of memory utilization, denial of service and greater fault tolerance in the face of

failure, turnaround time and service delay. The correlation analysis shows there is a

strong positive to perfect positive relationships between the two systems. The standard

deviation according to Spiegel and Stephens (1999) is a measure of dispersion, thus the

standard deviations of almost all the parameters‟ tested are high due to the fact that the

data obtained at simulation times for each parameter are spread out over a broad range.

This is because any slight alteration in the parameters has a significant cumulative

effect on the performance, since both systems are agent based, they respond similarly

to changes in parameters.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

173

CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATION

5.0 Introduction

This chapter provides the summary of this thesis. The overall picture of the thesis,

problem solved, solution approach and issues examined are presented; the

contributions of the thesis to knowledge are also highlighted. This is followed by the

conclusions reached and finally, we discuss a number of future research directions

identified in the work.

5.1 Summary

Mobile agent paradigm provides an open and generic framework for distributed

applications development. Agents solve complex software problems in distributed

environments where protocols, operating systems, hardware and runtime environments

are heterogeneous. Agent technology has received attention in the academic

community over the years, but it is yet to be adopted by the commercial community as

a natural evolution of object oriented world (Bellavista et al., 2001). This is largely due

to its complexity and lack of standardization and interoperability (Stoian and Popirlan,

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

174

2010). Existing agents operate and execute on computers with the mobile agent

platforms previously installed, the platforms provide runtime execution for the mobile

agents. These platforms differ in architecture, language and implementation and are not

interoperable, i.e. an agent built on one platform cannot execute on another platform.

The fact that mobile agent are used in distributed environment where hardware,

protocols, Operating Systems and platforms are expected to be heterogeneous,

necessitates a new way of implementing mobile agents to make them operate

independent of the agent platforms.

The work focuses on enhancing the architecture of mobile agents so as to extend their

functionalities. The model developed employ multi-agent mechanism to take care of

agent authentication, migration and any changes that may occur as the mobile agent

migrates from node to node. The model was implemented in java and the target

operating system is Windows XP, the model was also compatible and run efficiently on

Windows Vista and Window7. The agent is automatically started at the boot of the

computer system, it does not need to be explicitly initiated like the existing agents and

it is instantiated to perform its tasks. The mobile agent developed in this work is

intelligent, it visits the nodes listed in its itinerary and in case of failure or non

availability of a node in the list, it dynamically determines alternative route to the next

node until all the nodes listed in its itinerary are exhausted, then it returns to its origin

with the results. At the origin the mobile agent delivers the result of its actions and

also reports any unavailable node in its itinerary. The agent designed in this research

work migrates through the local area network and retrieves information stored in the

databases located in the computers on the network.

The proposed system was compared with an existing system, JADE, that is also java-

based agent platform. Simulation program was developed to provide performance

analysis between the existing scheme and the proposed scheme. Mathematical models

were developed for the following performance metrics: service delay, memory

utilization, denial of service, fault tolerance and turnaround times. The parameters used

for the measurements are as follows:

(i) Service delay against the number of hosts on the network

(ii) Memory utilization against the number of hosts

(iii) Percentage denial of service against the number of requests

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

175

(iv) Failure recovery times against the number of nodes

(v) Turnaround time against the number of hosts visited

5.2 Contribution to Knowledge

In this work, an embedded mobile agent was implemented and deployed as an

operating system service; the execution of the EMA needs no agent platform, thus

preserving memory. This operating system service runs continuously in the

background while users run other programs simultaneously. EMA is initiated as soon

as the operating system boots, eliminating delay associated with platform activation.

Furthermore, this work shows that users programs can be embedded in the kernel of

Windows Operating System extending the OS services giving an impression of

programming the operating systems. In the same vein, enhancing the architecture of

mobile agent can improve its performance. Since all computers run on operating

system, the model developed can be deployed and used across organisations, therefore,

improving the wide acceptability of mobile agent paradigm.

5.3 Conclusion

In this work, the researcher proposed a new way of implementing mobile agents

(EMA), that does not need the installation of agent platforms on the hosts on the

network, rather a light-weight static agent that runs as a windows service each time the

system boots.

The results obtained in this research show that the functionalities of mobile agents can

be extended by improving its architecture and that the proposed embedded mobile

agent can significantly improve the use of mobile agent technology in the distributed

applications. The system successfully eliminates the agent platforms on which mobile

agents rely for execution and provides a light-weight agent that‟s resides in the

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

176

operating system. Thus, saving memory that would have been used for the agent

platform, reducing access time for agent operations, reducing the turn around times for

mobile agent and increasing the fault tolerance capability of the system as a whole. The

fact that the agent is embedded in the Operating System running on the host computer

reduces the complexity of agent technology, which the OS hides from the user, makes

agents from different vendors with different design and language interoperate, as well

as makes the system portable across different organizations. Therefore, it could be

deduced that the EMA for information storage and retrieval provides a superior,

efficient and autonomous scheme with a high level of flexibility than the existing

JADE scheme.

