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P R E F A C E

Probability theory has a very long history dating back to the seventeenth 
century. It is a well-established branch o f mathematics that has applications in 
every area o f  human discipline and daily experiences.

1 his is an introductory textbook dealing with probability and stochastic 
processes. It is designed for undergraduate and postgraduate students in 
Statistics. M athematics, the physical and social sciences, engineering and 
computer science. It presents a thorough treatment o f probability and stochastic 
ideas and methods necessary for a firm understanding o f the subject. The text 
can be usedin a variety o f  course lengths, levels, and areas o f emphasis.

Hie material is divided into three parts. The first part covers basic probability 
topics for undergraduate students. The second part covers advanced probability 
topics that are o f  interest to postgraduate students while the third part deals 
with topics in stochastic processes that are taught both at undergraduate and 
postgraduate levels.
Very little statistical background is assumed in order to obtain fiillbenefits from 
the use o f the text. Also, numerous examples and practice questions are 
included to aid understanding o f all the subject areas covered by the book.

The publication o f  this book is a demonstration o f  our commitment to the 
provision o f relevant and current materials for Statistics students in higher 
institutions o f  learning o f  the authors.

This text which cannot be said to be exhaustive was developed from the years 
o f learning and teaching o f probability and stochastic processes. While we 
claim responsibility for some errors that could have been made inadvertently in 
this first edition, we welcome comments and objective criticisms from the users 
o f  this hook.
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C H A PT E R  1

T H E  M A T H E M A T IC S OF C H O IC E

1.0 Introduction
Many real life situations requires enumerating the number of possible ways of taking 
a number of decisions out of many available ones, or the number of ways an event can 
occur, number o f possible outcomes of an experiment. All o f the above require the act 
of either counting, choosing, arranging or a combination of the above. Therefore, it is 
just apt to introduce the reader first, to some basic principles of counting.

1.1 Fundamental Principle of Counting
If one experiment can result in n possible outcomes an experiment can result in k 
possible outcomes, then nk is the total number of possible outcomes from the two 
experiments.
Consider a finite sequence of decisions. Suppose the number of choices for each 
individual decision is independent of decisions made previously in the sequence. 
Then, the number o f ways to make the whole sequence o f decisions is the product of 
these numbers o f choices i.e. n!

Example 1: The number of four-letter words that can formed by rearranging the 
letters in the word PLAN is 4! =24.
PLAN PLNA PALN PANL PNLA PNAL
LPAN LPNA LAPN LANP LNPA LNAP
APLN APNL ALPN ALNP AN PL ANLP
NPLA NPAL NLP A NLAP NAPL NALP

1.1.2 The Second Counting Principle (The Principle of Inclusion and Exclusion)
If a set is the disjoint union of two (or more) subsets, then the number o f elements in 
the set is the sum of the numbers of elements in the subsets, i.e. 
n(A U S) = n(/l) +  n (S ) implying that \A U B\ = \A\ 4- |S | if A and B arc disjoint. 
Theorem \:\A U B\ <  |/1| 4- \B\ if A and B are not disjoint.

2

This is because \A\ +  |S | counts every element o f A D B twice. Lei us illustrate this 
with the following example.

Example 2: If A =  (2.3, 4, 5, 6). |/1| = 5 and B = ( 3,4, 5 ,6 ,7). |/?| =  5 
then. |/1| + \B\ = 10 

A U B =  2 ,3 ,4 ,5 ,6 ,7  

\A U B \ - 6

Since A and B are not disjoint. \A U B\ < \A \ 4- \B\

Compensating for this double counting yields the formula
j/1 U B | = |/1| + \B\ — \A n  B | ................eqn.U)
1-rum our example, A fl B = 3, 4 ,5 ,6  
|i4 n  B\ = 4 

\A u B \  = 5 + 5 - 4  
=  6

Thus proving equation (1)

Theorem 1:\A U B U C\ =  \A\ + |S | + |C| - \ A n B \ -  |/1 n  C \ - \ B n C \  +
\A D B n  C\ for three sets A. B and C.
Proof:

We know from equation (1) above that \A U B\ = \A \ 4- \B\ — \A n  B\
Then, for 3 sets. \A U B U C\ = \A U [B U C]|

=  \A\ 4- \B UC| -  |/1 n  [B UC]|
Applying equation (1) to \B U C| gives

\A U S u  C| =  \A\ +  [\B\ + \C\ -  |S n C |] - \ A n  [B U C ]|........... eqn (2)

Because A n  [S U Cl =  {A D S ) U (/I n  C). we can apply equation(l) again to obtain
\A n  |S  u  CJ| = \A n  B\ + \A r\ C\ -  \A r\ B r\ C |........... eqn (3)
Finally, a combination o f equations (2) and (3) yields^

\A U S U C| =  [\A\ + \B\ +  |C|] -  [\A n  S | +  \A D C| 4- |S  n  C|] +  \A n  B n 
C |........... eqn (4)
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Thus proving theorem 2.
From this derivation, we notice that an element o f A n  B n  C is counted 7 times in 
equation(4). the First 3 times with a plus sign, then 3 times with a minus sign and then

once more with a plus sign.
Example 1.1: IF/l =  {1, 2 ,3 ,4}B =  {3, 4, 5, 6} C = {2,4, 6, 7} then

A U fiU C  =  {1,2,3,4,5,6, 7}

|/1 U B U C\ = 7 ...........................(a)

Ml = 4 
\B 1 = 4  

\C 1 = 4
MI +  M I+ IC I =  12

/ i n e  =  3 ,4 , / i n c  = 2 , 4 , e n c  = 4,6 

In this example. |/1 n  B\ = \A n  C\ = \B n C| =  2 so that 

|/1 n  /?| +  |/1 n  CI + \B r c I =  6 and
/ i n e n c  =  4 ,| 4 n sn c |  =  i 

Iherel'orc. |/1 U /? U C| =  |/1| +  |Z?| +  |C| — |/ ln /? | — |/ l n C | — \B n  C\ +

\A n  B n C \
= 1 2 - 6  + 1 =  7 ........................ (b)
Thus, (a) = (b) thus establishing theorem 2.
Generally, the Principle of Inclusion and Exclusion (PIE) states that:

If A - A ..... ,A„ are Finite sets, the cardinality of their union
IA  U A2 U ....U 4 n | =

n
Y M i l  -  y  \Ai n Aj\ +  V  |A n Aj n Ak\ -■ ■ ■  +  ( - i ) " +1 |n A I
4-J £—l \£i<j<n t—tl<i<j<k<n

Proof:
On the left is the number o f elements in the union o f n sets. On the right, we First 
count elements in each o f the sets separately and add them up. If the sets A  are not 
disjoint, the elements that belong to at least two of the sets A , or the intersections 
A  n A , are counted more than once. We wish to consider every such intersection, but 

each only once. Since A, n At = Aj n  A , vve should consider only pairs (A , A )  vv't*1 

i < / .

4

When we subtract the sum of the number o f elements in such pairwise intersections, 
some elements may have been subtracted more than once. Those are the elements that 
belong to at least three of the sets/1;. W!e add the sum of the elements of intersections 
of the sets taken three at a time. (Mote: the condition i < j  < k ensures that every 
intersection is counted only once)

The process continues with sums being alternately added or subtracted until we come 
to the last term which is the intersection o f all sets A, thus proving the theorem.

Let S = A  U A2 U ... .U A , and A f  = S\Ai lhen the PIE principle can also be 
expressed as

Mic n ..... n  A ,c| = +1l<k/<n |A  n  A l M i H A n / i J  +

-  ( - i ) " +1 In /ifl
Example 1.2: Let A be the subset ol the first 700 hundred numbers

S  — {1.2,..... ,700} that are divisible bv7. Find the number o f elements in 5 that are
not divisible by 7.
Solution:

A =  {7,14,21 ,28 ,35 ,42 ,49.......}

Ml =  ioo 
Mcl = \s\ -  Ml
=  7 0 0 -  ioo  

=  600
Example 1.3: Find the number o f integers from 1 to 1000 that are not divisible by 5, 
6 and 8

Solution: Let A - A . A  be the subset consisting of those integers that are divisible 
by 5. 6 and 8. Fhe number we are interested in is

|A\ n  A [ n  A J| = 1000 -  |/J,| -  | A | -  |A | + |A  n  A2\ + 14, n  A2\ + |A  n  A | -
| A n  A  n  A |

1 . 1 I 1000 1 ^  
M, = 1------=200 |.A| = 1000

= 166 \AX\ = 100
L ^ J L  b s ^

= 125
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Noli-. 1 lie results lor |,1,|. |.4,| and |# 3| were achieved by using the round down.

notation [_ J which involves the dropping of the fractional part.

To compute the number in a 2 and 3 -  set interaction, we use the least

common multiple (LCM) i.e.

K  °  A?\ = 

|.-1,0/1, | =

1000
30

= j  j

1000 = 25
40

1000 = 41
24

M =
1000

12

Thus. |.< n .4 j[  = 1000-200-166-125 + 33 + 25 + 41 -8  = 600

Important remarks:
Definition 1: The number of ordered selections o f r  elements chosen from an n-

element set is P(n, r).
P (n ,r ) = (?i -  l) (n  -  2 ).... (n -  [?~ -  1])

=  n(/i -  l)(?t -  2 ).... (?i — r  +  1) 
n!

=  r! C(n, r )
Example 1.4: Suppose 6 members of Adeola’s School Parent Teachers Association 
meet to select a 3-member delegation to represent the association at a statewide 
convention. If the laws stipulate that each delegation be comprised of a delegate, a 

first alternate and a second alternate. How many ways can the 6 members comply

from among themselves?
Solution: P (6,3) =  120 ways or 3! C(6 , 3) =  120 ways
Definition 2: The number of ways o f making a sequence of r decisions each of which 

has n choices is n r if  order matters and the selection is with replacement.

6

Definition 3: The number o f different ways to choose r  things from n things with 
replacement if  order does not matter is C(r -I- n -  1, /-)

Example 1.5: How many different three letter “words” can be produced using the 
“alphabet” ALEXY?

Solution: Since there are no restrictions on the number of times a letter can be used, 
53 =  125 such words can be formed.

Example 1.6: At a fundraising luncheon, each o f 50 patrons is given a numbered
ticket, while its duplicate is placed in a bowl from which prize-winning numbers will 
be drawn.

i) If' the prizes are #50, #100, and #150, how many outcomes are possible 
assuming that winning tickets are not returned to the bowl.

ii) If the prizes are the same, say, #70 each for the 3 prizes, how many outcomes 
are possible assuming that winning tickets are not returned to the bowl?

iii) If the winning tickets are returned to the bowl, how many outcomes are 
possible when the prizes are as in (i) and (ii) respectively?