5.4 Recommendations for Future Research

This thesis focuses on enhancing the architecture of mobile agents to directly interact

with the operating system. Windows XP was chosen as a test case and the

implementation was extended to Windows Vista and Windows 7. The system

implemented in this research could be incorporated into new versions of operating

systems for universal distributed information retrieval. Therefore, the implementation

of the system on other Operating Systems such as UNIX, Linux, Mac OS, and Solaris

is recommended for future research.

The Embedded Mobile Agent was applied to information retrieval in distributed

environment. Future research could investigate the application of EMA to complex and

more sophisticated operations such as data mining, intrusion detection and so on.

Furthermore, provision of adequate security for the embedded mobile agent would be a

subject for future research. The interoperability capability of this model with other

mobile agent systems is also recommended for investigation.

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

177

REFRENCES

Aderounmu, G.A. 2001. Development of an intelligent mobile agent for computer network

performance management. Unpublished PhD thesis, Department of Computer

Science and Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria.

Aderounmu, G.A. 2003. Performance Comparison of Remote Procedure Calling and Mobile

Agent Approach to Control and Data Tranfer in Distributed Computing

Environment. Journal of Network and Computer Applications, Elsevier, 27:

113-129.

Aderounmu, G.A, Oyatokun B.O. and Adigun M.O. 2006. Remote Method Invocation and

Mobile Agent: a Comparative Analysis. Issues in Informing Science and

Information Technology, 3. Available at

http://informingscience.org/proceedings.INSITE2006/IISTAder188.pdf

Adewunmi R. 2002. Distributed system: Concept, model and Issues. Seminal paper:

International School on Industrial Software Engineering, held at the University

of Lagos, Akoka, Lagos, Nigeria.

Admassu T. 2008. Threats and trusted countermeasures, using a security protocol, in the

agent space. Unpublished M Sc thesis, Department of Computer Engineering,

Addis Ababa University, Ethiopia.

Ahmed M.E. 2007. A new approach in learning for intelligent multi agent systems.

Proceedings of 21
st
 European Conference on Modelling and Simulation, Ivan

Zelinka, Zuzana Oplatkova Orsoni ECMS 2007.

Ajay Kr. S, Ravi S. and Vikram J. 1999. Design Patterns for Mobile Agent Applications. In

workshop on Ubiquitous Agents on Embedded Wearable and Mobile Devices,

Italy, 1999.

Angeletti M., Culmone R. and Merelli E. 2001. An intelligent agents architecture for DNA-

microarray data integration. Proceedings of the NETTAB workshop on Corba

and XML: towards a bioinformatics integrated network environment, Genova.

 Aridor Y. and Lange D. 1998. Agent design patterns: elements of agent application design.

Proceedings of the Second International Conference on Autonomous agents

(Agents ‟98), ACM press, 1998, 108-115.

Ashvin G. 2004. Advances in distributed system: an introduction. Date of last access: 8

February, 2008 at

http//www.eecg.toronto.edu/~ashvin/coursesece1746/2004/introduction.pdf

Bellavista P., Corradi A. and Stefanelli C. 2000. Protection and interoperability for mobile

agents: a secure and open programming environment. IEICE Trans. Commun,

E83-B (5): 961-972.

Bellavista P., Corradi P. and Stefanelli C. 2001. Mobile agent middleware for mobile

computing. IEEE Computer Society, Washington DC, USA, 73-81.

http://informingscience.org/proceedings.INSITE2006/IISTAder188.pdf

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

178

Bellifemine, F.L, Greenwood D and Caire G. 2007. Developing Multi-agent systems with

JADE. John Wiley & Sons Ltd, England.

Biermann E. 2004. A Framework for the Protection of Mobile Agents Against Malicious

Hosts. Unpublished Ph.D thesis, Universityf South Africa, South Africa.

Bohoris C. 2003. Network Performance Management Using Mobile Software Agents.

Unpublished PhD thesis, University of Surrey, Guildford, Surrey, UK.

Borselius N. 2002. Mobile Agent Security. Electronics and communication Engineering

Journal, 14 (5),IEEE, London, UK, pp 211-218.

Braun P. and Rossak W. 2005. Mobile Agents basic concepts, mobility models and Tracy

toolkits Elsevier Inc (USA) and dpunkt.verlag (Germany)

Brewington B., Gray R., Moizumi K., kotz D., Cybenco G and Rus D. 1999. Mobile Agent

in Distributed Information Retrieval. Thayer School of Engineering, department

of Computer Science Dartmouth College Hanover, new Hampshire.