Solution:

i) P (50 ,3) =  117600 different outcomes are possible

ii) Since the prizes are the same, then order is not important implying that there 
are C(50,3) =  19600 different possible outcomes.

iii) a) Different prizes, with replacement, order matters: 503 =  125000 
b) Same prizes, with replacement, order does not matter:
C(3 + 50 -  1,3) =  22100

Note: In choosing with replacement, elements may be chosen more than once. If order
does not matter, then we are only concerned with the multiplicity with which each 
element is chosen.

fable 1.1 summarizes the four scenarios that we have considered.

7
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Table 1.1
Order Matters O rder does not matter

Without replacement P (n ,r) C(n, r)

With replacement n r C (r +  n -  l , r )

1.3 Permutation: The ordered arrangement of n distinct items taking all or r of them 
at a time is called permutation. The items are usually assumed to be arranged on a line 
without replacement such that if two of the r objects are interchanged, it results into

different permutation (arrangement).
The number of permutation o f n items taking r at a time is denoted— n! 

n P r  (n -r)!
This is the same as the number of ways, in which r spaces can be fill taking n 

different items at a time.
The first place is filled in n way, the second (n  -  1) ways ... and r place if filled in 
(n +  r  + 1) ways. This r places is filled in (a -  l ) ( n  -  2) ... (?i — l r  +  1)! ways.

••• vtpr =  n (n  — l) (n  -  2) ... (n -  r — 1)

The number of permutations of n distinct items taking all at a time is 
n (n  -  l ) (n  -  2) ... 3.2.1. =  n! ways 

The symbol n! is called m factorial and we define 0! =  1.

Example 1.7: Evaluate SPs 

Solution:
r = _ i i _(5-3)1

Sx4x3\x2\
~  2 !

= 5 x 4 x 3  
=  60 ways

Example 1.4: If 12Pr =  17160, find/-.

Solution: 13Pr = 13(12)(11) ... (12 — r  +  1) = 13 (12)(11)(10)
=  13 - r  ••• r  =  3

8

Example 1.8: How many different words of three letters can be formed with letters A, 
B. C. D, E and F no letter is repeated?
Solution: The first letter can be arranged in 6 ways 
The second letter can be arranged in 5 ways 
The third letter can be arranged in 4 ways.
Total number o f arrangement is 6 x 5 x 4 x 3.
Alternatively

6p3 =  =  6 x 5 x 4  = 120 ways.

(A) Permutation of n things, not all of which are distinct.

fhc number o f permutations o f// things taking all at a time where p  of them 
are alike o f one kind, q are alike of another kind and r  alike of the third kind is

7l!

p'.q'.rl
Example 1.9: In how many ways can the letters o f the word STATISTICS be 
arranged.

Solution:
T occurs 3 times 
I occurs 2 times 
s occurs 3 times.

So the number o f possible arrangement is 

^ =  50400 ways.

(B) When certain things always o r never occur:

(i) s item will always occur: Given n items to arrange taking r at a lime out of 
which S of them will always occur, keep aside the S  items and arrange the 
remaining (n -  s) items taking (r — s) at a time.

The S items can be arranged taking S’ at a time in rPs ways.

The total number o f permutations is n -  SPr_^X rPs.

(ii) Never occur: Leave out the S  items and find the number of permutation of 
(n -  s) items taking r at a time. i.e.

9

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



Example 1.10: A committee of 7 representative of a class consists o f class captain 
and his deputy. On a visit to the Head-teacher there are four seats. How many ways

can the committee be seated it:
(i) there is no restriction
(ii) the class captain and his deputy must sit.
(iii) one o f the students committed a crime and can not sit down even if there are 

enough seats, and
(iv) determine the probability of the event in (ii) and (iii) above.

Solution:
(i) When there is no restriction

n  =  7, r  =  4

7P4 =  =  7 x 6 x 5 x 4  =  840 ways

(ii) keep aside the class captain and his deputy:
4p! ( n - 2 ) P r . 2 =  5/>2X4P2 =  ^ , ^

=  5 x  4 x  3 x 12 

=  12 x  60 
=  720 ways

(iii) Leave out the criminal then we have

= 6 x 5 x 4 x 3  
= 360 ways

(C) Perm utation when two things are not to occur together:

Procedure
(a) Find permutation without restriction
(b) Find permutation when two things occur together.
(c) The difference between (a) and (b) gives the number of arrangement when two 

things do not occur together.
Example 1.11: In how many ways can 10 different books be arranged on a shelf if 

two particular books are not to stand together?

10

Solution:

If the two books are to stand together, regard the two books as one. then the number 
of arrangement is 219Fg =  2 x 9 !  =  72560 ways. Number of arrangement without 
restriction is P10 = 10! =  3628800 ways so the permutation when the two books are 
not to stand together is

1 0 1 -2 x 9 !
=  3628800 -7 2 5 7 6 0  
=  2903040 ways

Example 1.12: Letters o f the word “ARRANGE' are to be arranged. Find the 
probability if:

(i) two r’s do not occur together

(ii) if the two R’s and two A’s do occur together

Solution:

(i) Without restriction, number of arrangement's ~  =  1260 ways. When two

R's occur together is ^  =  360 way when two R’s do not occur together is 

1 2 6 0 -3 6 0  =  900 ways.

P (two R 's not occur together) =  = 0.714
1260

(ii) If two R’s and two A’s do occur together we have (A, A) (R. R) N G. E i.e.,
P5 =  5! =  120 ways.

(D) When the number of items not occurring together is more than two

Some kind o f logic would have to be applied here. It is better illustrated with 
an example.

Example 1.13: In how many ways can 5 blue cars and 4 red cards be arranged in a 
straight car park two red cars are not to stand together.

Solution: First, the first 5 cards are positioned as indicated below 
X B X B X B X B X B X

The blue cars can be arranged in 5! ways. Now there are 6 vacant positions (marked 
X). The remaining 4 red cars can be arranged in P4 =  360 ways. The required 
number o f ways o f parking 5 blue cars and 4 red cars is 5! X P4

11

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



= 120 x  360 
=  43200 ways

(E) When Items are repeated:
The number o f permutation of n different items taking r at a time, when each 

item may occur an number of times is nr .

Example: 1.14: A die is rolled 4 times what is the sample space.

Solution:
A die has six faces, hence may occur in 6 ways.

The sample space is
64 =  1296

(F) Formation of numbers with digits:
The idea of permutation can be applied in the formation of numbers with digits. This 

is particularly useful in a raffle draw. Let us illustrate with a simple case.

Example 1.15: Suppose the five digits 1, 2. 3, 4. 5 are given. To find the total number 

of numbers which can be formed under different conditions.

(a) Without restriction =  P5 =  5! =  120 ways.
(b) Suppose 5 always occur in the tenth place. Now the tenth place is fixed, then 

the remaining four places can be fitted with four digits as l \  = 4! =  24 ways. i.e.

1 2 3 4 5 
1 2 4 5 3

2 1 3  5 4 
2 1 4  5 3

1 3 2 5 4  2 3 1 5 4  x 2 = 2 4  ways

1 3  4 5 2 2 3 4 5 1
1 4 3 5 2  2 4 1 5 3

1 4  2 5 3 2 4 3 5 1

(c) Suppose we have to form a number divisible by 2. Then the unit's place must 

be occupied by 2 or 4 which can be arranged in 2 ways.

12

( d )

(e)

(0

The remaining 4 digits can be fitted in

P4 = 4! =  6 ways
So, the total number o f numbers divisible by 2 =  24 x 2 =  48.

Suppose we have to form numbers which begin with 1 and end with 3. Here 
the first and the last places are fixed.
Then, the remaining 3 digits can be filled in.

1 2  4 5 3 
1 2  5 4 3
1 4  2 5 3

1 4 5 2 3 = 6 ways
1 5  2 4 3 
1 5  4 2 3

Suppose we have to form a number where 1 or 3 is in the beginning or the end. 
Then the two digits can be arranged among themselves in 2! ways. Hence total 
number o f arrangement will be P3X 2 =  12 ways.

Suppose we have to form numbers greater than 30,000. Here there should be 3 
or 4 or 5 in ten thousand’s place which can be filled in 3 ways.
The remaining 4 digits tilled in 4! ways.
Therefore, we have, i.e.

3 1 2  4 5 
3 2 1 4 5 etc

i.e.. total number o f numbers

3 X P4 

= 3 X 2 4  = 72

Example 1.16: How many numbers can be formed with digits 1.2. 4, 0, 5 when any 
is not repeated in any number?

Solution: There are 5 digits in all including zero. The number of single digit numbers 
is Px. The number of two digit number is P2. Out of this, some have zero in the tenth
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place and so reduces to one digit number. Hence the number of two digit numbers is 

P2 -  P\- Similarly, the nutrber of three digit number is P3 -  P2.

The total number o f numbers is
Px + (P2 ~ Pi) + t o  “  Pz) + t o  -  Ps) + t o  ~ PJ 

4 +  16 +  48 +  96 +  96

260 numbers.

Example 1.17:
(i) Find the sum of all the numbers that can be formed with digits 1, 3, 4, 7, 5, 9 

taking all at a time.
(ii) Find the probability o f having a number with 3 in the tenth place.

Solution:
(i) We need to consider when each digit occupy a particular place. The number of 

permutation when 1 is in the unit place is Ps = 5! =  120. The number of 
permutation when any o f the given numbers occupy the unit place is also 
5! =  120 ways. Hence we can sum all the numbers in the unit place a

120(29)* 1 =  3 480*  1
Similarly the sum of numbers in the 10th place is also

120(1 + 3 + 4 +  5 + 7 + 9) =  2480 * 10
=  34800

In the same manner, the sum of all the numbers is
3480 (100,000 + 10,000 +  1,000 +  100 +  10 + 1)

=  3430 (111111) =  386666280

(ii) The number o f numbers taking all at a time without restriction is

P6 = 6! = 720
The number o f numbers when 3 occupy the tenth place is P5 = 120 

Pr (a number 3 in the tenth place) =  —  =  0.1667^  720
(G) Formation o f words with letters:

This is similar to what we illustrated in Formation o f  numbers with digits.

14

Example 1.18: Suppose the letters of the word STAPLER is given to form 
words.