Firstname.lastname@dartmouth.edu

Carzaniga A., Picco G. P and Vigna G. 1997. Designing Distributed Applications with

Mobile Code Paradigms. Proceedings of the 19th International Conference on

Software Engineering (ICSE „97), 22 -32, ACM press, 1997. Retrieved on 20

July, 2011 from

www.cs.ucsb.edu/~vigna/.../1997_carzaniga_picco_vigna_ices97.ppt

Chalopin J., Godard E., Metivier Y and Ossamy R. 2006. Mobile Agent Algorithms versus

Message Passing Algorithms. Proceedings of tenth International Conference

OPODIS, 2006, Bordeaux, France, December, 2006, 187 – 201, Springer-

Verlag.

Chen B., Chen H. H and Palen J. 2009. Integrating mobile agent technology with multi-agent

systems for distributed traffic detection and management systems.

Transportation Research Part C, 1-10.

Chess D., Harrison, C and Kershenbaum A. 1994. Mobile Agents: are they a good idea?

Technical Report, IBM Research Division, T.J Watson Research Centre,

Yorktown Heights, New York.

Christopher K. and Thomas T. 2001. Applying Mobile Agent technology to Intrusion

Detection. Distributed Systems Group, Technical University Vienna, Austria.

Clark K. L. and Lazarou V. S. 1997. A Multi-Agent System for Distributed Information

retrieval on the World Wide Web. Retrieved on May 15, 2012 from

http://www.inf.ed.ac.uk/teaching/courses/irm/reviews/clark.pdf.

Cossentino M. 2011. IEEE Foundation for Intelligent Physical Agents (FIPA) Design

Process Documentation Template. Retrieved on January 9, 2013, from

www.pa.icar.cnr.it/cossentino/fipa-dpdf-

wg/docs/Process_Documentation_Template_20110615_Experimental.pdf

mailto:Firstname.lastname@dartmouth.edu
http://www.cs.ucsb.edu/~vigna/.../1997_carzaniga_picco_vigna_ices97.ppt
http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/docs/Process_Documentation_Template_20110615_Experimental.pdf
http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/docs/Process_Documentation_Template_20110615_Experimental.pdf

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

179

Craswell N. E. 2000. Methods for Distributed information retrieval. Unpublished Ph D

thesis, Australian national University.

Daintith J. 2009. „IT‟, A dictionary of physics, Oxford University press. Retrieved on 13

September, 2012 from en.wikipedia.org/wiki/information_technology.

Dale J. and DeRoure D. C. 1997. A Mobile Agent Architecture for Distributed Information

Management. Proceedings of the International workshop on the virtual

Multicomputer. Retrieved on April 10, 2010 from

http://www.mmrg.esc.soton.ac.

Danny G. 2008. Agent-design pattern for building distributed service bus applications.

Technical Report, Microsoft Corporation. Retrieved March 3, 2011

frommsdn.microsoft.com/en-us/library/dd334420.aspx

David R.A. 2004. Cross-Platform Generative Agent Migration: An Agent Factory Approach.

Unpublished M Sc thesis, Department of Computer Science, Vrije Universiteit

Amsterdam.

Dilyana S. and Petya G. 2002: Building Distributed Applications with Java Mobile Agent.

Proceedings of Next Generation Network technologies International Workshop

(NGNT, 2002), 103-109, Rousse, Bulgaria, 2002.

Dunne C.R. 2001. Using Mobile Agents for Network Resource Discovery in Peer-to-Peer

Networks. In newsletter of ACM SIGecom Exchanges, 2(3):1-9

Ehrig M., Schmitz C., Staab C.,Taneand J. and Tempich C. 2002. Towards Evaluation Of

Peer-To-Peer-Based Distributed Information Management Systems. Retrieved

from http://www.aifb.uni-

karlsruhe.de/WBS/cte/html/publications/pdf/ehrig02towards.pdf

El-Gamal Y., El-Gazzar K and Saeb M. 2007. A Comparative Performance Evaluation

Model of Mobile Agent versus Remote Method Invocation for Information

Retrieval. World Academy of Science, Engineering and Technology, 27, 286 –

291, 2007

Emerson, F. L, Patricia D.M., Jorge C. F and Flavio R. S. 2003. Implementing Mobile Agent

Design Patterns in the JADE framework. Retrieved from

http://jade.tilab.com/papers/EXP/Ferreira.pdf. (Date of last access 23rd

December, 2013).

Farmer W.M., Guttman J.D and Swarup V. 1996. Security for mobile agents: Issues and

Requirements. Proceedings of the National Information Systems Security

Conference (NISSC‟96).