(a) If there is no restriction, the number of words is

P7 =  7! = 5040 words.

(b) Suppose all words to be formed begins with S. The remaining 6 places can be 
filled in 6! = 720.

(c) Suppose all words to be formed begins with S or ends with E. The two 

positions can be filled in P2 = 2 ways. The other 6 digits can be filled in 
P6 = 6! =  70 ways.

Hence total number of words is 2 x 120 = 240 words.

(d) If all words formed must begin with S  and end with E. The two places are now 
fixed. Then the remaining 5 places can be filled in 5! = 120 ways. Hence, 120 
words are formed.

(e) Suppose two vowels A and E are to stand together. Regard A and E as one
a, E, STPLR

STPLR can be arranged among themselves in 6! = 120 ways.
The two vowels can be arranged in 2 ways.

Hence the total number of words is 2 x 120 = 240 words.
(0 If three particular letter are to occupy the even places. The first letter can be 

filled in 3 ways, the second in 3 ways and the third in 1 way. a total of 6 ways.
Then, the remaining 4 letters can be filled in 4! = 24 ways. Hence, the total 
number of words is 6 x 24 = 144

(H) Ordered:

Arrangement of items round a circle:

Things can be arranged round a circle in (i) clockwise and (ii) anti- clockwise 
direction.

15
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Example 1.19: In how many ways can 7 people sit round a circular dinning tabic

=  “ (7 — 1)!

=  360 ways
(i) The number o f arrangements when the direction (clockwise or anticlockwise) 

is specified is (n — 1)!. This is because one of the items can be used as a 
starting point.

(ii) When the direction o f arrangement is not specified is ^ (n -  1)! ways.

Example 2.17: How many ways can 20 different beads be arranged to form a 
necklace?

=  2 (n  — 1)‘
=  ^ (19!) ways

Example 1.20: A round table conference is to be held by 10 persons such that 2 
particular person may wish to sit together.

Solution: Regard the 2 people as one. We now have 9 persons. The two persons can 
be arranged in 2! ways. The 9 persons can be arranged in (9 -  1)! ways. The total 
number of arrangement is

8! x 2! = 80640 ways

1.4 Combination
The number o f arrangement or ‘selection’ of n different items taking some or 

all of the number o f things at a time irrespective o f the order is referred to as 
combination.
The number o f combination n things taking rat a time is denoted by

(n-r)!r!

Most of the problems on selection without replacement can be solved using 
combination approach.

16

Example 1.21: !n how many ways can a committee o f 5 be selected from amongst 6
boys and 7 girls; if the committee must consist o f (i) 2 boys and 3 girls, (ii) at most 3 
boys?

Solution: There are a total o f 13 persons.

(i) The total number o f combination is 2 boys can be selected from 6 boys in (®) 
ways.

3 girls can be selected from 7 girls in Q  ways.

Total number o f combination is

( 2)  (3)  = 15x35 = 525 ways

(ii) There could be 0, 1 ,2  and maximum of 3 boys. Hence the total number of 
combination is

® © +® ® +© ® +© Q
=  21 +  210 +  525 +  420 
=  1176 ways

Example 1.22: A box contains 20 balls all o f which are o f the same size. 15 o f them
are Red and 5 Black balls. 4 balls are selected at random from the box, find the 
probability o f having:

(i) exactly 2 black balls.
(ii) at least 1 red ball

Solution:

(i) The first thing to do is to find the combination o f any 4 balls out o f 20 (i.e. 

sample space) ( ^ ) -

Number o f ways o f choosing 2 black from 5 is Q .

Number of ways o f choosing the remaining 2 from 15 red balls is ( ^ ) .

Number o f outcomes of favour of the event is © ( ? )

fSVlSX
P(2 black anti 2 red balls) =  - =  0.217

( 4 )
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(ii) The probability o f having at least 1 red ball is

( y x a + t v T / M y K M f l G )" t)_  75 +  1050 +  2 2 7 5 +  1365 4845
= 0.983

Combination when a particular thing must be included or not included
The number o f ways o f choosing r things out of n in which k particular thing

always occur is
The number of ways of choosing r  things out o f n which k particular thing

. f n  -  k \  
never occur is y r )

Example 1.23: 15 players were invited for a crucial football match. In how many

ways can 11 players be chosen if
(i) the skipper must be included
(ii) a particular player is injured and must not be included.
(iii) player A must be included and player B must not be included.

Solution:
(i) If the skipper is selected first, we have 14 players left to select the remaining 10

10 players.
/’14\

The required number is = 1001 ways.

( ii) Remove the injured player, now select 11 from the remaining 14 players.

/■14\The required number is = 364 ways.

(iii) If we remove B and select player A 

Then required number is { ^ )  =  286 ways.

(A)

(i)

(ii)

18

Example 1.24: A certain examination consists of 12 questions divided into two parts 
of 6 questions each. How many ways can a student choose any 8 questions if he must 
attempt exactly 5 questions from the first part?

Solution: From the first part, questions are selected in ^  =  6 ways.

In the second part, 3 questions are selected = 20 ways.

The required number is ^  ^  =  120 ways.

(B) When all items arc alike and each of them may be disposed off in 2 ways:
In this situation, the item may be included or rejected. The total number of ways of 
disposing all things is 2 x  2 x  ...x n times =  2n. This include a case where all the 
items are rejected.

I lencc. the total number of ways in which one or more things are included is 2” -  1. 

This is equivalent to Q )  +  ( n ^  j )  ------f  ( j )

Example 1.25: In how many ways can a student solve one or more questions out of 8 
in a paper?

Solution: The student may either solve a question or leave it (i.e. 2 ways). The total 
number o f ways of solving one or two or all the questions is

= 2 5 6 - 1  
= 255 ways

Note:
If it must include a case where none of the questions is solved, then the required 
number is

©+(?Mz)+-+®=28
= 256 ways

Example 1.26: How many different products can be formed with the letters a. b. c. d, 
e a n d /
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Solution: The number of ways in which one or more of the six letter 

=  26 =  1
Rut this includes a single letter which is not a product. Hence, the number of products

i.e. 26 -  6 -  1 =  57.

(C) When some items are alike and each of them can be disposed in a way:
Given n = [p + q + r  + s + — ] items out of which p. q, r, s of them are alike and 

p  can be chosen in (p +  1) ways
q can be chosen in (c/ + 1) ways 
/■ can be chosen in ( r  + 1) ways.
then the total number of combinations is (p + l)(q  +  l ) ( r  +  l ) ( s  + 1) — 1 ways.

Example 1.27: How many factors has 2160?
Solution: The factors of 2160 are i.e.

2160 =  1 6 x 2 7 x 5  

=  24x 33x 5 1 

But
24 can be formed in 5 ways.
33 can be formed in 4 ways.

51 can be formed in 2 ways.
Hence the total number o f factors are 5 x 4 x 2 = 4 0 .

(D) When Sharing (Dividing) n items into different groups:
A number o f items can shared among a group of people equally or in given 

proportion.
(i) If n  =  p +  q + r  and p = q = r.

. M*
Then the number of ways of sharing n things equally is

(ii) [ fn  = p + q + r  and p *  q =£ r, then the number of ways o f sharing n things 

proportionally is ^

Example 1.28:
(a) In how many ways can a deck of 52 cards be shared among 4 players equally?

20

(b)

Solution: =  5.36 x 1028

If the group of 13 cards are to be arranged, in how many ways can this be 
done?

Solution:-021(13!)4 =  1.28x 103°

Example 1.29: How many ways can 18 books be divided?
(i) equally or
(ii) in ratio 1:2:3

Solution:

(i) 18 books can be divided into 3 groups of 6 each. Then the required number is 
18!

=  17,153,138 ways

(ii) lo divide 18 books in ratio 1:2:3 each group would consist of 3. 6, 9 
respectively.

Hence the required number is =  4,084,080 ways.

(h) Permutation and Combination Occurring Simultaneously
Some problems require the application of the permutation and combination 
approaches simultaneously. We shall give a theory which may be proved.

I heorem: If there are in different things o f one kid, n different thins o f the 2nd kind 
and k  different things of the 3rd kind. The number of permutation which can he formed 
containing ro f  the first..? of the second and/ of the third is

(?) * O x (j) * (r *s + D |
Example 1.30: How many ways can 5 boys and 4 girls selected from among 12 boys 
and 9 girls be arranged on a bench?

Solution: 5 boys are selected from 12 in 

4 girls are selected from 9 in Q  ways.

ways.
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but the 9 people can be arranged among themselves in ap9 — 9! ways 

The required number isOs2)  ( 4)  91 = 3.62* 10'°
Example 1.31:
(a) How many words each containing 2 vowels and 3.consonants can be formed 

with 5 vowels and 8 consonants?
(b) How many words can be formed if

(i) ‘a' must be included
(ii) the words must contain at least two consonants?

Solution:

(a)

(b)

(ii)

2 vowels can be chosen from 5 in

3 consonants can be chosen from 8 in

the 5 letters can be arranged among themselves in 5! ways. 

The required number is

( 2) ( 3)  5! =  5 6 0 x  120
“a’ is a vowel = 67200 ways.
(i) if ‘a’ must be included, we need one more vowel. The required number is 

( ^ ( 3)  5! =  33600 ways

If the word must contain at least 2 consonant, then it could contain 2 or more

consonants.
The required number is

=  33600 + 67200
=  100800 ways

22

(F) Combination with repetition
Sometimes we are interested in the number of combinations of items when 
each o f the items may be repeated. Given n items, the number of combinations 
taking r at a lime then repetitions are allowed is denoted by nHr where

„Hr = ("  + ’- - 1') = -<n±q2L
V r  /  (n+ r-l)!r!_  ( n + r - l ) ( n + r - 2 ) . . .( n + r - r - l )  ( n - l) n  r!_  ( n + r - l) ( n + r - 2 ) .. .n  r!

Example 1.32: How many combinations of 4 digit numbers can be formed from the 
digits 2.4. 5. 7. 8. 9 if the digits may be repeated at least once?
Solution: There are 6 digits, to take any 4 at a time, the required number is 

6 Hr =  =  JL
r  \  4! J 4!5!

=  126
Example 1.33:In an experiment, 2 dice are rolled once. Find the total number of 
outcomes if
(i) they are distinct
(ii) they are of distinguishable

Solution
On a single die there are 1,2, 3. 4, 5, 6 (6 numbers)

(i) If they are distinct, the total number of outcomes is 62 = 36
(ii) If they are not distinguishable, then any number on the die may be repeated. 
I Icnce the required total number o f outcomes is

=  21.
M ultinomialCoe If i c i cn ts
This is a generalized version o f basic counting principle.
Consider a set of n-distinct items to be divided into r distinct groups o f sizes 
nXl n2, n3, ..., n r where £ - =1 n i = n.
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The number o f possible choices for the first group is ( " ) . second groiip is ( "

third group is
/Tl — Jlj — tl2 
v n3

The total possible division for n1 , n 2,n 3, ... ,n r is thereforen! ( n - t i j !  ( n - n x- n 2------ n r_])!
711(71-7!! )! ’ (7 1 -T il - 7 1 2) ! n 2 ! ..........  0l71r !

a n - n iN  / n - n j  —n2 -------- nr _a
n 2 n r * i.

nt ! n2! ?i3! ... nr \
Example: There are 12 Super Falcons to be divided into two teams o f 6 girls each.

How many different divisions is possible.
12»

Solution: There are —  = 33,264 divisions

Exercises:
1. A U.I. football team plays 8 games in succession, winning 3, losing 3 and

ending 2 in a tie. Show that the number of ways this can 

0!

happen is (®) (^ )  =

~)
31312!

Find n  and r such that the following equation is true

1.5 Stirling Numbers of the Second Kind
Definition 4: Let 5 be a set. A partition o f S is an ordered collection o f pairwise, 
disjoint, nonempty subsets o f 5 whose union is all of S. The subsets of a partition are 

called blocks.
For S = /lj U A2 U A3 U ... U Ak to be a partition of S:

i. Ai n  Aj = 0 whenever i ^  j

ii. A j * 0 . \ < j < k
Two partitions are equal if and only if they have the same blocks.
For instance. {1} U {2,3},{1} U {3,2}, {2,3} U {1} and {3,2} U {1} are 4 different 

looking ways of writing the same two-block partition of S = {1,2, 3}

24

The other partition of S =  {1, 2, 3} are
{1} U {2} U {3}-3 blocks
{1, 2} U {3}-2 blocks
{1, 3} U {2}- 2 blocks
{1,2,3}- 1 block

Thus, S has a total of 5 different partitions made up of:
One of {1} U {2,3}.{1} U {3,2}, {2,3} U {1} and {3,2} U {1} 
{1}U{2}U{3}
{1,2} U {3}
{1.3} U {2}
{1,2,3}

Definition 5: The number partitions of {1,2,3, ...m} into n blocks is denoted by 
S(m, n) and this is known as the Stirling number of the second kind.
Note: S(m, n) = 0 if n < 1 or n > m.

Also, SCm, 1) =  1 =  S(m, m). This is because there is just one way to partition 
{1,2,3, ...m} into a single block and

{lj U {2} U {3} U .....U {m} is the unique unordered way o f expressing {'1,2,3, ...m}
as the disjoint union o fm  nonempty subsets.

1.5.1 Stirling’s Identity: For any two positive integers m  and r.r
r! 5(m, r) = ^ ( - l ) r+cC(r, t)

c=i

Therefore 5 (m ,r) =  ^ £ t= i ( —1 )7 +£C(r, t) t ,n

Example 1.34: 5 (4 ,1 ) =  C( 1 ,1)14 =  1 

5(4 ,2) =  ^ l - C ( 2 , l ) l 4 + C (2 ,2 )24]= ^ [ -2  +  16] =  7
5(4 .3) =  i [ C ( 3 , l ) l 4 -  C(3, 2)24 + C(3,3)34] 

6

= 713 - 4 8  + 81] =  6 6
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5(4.4) =  - ^  [—C (4,1)14 + C(4,2)24 -  C (4.3)34 +  C(4 ,4)44]

=  ^ - [ - 4  +  96 -  324 +  256] = 1

1.5.2 Application of Stirling’s num ber o f the second kind to distribution of 

objects into urns
We are interested in the question "In how many different ways can m  balls be 

distributed among n  urns?” We are going to answer this question by considering 
whether the balls and urns are labelled or not and whether a particular urn can be left

empty?
We will consider 4 variations:
Variation 1: In how many ways can m labelled balls be distributed among n 

unlabelled urns if no urn is left empty? This is the same as “In how many ways can 

the set {1, 2, 3, ...m ] be partitioned into n blocks. This is 5(m, n).
Example 1.35: In how many ways can 4 labelled balls be distributed among 2

unlabelled urns if no urn is left empty?
Solution:5(4, 2) =  7 that is if the balls are labelled 1, 2 ,3 ,4  then the 7 possibilities 

are
{1}&{2,3,4}
{2}&{1,3.4}

{3}&{1,2,4}
{4}&{1,2,3}
{1,2}&{3,4}
{1,3}&{2,4}
{1,4}&{2,3}

Because the urns are unlabelled,
{2}&{1,3,4} =  {1,3,4}&{2) etc.
Variation 2: In how many ways can m labelled balls be distributed among n 

unlabelled urns?
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Solution: This is 5(m, 1) +  5(m, 2) +  ••• +  5(m ,n). This is the same as finding the 
number o f ways in which {1,2,.... m] can be partitioned into n  or fewer blocks since 
it is no longer a requirement that no urn be left empty.

Example 7: The number o f ways to distribute four labelled balls among two 
unlabelled urns is 5 (4 ,1 ) +  5(4 ,2) =  1 + 7 =  8 i. e.

5 (4 ,1) =  {1,2,3,4}&{ }
5(4 ,2 ) =  {1 }&{2,3,4},{2}&{1,3,4}.

{3)&{1.2,4},{4}&{1.2. 3}.{1,2}&{3,4}.{1,3}&{:i,4}, {1,4}&{2,3}

Variation 3: In how many ways can m labelled balls be distributed among n labelled 
urns? This is nm.

Example 1.36: Five labelled balls can be distributed among 3 labelled urns in 
3s = 243 ways.

Variation 4: In how many ways can m labelled balls be distributed among n labelled 
urns if no urn is left empty? This is ?t! 5(m, n).

There are 5 (m ,n ) ways to distribute m labelled balls among n  unlabelled urns using 
variation 1. After the distribution o f the balls, there are n! ways to label the urns. By 
the fundamental principle of counting, the answer is n\S(m , n).

Example 9: In how many ways can 5 labelled balls be distributed among 3 labelled 
urns if no urn is left empty?
Solution:3! 5(5 ,3)

Example: Suppose that a secretary prepares 5 letters and 5 envelopes to send to 5 
different people. If the letters were randomly stuffed into the envelopes, a match 
occurs if  a letter is inserted in the proper envelope.

(i) In how many ways can the letters be stuffed into the envelopes so that no letter 
falls into the proper envelope?

(ii) What is the probability that none of the letters is placed in the right envelope?
(iii) What is the probability that at least one of the letters is placed in the right 

envelope?

(iv) What is the probability that exactly 3 o f  the letters were placed in the right 
envelope?
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Solution:
The total number of derangements for the 5 letters is

i _ i  + 1 _ 1 + ! _ !
1! + 2! 3! + 4! 5! J

(i)

D5 = 5!

=  120 [1 -  1 +  0.5 +  0.1667 +  0.0417 + 0.00833]

= 120(0.71673)
=86.008 ways
(ii) Probability that none o f the letters is placed in the right envelope is given as

d l _ 1 _ }_ + _1_ __1_ + J_ _  J_
5! 1! + 2! 3! 4! 5!

=  0.716
(iii) The probability that at least one o f theletters is placed in the right envelope is 

1 Prob [None of the letters is placed in the right envelope]

=  1 - (0 .7 1 6 )

=  0.2833
(iv) The 
given by

probability that exactly 3 of the letters were placed in the right envelope is

( A ' /  2! 3! (A -A )!

% - 3 ) !

N\

l - l  + 91

5!

= 0.083

1.6 Allocation and M atching Problems 

Introduction
Matching and allocation are some of the classic problems in probability theory. I his 
problems dated back to the early 18th century has many variations. There are many 
ways to describe the problem. One such description is the example o f matching letters 
with envelops. Suppose there are '/letters with //matching envelops (assume that each
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letter has only one matching envelop). Then it is possible to determine the probability 
that the secretary sniffs the letters randomly into right envelops.

1.6.1 Derangements
Definition 1: A derangement o f (1. 2..... n) is a permutation //, /'?,..... , /„ of (1 .2 ...... n)
such that it* 1, iyt 2......./>t«.

Thus, a derangement of (1. 2,...,n) is a permutation /'/, i2....  z'„ of (1, 2,....n) in which

no integer is in its natural position: /'/^ 1, ij# 2, . ., i„*n.
Denote by D„ the number of derangement of (1, 2....... n)
Consider the following example for illustration:

Example 1: At a party, 10 gentlemen check their hats. In how many ways can their 
hats be returned so that no gentleman gets the hat with which he arrived?

This problem consists o f an n-element set X in which each element has a 
specified location. We are required/asked to find the number of permutations of the 
set X in which no element is in its specified location.

Here, the set X is the set of 10 hats and the specified location of a hat is (the 
head of) the gentlemen to which it belongs.

Let us take X to be the set {1,2........ ,10} in which the location of each of the
integers is that specified by its position in the sequence 1 ,2 ..........10.

Theorem: For n > I, Dn = n! , 1 1 11 ----- h — ----+
1! 2! 3! + ( - ! ) " -  nl

Proof: Let S be the set o f all n! permutations of (1. 2.........n). For j = 1, 2,..., n. let p,
be the property that in a permutation, j is in its natural position. Thus, the permutation
//, hi...... in of (1 ,2 ........ ,n) has property pj provided z} = j. A permutation of (1, 2,...n)
is a derangement if and only if it has none of the properties pi, pi.......pn-

Let Aj denote the set o f permutations of (1, 2..... n) with property pj. (j = 1,2,
n). The derangements of (1.2..... n) are those permutations in

A,1' n  A\ n ..... n  A*.

Thus, Dn = | A\ n  A, n ........n  A,1, |

The PIE is used to evaluate D„ as follows:
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The permutation in A| are of the form 1. A . . w h e r e  /„ is a permutation of 
(2..........n). Thus, |A11 = (n -  1)! And more generally for |A,| = (n -  1)! for j = 1, 2,

........ n.
The permutations in A |n  A2 are of the form 1, 2, 13. ...in where /j ....... i„ is a

permutation o f (3........... n). Thus. | A |n  A2| = (n -  2)!