Feyadat. 2008. Network Topologies. Retrieved 5
th

 April, 2013, from

www.csudh.edu/feyadat/../Networking...Network%20Topologies.ppt

Finin T. and Nicholas C. 2000. Software agents for information retrieval. Technical report,

Department of Computer Science and Electrical Engineering, University of

Maryland Baltimore County.

http://www.mmrg.esc.soton.ac/
http://www.aifb.uni-karlsruhe.de/WBS/cte/html/publications/pdf/ehrig02towards.pdf
http://www.aifb.uni-karlsruhe.de/WBS/cte/html/publications/pdf/ehrig02towards.pdf
http://jade.tilab.com/papers/EXP/Ferreira.pdf
http://www.csudh.edu/Networking...Network%20Topologies.ppt

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

180

Fischmeister S. 2004. Software Technologies, Mobile Code (2004). Technical report,

Software Research Laboratory, University of Salzburg.

Fong P.W.L. 2003. Proof Linking: A Modular Verification Architecture for Mobile Code

system. Unpublished PhD thesis, submitted to the School of Computing

Science, Simon Fraser University.

Fortino G. and Russo W. 2003. High-level interoperability between java-based mobile agent

systems. A report of the project „Giovane Ricercatore 2003‟, University of

Calabria.

Franklin S. and Graesser A. 1996. Is it an agent, or just a program? a taxonomy for

autonomous agents. Proceedings of the third International workshop on agent

theories, architectures and languages. Springer-Verlag, 1996.

Fuggetta A., Picco G., and Vigna G. 1998. Understanding code mobility. IEEE transactions

on Software Engineering, 24(5): 342-361.

Gawali, R.D and Meshram, B.B. 2009. Agent-Based Autonomous Examination Systems.

Proceedings of the Intelligent Agent and Multi-agent systems, 2009, (IAMA

2009) International Conference.

Geetha N. 2004. Database Management Systems for Information Mangement and Access.

Proceedings of the 2nd international CALIBER-2004, New Delhi, 464- 472

Genco A. 2008. Mobile Agent: Principle of Operation and Application. Advances in

management information,.6. Retrieved on June 4, 2012 from

www.lavoisier.fr/notice/gb334882.html

General Magic. 1995. Telescript language Reference. October,1995. Retrieved on January 9,

2011 from bitsavers.trailing-

edge.com/pdf/generalMagic/Telescrip_Language_refrence_Oct95.pdf.

Gherbi T., Borne I. and Meslati D. 2009. MDE and mobile agent: Another reflection on the

agent migration. Proceedins of the 11th International Conference on Computer

Modelling and Simulation (UKSim 2009), Cambridge, United Kingdom.

Gilani N. 2012. Hybrid network topology. Retrieved on 13 March, 2013 from

www.ehow.com/about_6495481_hybrid-networks.html.

Giovanni C. 2009. JADE Programming for Beginners. TILAB, S.P.A. Retrieved on June 4,

2012 from jade.tilab.com/doc/tutorials/JADEProgramming-Tutorial-for-

beginners.pdf.

Giovanni V. 2004. Mobile agents: Ten Reasons for failure. In proceedings of the 2004 IEEE

International Conference on Mobile Data Management (MDM‟04), USA. IEEE

Computer Society Press, 298-299.

www.cs.ucsb.edu/~vigna/publications/2004_vigna_MDM04.pdf

Gray R. S. 1997. Agent Tcl: a flexible and secure mobile-agent system. Unpublished PhD

thesis in Computer Science at Dartmouth College, Hanover, New Hampshire.

http://www.lavoisier.fr/notice/gb334882.html
http://www.cs.ucsb.edu/~vigna/publications/2004_vigna_MDM04.pdf

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

181

Gray R., Cybenko G., Kotz D. and Rus D. 1996. Agent TCL. In Itinerant Agents:

Explanations and Examples with CD-ROM, Manning Publishing.

Gray R.S., 1995. Agent TCL: a transportable agent system. In proceedings of the CIKM‟95

Workshop on Intelligent Information Agent. J. Ousterhout TCL and the TK

Toolkit Addison-Wesley, 1995.

Gray R.S., kotz D, Ronald A. P. Jr, Bartoon J., Chacon D., Gerken P, Hofmann M.,

Bradshaw J, Breedy M., Jeffers R., and Niranjan S. 2001. Mobile agent versus

Client/server Performance: Scalability in an Information retrieval task. Lecture

notes in Computer Science, Springer Verlag, 229-243

Grimstrup A., Robert R., Kotz D., Breedy M., Carvalho M., Cowin T., Chacon D, Barton J,

Garrett C and Hofmann M. 2002. Toward interoperability of mobile agent

systems. Proceedings of the sixth IEEE international Conference on Mobile

Agent, Barcelona, Spain. Springer-Verlag, 106-120.

Gupta R. and Kansal G. 2011. A survey on comparative study of mobile agent platforms.

International journal of engineering, science and technology (IJEST), 3(3):

1943 - 1948.