Generally. |A jn A,| = (n -2 ) !  for any 2 combinations (i .j) of (1 .2 ...... n).
For any integer k, with 1 < k < n, the permutations in A in  A2n .....r v \k are of

the form 1.2 .......k, /'k 1 in- where /'*-/......./„ is a permutation of (k+1......... n). Thus,

|A in  A2n....r»Ak| = (n -  k)!.
Generally. |A i,n  Ai2 n . . . .n A ik| = (n -  k)! for any k-combination (/|. /2,..... /k) of (1.

2... n):

Since there are k -  combinations of (1. 2.......n), applying the inclusion-

exclusion principle, we obtain:

D„ = n\ - (« -!)! + 3 (" - 2 ,!- ( ; ) (" - 3>i+.....+HrC (« -« ) !

n\ n\
=  / ; ! ----------- - + ----- —  +

1! 2! 3!

. r. 1 1 1
[ 1! 2! 3!

1 bus. from example 1 above.

. n\
•+ (-D" -n\

•+ (-D ' n\

1 1 1 1 1 1 1 + 1 1
D,o = 10! 1

1! ' 2! 3! 4! 5! 6! 7! 8! 9!

You should be able to supply the final answer for Dm 

Note: (i) The series expansion for e '] = 1 -  ^  -t- -  7 j +
1

1! 2! 3! 4!

(iij—  is the ratio of the number of derangement of (1, 2.......n) to the total
n\

number of permutations o f (1 .2 ..... n).
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rhus, —j- is the probability that it is a derangement if we select a permutation o f (1, 

2..... n) at random.

1.6.2 The Matching Problem

Suppose that an absent minded secretary prepares n letters and envelopes to 
send to n different people. If the letters were randomly stuffed into the envelopes, a 
match occurs if a letter is inserted in the proper envelope.

Example 2: Suppose that each of jV men in a room throws his shirt into the centre of 

the room. The shirts are first mixed up and then each man randomly selects a shirt.
(1) What is the probability that none of the men selects his own shirt?
(2) What is the probability that at least one of the men selects his own shirt?
(3) What is the probability that exactly k of the men select their own shirt?

Solution:

1.

2.

From our discussion on derangement, the probability that none of 
the men selects his own shirt is

PN , _ 1  + I _ i  +
JV! 1! 2! 3! •+ (-D "  —

JV!
The probability that at least one of the men selects his own shirt is 
1 -  Prob [None selects his own shirt]

1 -1  + -  -  -  + 
2! 3!

, ( - 0 * 

JV!

H- I - -  + - ........... - 1- ^ .
2! 3! JV!

I  + 1  ( - 0 *
2! 3!.................... /V!

3. The probability that exactly k o f the men select their own shirt is as follows: 
First fix attention on a particular set o f k  men. The number o f ways in which this and 
only this k men can select their own shirt is equal to the number of ways in which the 
other N-k men can select among their shirts in such a way that none of them selects 
his own shirt.
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The probability that none o f the N-K men, (selecting among their shirts), selects his

own shirt is 1 -  1 + — -  — +

It follows that the number of ways in which the set o f men selecting their own shirts 

corresponds to the set of k men under consideration is

(N-K)!
(-I)"'*

2! 3! + ..........+ { N - K ) \

Also, as there are possible selections of a group of K men, it follows that there

are

/VN

K
( N - K ) \ 2! 3! ( N - K ) \

ways in which exactly K of the men select their own shirts. 
The probability required is thus

f N 
, K

( N - K ) \
. N-K, , i i ( - i r - *1 — 1 H---------------------------

2! 3! (N -K )\

2! 3!

N\

(N - K ) \
K\

e~
This result is approximately — , for large N. k = 0,1...............

K\

Example 3:
Suppose there are a group o f six men and six women. They are to be paired in groups 

of 2 for the purpose of determining roommates.
(i) What is the probability that both groups will have the same number of 

male and female.
(ii) What is the probability that there are no male and female as 

roommates?

32

Solution:

1. 6 men. 6 women divided into 2 groups
(i) two groups o f 6persons each

14.4375
924

(ii)
=  0.0156

6 !
X

6!

All males and all females 2S3!3! 233!3! 12 !

2 6 3! 3!

_ 6 ! _ y■ 233!3!/
12!266 !6 !

(2-5)2
14.4375

6.25
14.43 =  0.4329

Example 4:

(a) State the principle o f inclusion and exclusion.

(b) Suppose 15% of apple and 10 consignments were toxic. If the consignment 
consists o f 60% apple and 40% mango, what is the probability that a fruit 
selected at random is toxic?

Solutions:

(b) 15% of apple are toxic, 10% of mangoes are toxic
Consignment: 60% apple, 40% mango 
Let F represent fruit; A: apple, M: mango 
Let T represent toxic fruit
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(i) P(T) =  P(A\T)P(A) +  P(M\T)P(M)
= 0.15(0.6) + 0.10(0.4) 

= 0.09 +  0.04

(ii) PWT) = ^
0.09
013

=  0.0117

= 0.13

Example 5:
3.(a) Give the Stirling’s identity.
(b)(i) In how many ways can 10 labelled balls be distributed among 7 labelled urns 
(ii) What is the probability ii' the urns are unlabeled and non of them is lell empty.

Solution:
(a). Stirling Identity

r

s(m-r)=^ I (-1)r+,C)tM
f=l

wherem and r are positive integers 
b(i)7n =  10 labelled balls 

n =  7labelled balls
Number of ways is n m = 7 10 

=  282,475,249ways

(uses the principle o f inclusion and exclusion) 

b(ii) 5 (10 ,7 ) =

£  [ ( j )  110( - 1 )8 +  Q  210( - 1 )9 +  ( 3)  3‘°(-l)> ° + Q  4 10(—l )11 +

Q  510( -1 )12 +  Q  6‘°(—l ) 13 +  Q  710(—l) 14]

29635200 

“ 7!
= 5880ways

Therefore, P r[5 (10 ,7 )] =  S- ~ ^ -

34

5880
"  282475247 
=  7.369 x 10~14

Example 6:

Suppose that each of the 10 men in a room throws in their cap into the center of the 
room to be picked by 10 ladies in the annual marriage fixing ceremony. What is the 
probability that

(i) No lady picks the cap o f the man o f her •:hoice.
(ii) At least one lady picks the cap o f the man of her choice.

(iii) Exactly 7 ladies could not pick the cap of men of their choice.

Solution:

lOmen and 10 ladies

^= fl - 1  + - - -  + - - -  + —]n! I 1! 2! 3! 4! 10!J
(i) Pr (No lady  picked a cap) =  [1 -  1 +  0.5 -  0.1667 +  0.0417 -  0.0083 +
0.0014 -  0.0002 T 0.000 -  0.000 + 0.000]
=  0.3679

(ii) Pr (at least one lady picked a cap) =  1 -  Pr (No lady picked a cap)
= 1 -  0.3679
=  0.6321

(iii) n -  kwhere n = 10 , k = 7
1 0 - 7  =  3

P(k) “  (* )< "  "  V '  l 1 ~1! + 2! “  3! + * ( n -/0 l]
7! 7!

1 -  1 +  0 .5 -0 .1 6 6 7
7!

0.333
5040
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= 0.00006
= 6.61 x  10"5

Therefore Pr(exactly 7 ladies could not pick the cap o f men of their choice) is 1 — ^

i.el - 6 .6 6  x 10”s = 0.9993

Practice Questions

(1) Show that ( ” )  =  (n " r )

(2) If Cn_4 =  15; find n.
(3) An examination question is divided into three sections A, B. C with 3. 4 and 5 

question respectively. A student is required to answer t questions each from. 
Sections A and B and 3 from Section C. In how many ways can he write the 
examination?

(4) In how many ways can he solve one or more question in Section C.
(5) If the paper is one o f the professional examination papers where candidates are 

required to attempt as many questions as possible, find the total number of 
ways a candidate can write the examination if must attempt at least one 
question?

(6) In how many ways can a person purchase two or more items out o f 5?
(7) A nursery school pupil learning simple arithmetic is given 5 counters with 

digits 2. 1,3. 0, 4. 5 to form numbers. Find the probability that the pupil is 
about to form a

(a(i)) 3 digit number
(ii) a number greater than 400.000
(b) Using all the digits except 0. how many numbers can be formed and what is 

their sum?
(8) How many ways can the letters o f the sentence “Daddy did a deadly deed” be 

formed?
(9) A boy found a keylock for which the combination was unknown, but correct 

combination is a four digit number d l( cl2, d3l d4, where d,, t =  1,2, 3,4 is 
selected from 1, 2, 3, 4. 5, 6. 7, 8. How many different lock combinations arc 
possible results in such keylock?
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(10) fen children are to uc grouped into two clubs in such a way that five will
belong to each club. If in watch club a secretary and a president is to selected, 
in how many ways can this be done?

(11) A shelf contains Chemistry, Mathematics and Economic text books. In how 
many ways can S books be selected?

(12) Show that:

a. nP (n  -  l ,r )  =  P(n,r  + 1)
b. P{n  +  l ,r )  =  rP(n ,r  -  1) -F P(n,r)

13. In how many ways can lour elements be chosen from a ten-element set:
a. with replacement if order matters?
b. with replacement if order does not matter?
c. without replacement if order does not matter?
d. without replacement if order matters?

3. In how many ways can six balls be distributed among four urns i f :
a. the urns are labelled but the balls are not?
b. the balls are labelled but the urns are not?
c. both balls and urns are labelled?
d. neither balls nor urns are labelled?

14. Show that Ds =  44

15. Seven gentlemen check their hats at a party. How many different ways can 
their hats be returned so that:
a) no gentleman receives his own hat?
b) at least one gentleman receives his own hat?
c) at least two gentlemen receive their own hat?
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CHAPTER 2
E L E M E N T S  O F  P R O B A B IL IT Y

2.1 Introduction
The definition o f probability is as varied as the values of any random variable. Its 
definition depends on the extent to level one is knowledgeable o f the use and power

of probability concept.
Probability can be defined as a measure of uncertainty concerning a phenomenon. It 
can also be defined as a real value that measures the degree o f belief one has in the 
occurrence of a specified event. Probability is also described as the study of random 
phenomena. Most phenomena studies in the Physical Science. Biological Sciences. 
Engineering and even Social Sciences are looked at not only from deterministic but 
also from a random point of view. Therefore the theory o f probability has as its 
central feature, the concept of a repeatable random experiment, the outcome of which

is uncertain.
To the Statistician, probability remains the vehicle that enables him use information in 
the sample to make inferences or describe a population from which the sample was 
obtained. I'hus the study o f probability prepares a strong background for reliable 
statistical inference. No wonder Professor Sir John Kingman remarked in a review 
Lecture in 1984 on the 150th anniversary o f founding of the Royal Statistical Society 

that “the theory of Probability lies at the root o f all statistical theory”.