Halls D. A. 1997. Applying Mobile Code to Distributed Systems. Unpublished PhD

dissertation Submitted to Computer Laboratory, University of Cambridge

Hiemstra D. 2000. Using Language Models for Information Retrieval. Unpublished Ph.D.

thesis Centre for Telematics and Information Technology, Neitherlands.

Htoon H. and Thwin, M.M.T. 2008. Mobile Agent for Distributed Information Retrieval

System. Proceedings of Electrical Engineering / Electronics, Computer,

Telecommunication and Information technology Conference (ECTI-CON)

2008, 1: 169 – 172.

Huang Y. and Ravishankar C. 1996. URPC: A Toolkit for Prototyping RPC. The computer

Journal, 1996, 39(6): 525 – 540.

Huhns M. N. and Singh M. P, (editors). 1997. Readings in Agents. morgan Kaufmann

Publishers, 1997.

Ibharalu F. T., Sofoluwe A. B. and Akinwale A. T. 2011. A reliable protection architecture

for mobile agents in open network systems. International journal of computer

applications (0975-887), 17(7).

Ismail, L. and Hagimont D. 1998. A performance evaluation of the Mobile Agent Paradigm.

Proceedings of the 14
th

 ACM SIGPLAN conference on OOP systems Languages

and Applications. Denver, Colorado, USA, 306-313.

Iyilade J. S. 2005. Development of multi-agent architecture for dynamic scheduling of jobs

in grid computing systems. Unpublished M Sc thesis in Computer Science,

Obafemi Awolowo University, Ile-Ife, Nigeria.

Iyilade, J. S., Aderounmu G. A. and Adigun M. O. 2005. An agent-based approach for

finding a supervisor in an academic environment. Proceedings of the 3
rd

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

182

international conference on parallel and distributed computing and systems

(PDCS 2005), Phoenix, USA

Jansen W., Mell P., Karygiannis T. and Mark D. 1999. Technical Report, NIST Interim

Report (IR), National Institute of Standards and Technology, Computer

Security Division.

Jennings N.R. and Wooldridge M. 1998. Applications of Intelligent Agents. Queen Mary

and Westfeild College, University of London.

Johansen D,Van Renesse R, and Schneider F. 1995. An introduction to the TACOMA

Distributed system version 1.0. Technical Report, Institute of Mathematical and

Physical Sciences, Department of Computer Science, Unviversity of Tromso,

Norway. June 1995.

Jordi C., Benno O.J., Michel O.A., Joan B., and Frances, B.M.T. 2007. Abstract Software

Migration Architecture Towards Agent Middleware Interoperability.

Proceedings of the International Multi-conference on Computer Science and

Information Technology, 27-37. Retrieved March, 2011 from

http://jipms.sourceforge.net.

Joseph, A. D., DeLespinasse A.F., TauberJ.A., Gifford D.K., and Kaashoek M.F. 1995.

Rover: A Toolkit for Mobile Information Access. In proceeding of the

Fifteeneth Symposium on Operating System Principles.

Katrina M. H., Levine B.N., and Mammatha R. 2003. Mobile distributed Information

Retrieval for Highly-Partitioned Networks. Proceedings of the 11
th

 IEEE

international Conference on Network Protocols (ICNP’03).

Kevin H. 2000. Distributed Computation with java Remote Method Invocation. Objective

Viewpoint Retrieved on April 5 2012 from

http://www.acm.org/crossroads/xrds6-5/ovp65.html.

Kotsis G. 1999. Performance management in parallel and distributed computing systems.

Unpublished thesis institute fur Angewandte Informatic und Informations

systeme, Abteilung Advanced Computer Engineering, Universitat Wien,

Osterreich.

Kotz D. and Gray R.S. 1999. Mobile Agent and the Future of Internet. Proceeding of the

Workshop on Mobile Agents in the Context of Competition and Cooperation

(MAC3) at Autonomous Agent ‘99, Seattle, Washington, USA, May 1999.

Kretser O., Moffat A., Shimm T. and Zobel J. 1998. Methodologies for distributed

information retrieval. Proceedings of the 18th International Conference on

Distributed Computing Systems ICDCS’98, Amsterdam. IEEE Computer

Society Washington, DC, USA.

Lange D. B. 1998. Mobile objects and mobile agents: the future of distributed computing?

Proceedings of the European Conference on Object-Oriented Programming

(ECOOP’98), 1998.

http://jipms.sourceforge.net/
http://www.acm.org/crossroads/xrds6-5/ovp65.html

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

183

Lange D.B and Oshima M. 1999. Seven Good Reasons for Mobile Agents. Communication

of the ACM, .42(3), pp 88-89, March 1999.