2.2 Definition of Terms and Concepts
Before we define probability as a concept, it is necessary to review the definition of 

some probability terms that shall be employed in our discussions.
(a) A Trial: Is any process or an act which generate a number o f outcome which 

can not be predicted a priori. A trial usually results into only one of the 
possible outcomes e.g., A toss of a coin once, will lead to either a Had (IT) or a 
tail (T) turning up. The selection o f a card from a deck o f well shuffled cards 

result in one of the cards being drawn.
(b) A Random Experiment: Is any operation which when repeated generates a 

number o f outcomes which cannot be predetermined, e.g. A toss of two coins
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at a time; draw of two cards from a deck one after the other; a random 
selection of a ball from a box and examine the colour.

(c) An outcome: This is a possible result o f a trial or an experiment. In a toss of 
two coins, an outcome could be any one of HH, HT, TH, TT. The possible 
outcomes in a throw of a die are, 1, 2, 3, 4, 5, 6.

(d) Sample Space: Is the totalily o f all possible outcomes o f an experiment. It is a 
set o f all finite or countably infinite number o f elementary outcomes 
ex,e 2, -  ,enIt is usually represented byS =  [e1 ,e2, ... ,e n}
The sample space in a toss o f a coin and a die is represented by 

H1H 2H 3H 4H 5H 6H 
T IT  2T 3T 4T 5T 6T 

1 2 3 4 5 6

i.e. S = [IH, 2H ,3H , 5//, 17\ 27, 3 7 ,4 7 ,57\ 67}
The sample space when a die is thrown twice is
S =  {11 ,1 ,2 ,1 ,3 ,1 ,4 , 1, 5,1, 6 ,1 ,2 ,2 2 ..... 66}

(c) An Event: Is a subset o f  a sample space.

It consists of one or more possible outcomes of an experiment. It is usually 
denoted by capital letters A, B, C, D, .... It should be noted that a subset in a
given set could consist o f all the possible outcomes or none o f the outcomes of 
the given set.

e.g. When a die is tossed once, we define. Set 
A = {s e t  o f  even number} = [2,4,6}
B ={s-et o f  prim e num ber} ={1,3,5}

C = {s e t  o f  num ber g rea te r  than 7} ={0}

(f) Mutually exclusive events: Two events A and B are said to be mutually 
exclusive, if the occurrence o f A prevents the occurrence of B. This implies 
that the two events can not occur together i.e. A n B= e.g. the occurrence o f H  
prevent the occurrence o f 7  in a toss o f a coin.

(g) Mutually Exhaustive Events: Events Av Az, A3, A4, ... ,A n are said to be 
mutually exhaustive if they constitute the sample space, i.e.
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2 > s .i= 1
However, some events could be both mutually exclusive and exhaustive. This implies 
that they are disjointed and yet their sum is equal to the sample space. This would be 
illustrated later in (1.8). It should be noted that the last two probability terms are 
associated with one experiment only.
(h) Independent Events: Two events A and B are said to be independent if the

occurrence of A does not affect B. This implies that the two events can occur
together, e.g. the event o f an event number and a Tail in a throw of a coin and 

a die at once.
(i) Sure/Certain Event: The sample space S  is the only sure event. The

probability of a certain event E is one (P{E) =  1)
(j) Impossible Event: This is the complement of the sure event. It is an empty 

set 0.

2.3 The Approaches to the definition of Probability
The three conceptual approaches to the definition of probability (1) the classical 
approach, (2) the relative frequency approach and (3) the axiomatic approach, (4) 
subjective approach. These three concepts are explained as follows:

(a) Classical or ‘a priori’ Approach
If there are nnumber of exhaustive, mutually exclusive and equally likely cases of an 
event and suppose that nA of them are favourable to the happenings of an event A 

under the given set of conditions, then (A) =  ^  . An example is the toss of a die 

once. The six possible outcomes are 1,2,3,4,5,6. The probability of occurrence of a 2

is -. The probability is ‘a priori’, that is it can be determined before carrying out the
6

experiment.
This method assumes that the elementary outcomes of an experiment are equally 
likely. It defines the probability of an elementary event e{ as 1 divided by the total
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number of outcomes for an experiment. There is no requirement that the experiment 
be performed before the probability is determined, i.e.p ,  . .  Number o f  outcom es in fa vo u r  o f  A _

} Total num ber o f  outcom es fo r  experim ent N
Where N is the total number o f possible outcomes

ThusProbability is a measure o f likelihood that a specific event will occur.

Example 2.3.1: Find the probability o f obtaining any number in a simple thrown of a 
die.

Solution: The experiment has six outcomes 1, 2, 3, 4, 5, 6.

P (a number) -------------- --------------- =  -
Total num ber o f  outcom es  6

Example 2.3.2: Find the probability o f obtaining an event number in one roll of a die. 
Solution: Let A be the event o f an even number,

4 =  {2, 4, 6}; n (A) =  3

5 = {1,2,3,4,5,6}; n (S) =  6
p r ^ \  Number o f  outcomes included in A _  3 _  ^  ^

Total num ber o f  outcom es 6

This approach to the definition o f probability only holds for finite sample space where
elementary events are equally likely. However this assumption is not always true in
the real life as all events are not equally likely. After all we are not equally endowed.
(b) Frequency or ‘aposteriori’ probabilityApproach: This method defines
probability as an idealization of the proportion o f times that a certain event will occur
in repeated trials o f an experiment under the same condition. Thus, in an experiment
is repeated /V times and n(A ), is the number o f times that A occur, then the relative 
frequency is

n(/l)
N

But relative frequencies are not probabilities but approximate probabilities. If the
experiment is repeated indefinitely, the relative frequency will approach the actual or 
theoretical probability.

P(A) = lim
n—ca

n(A)
N

41

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



However, there is a requirement that the experiment be performed before the 
probability is determined. Hence, the probability is determined aposteriori. It should 
he noted that some events in real life cannot be repeated before the probability is 
determined. Even if it can be determined the limit may not converge.

Example 2.3: Fifty o f the 800 cars that enters the University o f Ibadan on a 
graduation day are found to be Jeep. Assuming different cars comes into the campus 
randomly, what is the probability that the next car is a Jeep?
Solution: Let N  be the total number of cars and n be the total number o f Lexus. Then 

N=800, n=50
Using the relative frequency concept of probability, the probability that the next car 

being a Lexus is

P (Lexus) =  £  =  -51 =  0.0625

(c) Subjective Probability: is the probability assigned to an event based on 
subjective judgement, experience, information and believe. Such probabilities 
assigned arbitrarily are usually influenced by the biases and experience of the 
person assigning it.

For instance the probability of the following events are subjective:
1. The probability that Jude, who is taking statistics in the second 

semester will score seven points in the course.
2. The probability that a particular Football Club win the maiden match 

with another club.
3. The probability that Ade will win the case he has filed against his 

landlord.
Since subjective probabilities is based on the individual’s own judgement, it is rarely 
used in practice as it lacks the theoretical backing.
(d) Axiomatic or theoretical Approach: To circumvent the difficulties posed by 
the earlier approaches to the definition of probability and based on the study of 
random of random phenomena, researchers have developed a mathematical 
expression of certain aspects of the real world. The probability of a certain part of the
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real world occurring at random is then determined satisfying certain properties (called
axioms).

2.4 Probability of an event

If A is an event from an experiment E with sample space the real valued function 
P(A)\s called the probability of A which satisfy the following axioms:
(1) 0 <  P(A) <  1 for every event A
(2) PCS) =  1

(3) P(A, U A2 U ...) =  P (/la) +  P(A2)+...
CO 

1 =  1

for every finite or infinite sequence o f disjoint event Av  A2 ...
2.5 Consequences of Probability' Axioms 
Theorem I

(a) If .-I is a given event and Ac is the compliment o f A. then P (AC) = 1 -  P(A).
Proof: A U Ac =  S
P(A  + Ac) = P(S) =  1 by axiom (2)

.-. P(A)  + P(AC) = 1/1 and Ac are mutually exclusive
=  P(AC) = l - P ( A ) .

(b) Theorem II:

Given that cj) c  S, then P(A) = 0 
Proof:
S  U 0  = S.

P(S U 0 ) =  S = 1 by axiom (2) 

P(S) + P (0 ) =  1 since P(S) =  1 
1 + P(0) = 1
= P(0) =  0.
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2.6 Rules ol Probability
Theorem 1: Let 5 be a sample space and P (.) be a probability function on S : then the 
probability that the event A does not happen is 1 -  P(/l) i.e. P(A') =  1 -  P(A).

Proof:

From definition. /I n  /!' =  0  ; / l u  /l' =  5

P(/l U A') =  P(S)

P(/l U A') =  P(5) = 1 
P(/l U A') =  P(i4) +  P(A') = 1 

P (/l') =  1 -  P(/|)

Theorem 2: Let S be a sample space with probability function P ( . ); then 0 <  
P(/l) < 1 lor any event A in S.
Proof:

My property (1). P(/1) >  0
We need to show that P (/l) <  1 
I roni theorem ( I ». P (/l) -f P(/T) =  1 

Mut P(A')  > 0  
So. P(A) = 1 -  P(A') <  1

fheorem 3: Let S  be a sample space with a probability function P ( .). If 0  is the
impossible e\ent. then P (0 ) =  0.
Proof: Observe that 0 = S'

from property (3). we get P(5 U S') = P(S) + P(S')
P(S) + P(0)

Mut S  U S' = 6* and P(S) =  1 

Therefore P (0 ) =  0

Theorem 4: If >1l and /12 are subsets o f S such that Ax c  A2. thenP(/li) ^  P (/l2)-
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l licorem 5: Commutative laws:

/ l u f i  =  f lu / l  
/ l n B  = 8 n / i

Theorem 6: Associative laws:

A U (B U C) =  (A U B)  U C 
A n ( B  n C) =  (A n f l ) n c

Theorem 7: Distributive laws:

/i n (B u  c )  =  (/i n B)  u (a  u c )  
A u (B n c )  =  (a  u B) n (a  u c)

(A')'  =  A

A' = S \  A

Thus

A n S  = A 
A u S  = S 
A n 0 =  0  
/l U 0  =  /I

Also

i4 n /T  =  0 
/I u  A'  =  5  
A n /l  =  A 
A u A = A

Theorem 11: De Morgan's laws:

(A U B)'  = A ' r \B '
(A n B)'  = A ' V B '

Theorem 12:

A -  B = A n  B' = A \ B  

P(A \ B )  = P(/l n  B')  =  P(A) -  P(A n B)
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Theorem 13:
P(A U B) = P(A) + P(B) -  P{A n  B) 

if A and B are disjoint, that is P(A n B) = 0, 

then P{A U B) = P (/l) +  P (5 )

Theorem 14:

P(0) =  0

Theorem 15: Multiplicative law of Probability
If there are two events A and B, probabilities o f their happening being P (/l) and P (P ) 
respectively, then the probability P(AB) of the simultaneous occurrence o f the events 
A and B is equal to the probability o f A multiplied by the conditional probability of 
B(i. e. the probability o f B when A has occurred) or the probability of B multiplied by 

the conditional probability o f A i.e.P(AB) = P(/1)P(P /A )  = P(B)P(A/B

2.7 Venn Diagrams
A set is a collection of objects, which can be distinguished from each other. The 
objects comprising the set are called the elements o f the set and they may be finite or

infinite in number.
Venn diagrams are diagrammatical representation of sets. For instance, consider the 
set A =  {1,2, 3 ,4 ,5 ,6 ,7 ,8 ,9} , suppose that A has a subset B = { 2 ,3 ,4 ,5}. The 

diagrammatic representation of this is shown below.
A
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Solving Problems using Venn diagrams

Example 1: In a sample o f 1000 foodstuff stores taken at an Ibadan market, the 
following facts emerged:

200 of them slock rice, 240 stock beans, 250 slock gaari, 64 stock both beans and rice. 
97 stock both rice and gaari, while 60 stock beans and gaari. If 430 do not stock rice.
do not stock beans and do not stock gaari, how many of the stores stock rice, beans 
and gaari?
Solution:

Let: R represent rice stores 
B represents beans stores 
G represents Gaari stores

Let jc represents those that stock all the 3 food items

Those that stock gaari alone are 250 -  [(97 -  x )  + x  + (60 -  x)] = 93 +  x 

Those that stock beans alone are 240 -  [(60 -  x)  +  (x) 4- (64 — x)] =  116 4- x

Those that stock rice alone are 200 -  [(64 — x) + x  + (97 — x)] = 39 +  x 
430 did not stock any o f the food items

Therefore. 1000 = (39 + x)  4- (93 4- x)+(116 4- x )  +  x  +  ( 6 4 -  x)  4- (60 -  x )  +  
(97 - x )  + 430

And x = 1 0 0 0 -8 9 9  =  101

Therefore 101 stores stock rice, beans and gaari.
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2.8 The Principle of Inclusion and Exclusion
2.8.1 The Second Counting Principle
If a set is the disjoint union of two (or more) subsets, then the number of elements in

the set is the sum of the numbers o f elements in the subsets, i.e.
n(/l U B)  =  n(/l) +  n(B )  implying that \A U B\ = |/11 +  \B\ if A and B are disjoint.

Theorem I:|/l U B\ < \A\ + \B\ if A and B are not disjoint.
This is because Ml + \B\ counts every element of A n B twice. Let us illustrate this 

with the following example.

Example 2: If A =  (2 .3 .4 .5 .6 ), \A\ =  5 and B = ( 3 ,4 ,5 ,6 ,7 ), \B\ =  5 

then. Ml +  \B\ =  10 
A U B  =  2 ,3 ,4 ,5 ,6 ,7  

M u f l |  =  6
Since A and B are not disjoint, \A U B\ <  Ml + Ml 
Compensating for this double counting yields the formula

M u B\ =  Ml + Ml -  M n B I............... eqn.(l)
From our example. A n  B = 3 ,4 ,5 ,6  

\A r \B  | = 4  
M U S |  = 5  +  5 - 4  

= 6
thus proving equation (1)

Theorem 2:\A U B U C| =  Ml + Ml + |C| -  \A n  B\ -  \A D C| -  \B n C| +

M n  S n  C| for three sets A, B and C.

Proof:
We know from equation (1) above that | A U 8 | =  |/1| + Ml -  M n B\

Then, for 3 sets. \A U B U C\ = \A U [B U C]|
= MI +  M U C | -  \A n [ B  UC]|

Applying equation (1) to \B U C\ gives
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M u B U C| = Ml + [M l + |C| -  M n  C|] -  M n [B U C ]|............eqn (2)
Because A n  [B U C] = (A n  S) U (A n  C), we can apply equation( 1) again to obtain
|/1 n M u  C]\ = \A n B\ +  M n  C| - \A n B n  C |........... eqn (3)
Finally, a combination o f equations (2) and (3) yields

M U B u  C| =  [Ml +  Ml +  Ml] -  [M n  a |  +  M n  C| +  M n c | ]  +  M n  s  n
Cl.......... eqn (4)
Thus proving theorem 2.

From this derivation, we notice that an element of A n  B n  C is counted 7 times in 
equation(4), the first 3 times with a plus sign, then 3 times with a minus sign and then 
once more with a plus sign.

Example 3: If A =  {1,2 ,3 ,4}B =  {3,4,5,6}C = {2,4,6,7} then

A u f l u C  =  {1,2,3,4,5,6,7}
|/1 U £ U C | =  7 ...........................(a)
Ml = 4 
Ml = 4 

Ml = 4
Ml + Ml + Ml = 12

A n B = 3 ,4 ,/l n  C = 2,4, f? n  C = 4 ,6  
In this example, \A n  B\ = \A n  C| =  \B n  C| = 2 so that 
M n B\ + M n  C| +  M n  C| =  6 and

A n f i n c  =  4 ,M n f in C |  =  i

Therefore. \A U B U C| =  Ml +  Ml + Ml -  \A O B\ -  \A n  C| -  \B n C| +
M n s n c |

= 1 2 - 6  + 1 =  7 ......................... (b)

I bus. (a) = (b) thus establishing theorem 2.

Generally, the Principle of Inclusion and Exclusion (PIE) states that:
P. AltA2, are finite sets, the cardinality o f their union

Mi U/ l2 U ...,U An\ =
n

Y M , i - y  p ( n / i / | + Y  |4 ,n / l / n -••• +  ( - i ) n+1 | n >1, |-1 L—'1 < i< j< n  —1 l ’i i<  j<k<n
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Proof:
On the left is the number o f elements in the union of n sets. On the right, we first 
count elements in each o f the sets separately and add them up. If the sets At are not 
disjoint, the elements that belong to at least two o f the sets Ah or the intersections 
A, ft Aj. are counted more than once. We wish to consider every such intersection, but 

each only once. Since A{ n  Aj = Aj n  At, we should consider only pairs (Ai.Aj) with 

i < j .
When we subtract the sum of the number of elements in such pairwise intersections, 
some elements may have been subtracted more than once. Those are the elements that 
belong to at least three of the sets A{. We add the sum of the elements of intersections 
of the sets taken three at a time. (Note: the condition i < j  < k  ensures that every 
intersection is counted only once)
The process continues with sums being alternately added or subtracted until we come 
to the last term which is the intersection of all sets A{ thus proving the theorem.
Let S = Ax U A2 U ....U An and A *  = S\Ai then the PIE principle can also be
expressed as

MiC n .....D A nc | =
n

i s i - y w y  \a , n  Aj n  Ak \ + ■■■' I S  i< jsn  ^—l l< i< j< kin

-  ( - l ) ”+1 |n >l<|

Example 4: Let A be the subset of the First 700 hundred numbers 5 =  {1 ,2 ,.......700}
that are divisible by 7. Find the number o f elements in 5 that are not divisible by 7. 

Solution:
A = {7,14,21,28,35,42,49 .......}

\A\ = 100 

\A'\ = \ S \ - \ A \
= 7 0 0 -  100 

= 600
Example 5: Find the number of integers from 1 to 1000 that are not divisible by 5. 6 

and 8
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Solution: Let At . A2, A3 be the subset consisting of those integers that are divisible 
by 5. 6  and 8. The number we are interested in is

n A \ n A '}| = 1000 -  |j4,| -  |/i,| -  |/1,| + |A, n  A21 + \Al r*Ai\ + \A, n  A}\ -  
| A, n A 2n  A}\

1 ’— ' '100
= 125W = [!M J=200 W = [-^ J  = 166 1/1,1 =

Note: The results for |/ll|, |. 'l , | and |.4,| were achieved by using the round down, 

notation [  J which involves the dropping o f the fractional part.

To compute the number in a 2 and 3 -  set interaction, we use the least 
common multiple (LCM) i.e.

= 8

Thus. Î l,1 r \A \  n ^ j |

are any two events of 
rule

------  . . ]u» u n 2
an experiment with sample space S. then we have the addition

Proof:
u a 2)  =  P(At ) + P(A2) -  P(A] n  Az)

In a Venn diagram 
Fig. 1.1

P(At U A2) = P(A l) U P(A2) = 1 
P(A1 U A Z) =  P(A,) + P(A2 n A f )  

but P(A2 n A \ )  =  P{A2) -  P(A2 n  a 2)
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P(AX U A2) =  P (/li) +  P{A2)P{Ai n  A2)Addition rule

••• P(A1 U A2) =  P (/li)  + P (/l2)^ (^ i n A2)Addition rule 
However, if Ajand A2 have no point in common, that is when Atand A2 are mutually 

exclusive
P(Aj n A 2) =  0 since Aj n A2 =  0

We have I* =  (At U A2) =  P(At ) + P(A2)Special Addition rule P =  (Aj U A2) =

P(A,) + P(A2)Special Addition rule
Using the same procedure fort any three events A. B and C.
P(A U B U C) = P(A) + P(/i) + P(C) -  P{A n B) -  P(A n C) -  P(A n C)

-  P(A n B n C)

Example: A coin is rolled three times, what is the probability of getting (i) 1 head, (ii) 
2 heads, (iii) at least 2 heads.
Solution: Let H  and T  represent Head and Tail respectively.
Let the sample space be defined as

5 =  [HUH, HTH. HHT. THH, TTH. HTT. THT, TTT}

(i) P(1 head) =  {I ITT, TUT,TTH} =

(ii) P(2 head) =  {HHT.TH1I.HTH} =  *}

(iii) P(at least 2 head) =  P(2 heads) +  P(3 heads)

=  -  +  -  =  -  =  0.58 8 8
Note: The events o f 2 heads and 3 heads are mutually exclusive.