Lesk M. 1996. Seven ages of information retrieval. Occasional paper of the International

Federation of Library Associations and Institutions. Universal Dataflow and

Telecommunications Core Program. Retrieved on 4
th

 March, 2012 from

http://www.ifla.org/udt/op/

Lieberman H. 2001. Letizia: An Agent that Assists Web Browsing. Media Laboratory,

Massachusetts Institute of Technology, Cambridge, MA, USA.

Lister J. 2012. Hybrid network topologies advantages and disadvantages. Retrieved on 13

March, 2013 from www.ehow.com/list_7224727_hybrid-topology-advantages -

disadvatages.htm

Lovrek I. and Sinkovic V. 2001. Performance evaluation of Mobile agent Network.

Retrieved on 18 April, 2013 from

www.fer.unizg.hr/_download/repository/KES2001lovsin.pdf

Mak E and Fukuda M. 2005. A development of resource/commander agents used in agent

teamwork grid computing middleware. An inter-mediate report on faculty

research internship, funded by National Science Foundation.

Maninda K. Computer network topologies. Retrieved February 15, 2013 from

www.computer_network/topologies/maninda.ppt

Manning C.D., Raghavan P. and Schutze H. 2009. Introduction to Information Retrieval.

Online edition (c) 2009 Cambridge University Preess.

Margaret R. 2005. IT (Information Technology). Retrieved September 18, 2012 from

www.searchdatacenter.techtarget.com/definition/IT

Michael B. and Takanori U. 1997. Comparison of autonomous mobile agent technologies.

Technical report by APM Limited, United Kingdom.

Milojicic D, Breugst M., Busse I., Campbell J., Covaci S, friedman B, Kosaka K., Lange D,

Ono K, Oshima M, Tham C, Virdhagriswaran S. and White J. 1998. MASIF:

The OMG Mobile Agent System Interoperability Facility. Personal

technologies, 2(2):17-129, Springer-Verlag.

Mitrovic D., Ivanovic M., Budimac Z. and Vidakovic M. 2011. An overview of agent

mobility in heterogenous environments. Proceedings of the workshop on

applications of software agents: 52-58, 2011.

Mobaideen W.A. 2003. Performance Evaluation of Mobile Agents Paradigm for Wireless

Networks. Technical report UBLCS-2003-04. Department of Computer Science

University of Bologna, Italy Available at

http://www.cs.unibo.it/pub/TR/UBLCS/2003/2003-04.ps.gz.

Neeran M. K. and Anand R. T. 1998. Design issues in Mobile Agent Programming System.

IEEE Concurrency Journal, 6: 52-61. Retrieved on January 07, 2013 from

http://www.cs.umn.edu/Ajant.

http://www.ifla.org/udt/op/
http://www.ehow.com/list_7224727_hybrid-topology-advantages%20-disadvatages.htm
http://www.ehow.com/list_7224727_hybrid-topology-advantages%20-disadvatages.htm
http://www.fer.unizg.hr/_download/repository/KES2001lovsin.pdf
http://www.computer_network/topologies/maninda.ppt
http://www.searchdatacenter.techtarget.com/definition/IT
http://www.cs.unibo.it/pub/TR/UBLCS/2003/2003-04.ps.gz
http://www.cs.umn.edu/Ajant

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

184

Nguyen H. V. 2004. Mobile Agent Application in Computer network. Technical report

submitted to DSV Stockholm University.

Nikolaos V. K., Vassili L. and Alexander T . 2004. Mobile Agent Assisted Value-Adding

Communities for Mass Customisation. International Journal of simulation, 7

(7): 56-65. (ISSN 1473-804x online).

Nikos M., William J.B. and Kevia A. M. 2003. Mobile Agent for Routing, Topology

Discovery‟and Automatic Network Reconfiguration in Ad-Hoc Networks.

School of computing, Napier University, scotland U.K. Procedings of the 10th

IEEE International Conference and Workshop on Engineering of Computer-

Based Systems, April 2003, 200 – 206.

Nitin J., Kamlesh, and Neeraj S. 2011. Security issues in mobile agent paradigm.

International journal of computer science and management studies, 11(1): 43-

46.

Nwana H. S. 1996. Software Agents: An Overview. Knowledge Engineering Review, 11(3):

205-244. Cambridge University Press.

O‟Brien P.D. and Nicol R.C. 1998. FIPA- towards a standard for software agents. BT

Technology Journal, 16(3). 51-59. www.unalmed.edu.co/~dovalle/FIPA.pdf

Oak M. 2011. Types of Network Topologies. Retrieved on 06 February, 2013 from

www.buzzle.com/articles/types-of-network-topologies.html..

Olubusoye, O. E, Olaomi J.O. and Shittu O.I. 2001. Statistics for engineering, Physical and

Biological Sciences. A divine touch publication, Nigeria. ISBN: 978-35606-7-

0.

Outtagarts A. 2009. Mobile agent-based applications: A Survey. International Journal of

Computer Science and Network Security, 331-339.

Oyatokun B.O. 2004. Remote Method Invocation and Mobile Agent: A comparative

Analysis. Unpublished MSC thesis, Department of Computer Science,

University of Ibadan, Nigeria.

Pears S. 2005. Using mobility and exception handling to achieve mobile agents that survive

server crash failures. Unpublished PhD thesis submitted to the Department of

Computer Science, University of Durham.

Peters C. 2012. Networking 101: Concepts and definitions.

www.techsoup.org/support/articles-and-how-tos/networking-101-concepts-and-

definitions.

Picco G.P. 2005. Understanding code mobility. Technical report, Dipartimento di Elettronica

e Informazione, Politecnico di Milano, Italy. [date of last access: 18 June,

2013]

Picco, G. P., Roman, G. and McCann, P. J. 2001. Reasoning about code mobility with mobile

unity. ACM Transaction on Software Engineering and Methodology (TOSEM),

http://www.unalmed.edu.co/~dovalle/FIPA.pdf
http://www.buzzle.com/articles/types-of-network-topologies.html
http://www.techsoup.org/support/articles-and-how-tos/networking-101-concepts-and-definitions
http://www.techsoup.org/support/articles-and-how-tos/networking-101-concepts-and-definitions

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

185

10(3), 338 – 395, 2001. www.disi.unitn.it/~picco/papers/tosem97.pdf [date of

last access: 15 January, 2014]

Pinsdorf U. and Roth V. 2002. Mobile Agent Interoperability Patterns and Practice.

Retrieved on April 9, 2012from http://jade.tilab.com/papers/EXP/pinsdorf.pdf.

Pleisch S. 1999. State of the art of mobile agent computing- security, fault tolerance and

transaction support. Technical report, IBM Research, Zurich Research

Laboratory, Switzerland.

Priya, B.G; Suba, S.; Bensal, T.; and Boominathan, P. 2009. Enhanced Communication

Scheme for Mobile Agent. Proceedings of the Intelligent Agent and Multi-agent

systems, 2009, (IAMA 2009) International Conference.

Proctor, K. S. 2011. Optimizing and assessing information technology improving business

project Execution, John Wiley and sons. ISBN 978-118-10263-3. Retrieved on

10 October, 2012 from en.wikipedia.org/wiki/information_technology.

Rahul J. and Scrdhar I. 2001. Performance Evaluation of mobile Agent for E-Commerce

Applications. Kanwal School of Information technology, Indian Institute of

Technology, Bombay, Powai, Mumbai.

Rampur S. 2011. Computer networking basics. Retrieved on 13th March, 2013 from

www.buzzle.com/articles/computer-networking-basiscs.html.

Roberto S. S. F. 2001. The Mobile Agents Paradigm. A research paper in the department of

Information and Computer Science, University of Califonia, Irvine.

Rouse M. 2010. Network topology. Networking and communication glossary. Retrieved on

13 March, 2013, from http://www.whatis.techtarget.com/definition/network-

topology

Salton G. and McGill, M.J. 1983. Introduction to Modern Information Retrieval. McGraw-

Hill

Seng W. L. 1999. Mobile Agent Technology for Enterprise Distributed Applications: An

overview and an Architectural Perspective. CRC for Distributed System

Technology, Monash University, Cualfield Campus, Caulfield East, Victoria

3145, Australia.

Shinder D. L 2001. Computer Networking Essentials for Educational Institutions (Cisco

System). cisco press, Indianapolis, USA.

Shoham and Layton-Brown. 2009. Multiagent system: Algorithmic, game theoretic and

logical foundation. Cambridge University Press, 2009.

Shoham, Y. 1993. Agent oriented Programming, Artificial Intelligence, 60(1): 51-92, in

Pears S. 2005. Using mobility and exception handling to achieve mobile agents

that survive server crash failures. Unpublished PhD thesis submitted to the

Department of Computer Science, University of Durham.

http://www.disi.unitn.it/~picco/papers/tosem97.pdf
http://www.buzzle.com/articles/computer-networking-basiscs.html

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

186

Silberschartz A., Galvin P. and Gagne G. 2009. Operating System Concepts. 8
th

 edition, John

Wiley & sons, Inc

Silberschartz A., Korth, H. F. and Sudarhan S. 1997. Database System. Concepts. Third

edition. McGraw – Hill (Series in Computer Science)Companies, inc.

Silva A. and Delgado J. 1998. The agent pattern for mobile agent system. Proceedings of the

3
rd

 European Conference on pattern language of programming and computing,

EuroPLPO’98.

Singh Y., Gulati K. and Niranjan S. 2012. Dimensions and Issues of Mobile Agent

Technology. International Journal of Artificial Intelligence and Applications

(IJAIA), 3(5), 51-61.

Spicer K. L. 2000. A successful example of a layered-architecture based embedded

development with Ada 83 for Standard-Missile Control. Retrieved February 11,

2014 from www.sigada.org/ada_letters/dec2000/spicer-paper.pdf

Spiegel M. R and Stephens L. J. 1999. Theory and problems of Statistics. Third edition,

Schaum‟s Outline Series, McGRAW-HILL, New York .

Sridhar I. and Vikram J. 2001. Designing Distributed Applications using Mobile Agent.

Procedings of International Conference on High Performance Computing,

2001. Hyderabad, India

Stoian G and Popirlan C.I. 2010. A proposal for an enhanced mobile agent architecture.

Annals of the University of Craiova, Mathematics and Computer Science

Series, 71-79.

Stuck, B.W and Arthurs, E. 1985. A Computer and Communication Network Performance

Analysis Primer. Prentice-Hall, Inc.

Sullins J. 2012. Information technology and moral values. The Stanford Encyclopaedia of

philosophy (fall 2012 edition), Edward N. Zalta (ed). Retrieved on 13

September, 2012 from http://plato.stanford.edu/achives/fall2012/entries/it-

moral-values/

Sycara K. P. 1998. Multiagent Systems. A publication of the American Association for

Artificial Intelligence, 445 Burgess Drive, Menlo Park, California. 78-92.

Syed A., John D. and Pavana, Y. 2000. A survey of Mobile Agent Systems. Student Report,

Department of Computer Science and Engineering, University of California San

Diego. (Date of last access: 03 July, 2013 from

cseweb.ucsd.edu/classes/sp00/cse221/reports/dat-yal-and.pdf).

Tanenbaum , A. S. and Steen M. V. 2007. Distributed systems: Principles and Paradigms.

Second edition, Pearson Educational, Inc. Pearson Prentice Hall.

Tanenbaum, A. S. 2003. Computer Networks. Fourth edition, Peason Education, Inc. Pearson

Prentice Hall.

http://www.sigada.org/ada_letters/dec2000/spicer-paper.pdf
http://plato.stanford.edu/achives/fall2012/entries/it-moral-values/
http://plato.stanford.edu/achives/fall2012/entries/it-moral-values/

UNIV
ERSITY

 O
F I

BADAN LI
BRARY

187

Tudor M., Bogdan D., Mihaela D. and Ioan S. 2004. A Framework of Reusable Structures

for Mobile agent Development. Proceedings of the 8th IEEE international

Conference on Intelligent Engineering Systems (INES ‘04), Cluj-Napoca, 2004.

van Rijsbergen C. J. 1979. Information retrieval. Department of Computing Science,

University of Glasgow, second edition.

Venners B. 1997. Under the hood: The architecture of aglets. Java-World, January

1997. http://java-world/aglets.source/ge.net

Vitek J. 1997. New Paradigms for Distributed Programming. Proceedings of the European

Research Seminar in Advanced Distributed Systems, (ERSADS’97), Zinal (Valais,

Switzerland) March 17-21, 1997.

Wallin A. 2004. Secure auction for mobile agents. Technical report of VTT Technical

Research Centre of Finland.

Wayne A. J. 2000. Countermeasures for mobile agent security. Journal of computer

communications, Elsevier Science Publishers B.V. Amsterdam, 23 (17): 1667 –

1676.

Wenjuan W., Tong L., Weidong Z. and Weihui D. 2009. Mobile agent system for supply

chain management. Proceedings of the second symposium of International

Computer Science and Computational technology (ISCSCT’09), Huangshan,

P.R China, 525-528.

William E. W. 2007. Design and Evaluation of a Pipelined Distributed Information Retrieval

Architecture. A M.Eng thesis, department of Computer Science and Software

Engineering, university of Melbourne.

WIN133. 2009. The big picture….which makes more sense now. Retrieved on 20 September,

2012, from www.microsoft.com.windows/default.mspx .

Winkelman R. 1997. An Educator‟s Guide to School Networks. Florida Centre for

Instructional Technology, University of South Florida. Retrieved on 5
th

 April,

2013 from fcit.usf.edu/network/chap5/chap5.htm.

Wooldridge M and Jennings N.R. 1995. Intelligent agents: theory and practice. The

knowledge engineering review, 10(2): 115 -152.

 Yepes A. J. J. 2009. Ontology Refinement for Improved Information Retrieval in the

Biomedical Domain. Unpublished Ph D thesis, Dpto. De Lenguajes Y Sistemas

Informaticos, Universitat Jaume I.

Zeghache L. Badache N. and Elmaouhab A. 2002. An architectural model for mobile agent

system interoperability. H. Labiod and M Badra (eds). New Technologies,

Mobility and Security, 555-566, 2007 Springer.

http://java-world/aglets.source/ge.net
http://www.microsoft.com.windows/default.mspx