Examples: A bag contains 8 black balls; 3 red balls, 4 green balls and 5 yelkns ball: 
all of which arc of the same size. If a ball is drawn at random from the bag. what ii 
me probability that the ball is (i) black, (ii) either yellow or green (iii) not black, iv 
neither black nor green, (v) black and yellow?
Solution: Let B R. G and )' represent the event of black, red. green anc 'ciiow bal: 
respectively. Total number of balls = 20. 

n(B) 8
n )  KB) =  —- f  =  — =0 . 4  

n(S; 20

52

( ii)  P(YuG) =  P(Y) + P(G)5 4 9
(since only one ball is drawn P(Y  n  G) = 0)

(iii) P (P  )  = 1 — P(B)  =  1 — ^  =  0.6

(iv) P(B U G)c = l - P ( B U G )

= 1 -  IP(B)  +  P(B)]

a
20

= 0.4
Alternatively.

P(neither Black nor Green) =  P(Yellow or Red)

~P(Y) + P(B)

= ^ = 0-4(v) P(B D K)= 0 see note in (ii) above.

Example: A survey o f 500 students taking one or more courses in Algebra. Physics
and Statistics during one semester revealed the following numbers o f students in 
indicated subject:

Algebra 186 Algebra and Physics 83 
Physics 295 Physics and Statistics 217 
Statistics 329 Algebra and Statistics 63

A student is selected at random what is the probability that he takes
(i) all the three subjects
(ii) Statistics but not Physics

(iii) Statistics but not Physics and Algebra
(iv) Statistics. Algebra but not Physics
(v) Algebra or Physics
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Solution: Let A. P and S denotes the event o f a student taking Algebra. Physics and 

Statistics respectively.
Presenting the information in a Venn diagram we have

n(A n A n Bc) =  n(A n S) -  n(A n P n  S) = 10 

n(P n S n Bc) = n(P n S) -  n(A n P n S) = 164 

n(A n P n Sc) =  n(A n P) -  n(A n P n  S) = 30 
Using the addition rule, we can find the number of students that takes all the three

subjects.
n(/l U P U 5) =  n(/l) + n(P ) +  n(/l n P) -  n(A  n  5) + n(A n P n 5)
500 =  186 +  329 -  83 -  217 -  63 +  n(A fl P n S ) 

n(A n P n s )  = 53

••• P(All three subjects) = ^  = 0.106

(ii) P(Statistics but not Physics)

=  P(S  n Pc)
=  P(5) -  P(S n P)329 _  217 500 500
= —  = 0 .2 2 4500

(iii) P (Statistics but not Physics and Algebra)

=  P(S) -  P(A n P)
=  P(S) -  P(/l n P) -  P(S n P) +  P(A n P n 5)329 _  _83_ _  217 +  _53_500 500 500 ^  500

-  _£!.
~~ 500
= 0.164

(iv) P (Statistics. Algebra but not Physics)
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=  P (s ) -  P(5 n Pc) 
=  P(5) -  [P(S n  P) -  P(A n P n 5)]_3 2 9  217 | 53 500 500 500_  165 ~  500
=  0.33

(v) P (Algebra or Physics)

=  P(A  n P)
i.e. P(U P) =  P(A) +  P(P) -  P(A u P)_1 8 6  +  295 _  _83_500 500 500_  398 ~  500

=  0.796

2.9 Conditional Probability and Independence

If A and B are any two events, the conditional probability of A given B is the 
probability that even A will occur given that event B has already occurred.

This is equivalent to the probability of events A and B (occurring simultaneously) 
divided by probability of event B.

i.e. P{A/B)  = provided P(B) *  0

= P(/l n s )  = P(B)P (A /B)  = P{A)P{B).
In general

P(A, n A3 n ...An) =  P(Al )P(Al / A 2)P{A3/ A l n A2) ... P {A n )/ ( A , ... An)

Let Al ,A2, Az denote the 1st, 2nd and 3rd cards

P(A1 n  a 2 n a 3) =  P (/l1).P(i42/-41) .P ( /i3/A 1 n a 2)4 3 2= — x — x  —52 51 5024132600 
=  0.00018
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Example: A bag contains 10 while balls and 15 black balls. Two balls are drawn in 
succession (a) with replacement (b) without replacement. What is the probability that
(i) the first ball is black and the second white
(ii) both are black
(iii) both are of the same colour
(iv) both are of different colours
(v) the second is black given that the first is white.

Solution: Let B and W denote black and white balls respectively.
(a) with replacement

( i )  P ( B D W )  = P(B). P(W)15 10= —x — = 0.2425 25
(ii) n  S2) = P ( B ) x P ( B )

= ©  = 0 3 6

(iii) P (both black or both white) = P(B^ n B2) +  n  W2)

= 0.36 + 0.16 = 0.S2
(iv) P (both are of different colours) = P(B n W) + P(W  n B)[15 101 , [10 151

~  [25* 25J +  1.25* 25]= 2(0.24)= 0.40
V '  V '  J P(W) 0.4 =  0.6

From the last result, we could see that the two events are independent, hence, 

P ( B / W )  = P(W)  = 0.6. 
because the drawing is with replacement.
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(b) without replacement

(i ) P ( ,B C W )  = P (B ) .P (W /B )— 15 10 ~  2 5 * 2 5  =  0  2 5
(li) P(B1 n  B2) = P(Bl ). P(B2/ B l )_  15  14

~ i I * ^ = ° - 3 5

(iii) P (both black or both white) = P t f ^ P f a / B x )  + P(l4r1)P (l^2/lV 1)15 14 , 10 925 *  24 +  2 5 *  24
=  0.35 +  0.15 

=  0.50
(iv) P (both are of different colours) = P (B ) P (W /B )  +  P ( W )P (B /W )_  15 10 10 1525 *  25 +  2 4 * 2 4

=  0.25 +  0.25 

=  0.50

( v ) P ( B / l V ) = ^ p_ 1 5  10 .1 025 *  24 '  25
_  0̂ 25 0.4
=  0.625

2.10 Statistical Independence

Two events A and B are said to be independent if the probability that B occurs is not 
influenced by whether A has occurred or not. 
i.e. P(B) =  P{B/A)

Hence events A and B are independent if 

P ( A H B )  = P(A).P(B)
Three events are said to be mutually independent if

(i) They are pairwise independent, i.e.

P(A r  B ) =  P(A). P{By, P (A r \C )  = P(A) cot P{C);
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P(B n c )  = P{A). P(B).P(C) and
(ii) P(A fl B n C) =  P(A). P(B). P(C)

It should be noted that mutually exclusive events are not independent as the 
occurrence of one rules out the possibility of the other, i.e.

P(A /B)  = P(B/A)  = 0.
Example: What is the chance of getting two sixes in two rollings of a single die?
Solution:

P (six in 1st die) = —
6

Since the two events are independent

P (six in 2nd die) = — 
6

P (six in 1st and 2nd die) = —
6 6 36

Example:/! and B plays 12 games of Ayo (Yoruba traditional game). A wins 6 and B 
wins 4 and two are drawn. They agree to play three games more. Find the probability 
that:
(i) A wins all the three games
(ii) Two games end in a tie
(iii) A and B wins alternately
(iv) B wins at least one game.
Solution: Let A and B represent the event of A and B winning the game and D 
winning the game and D denote the event of a tie.

( i)

(ii)

P(A wins all three) = \ x \ x \  = \
2 2  2 o

P (2 games and in ties) =  P(D. D. D)c + P(DC. D. D) +  P(D. Dc. D) 
/ I  1 5 \ /5 1 1\ f l  5 I n

“ k V ' e M e V f i M e V ' i J
5

72

(iii) If A and E -  B wins alternately in two mutually exclusive ways.

58

= P(ABA) + P(B.A.B')
x *) +

( iv )

_  _5_
_  36

P(B wins at least one game = 1- P(no game) 

=  1 -  P(B1 B2 B3)

19
27

Example: An unbiased die is rolled n times 

(i) Determine the probability that at least one six is observed in the ^trials.

Calculate the value o f n if the probability is to be approximately -•
2Solution:

P(a six in a throw) =  -
6

P(no six in a throw) =  -
6

(i) P(at least 1 six in n trials) =  1 -  P(no six in n trials)

(ii) If the probability is^ ; then

©  =  ? 

n l ° E ( i )  =  i ° g ( j )
n _  log(V2) 

log(5/6)

n  =  4

Example: Determine the probability for each of the following events.

(a) A king or an ace or jack o f clubs or queen of diamond appears in a single card 
from a well shuffled ordinary deck o f cards.

(b) The sum of 8 appears in a single toss of. a pair o f fair dice.
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(c) A 7 or 11 comes up in a single toss of a pair ol dice

Solution:

(a) P(King) = ^ ;  P(an ace) =  ^

P (Jack o f club) =  ^  ~

P (Queen o f diamond) =  —62
P (a kind, an ace, J. o f club or Q. o f diamond)' 4 5,52 +  52 +  S 2 Ĥ  52/ ~  26

(b)
Dice 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

P(sum =  8) = ^ ;

(O P ( 7 ) = £ ; P ( H )  =  £
2 

= 9
Example: A pair o f fair coins is tossed once. Let A be the event o f head on the first 
coin and B the event of head on the second coin first coin and B the event o f head on 
the second coin while C is the event of exactly o head is events A, B and C mutually

independent?

Solution:

P ( 7 ° r n )  =  ^  +  ^

5’ =  {HH.HT, TH, TT}
A =  {////, HT),B =  {////, TH) 

C  =  [HT,TH}
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A n B =  {HH),A n C  =  {HT},B nC  =  {TH),A n  B n c = 0 

P(A) = P(B) = P(C) =  - = 0 . 54
P (A  n B )  =  P ( A ) .  P ( B )  =  i ;  P ( B  D C )  =  P ( B ) .  P ( C )  =  l-  
P (A  f lC ) =  P ( A ) .  P { C )  =  P {A  n B  n C) *  PQ4). P ( B ) .  P ( C )

Hence events A, B and C are not mutually exclusive.
Example: An urn contains P ' white and 'q‘ black balls and the second contains ' C  
white and d'  black balls. A ball is drawn at random from the first and put into the 
second. Then a ball is drawn from the second urn. Find the probability that the ball is 
white.

Solution: This is a conditional probability.
Total number o f ball in the 1st Um is (P +  q )
Total, number of ball in the 2nd Urn is (c +  d )

Total number o f ball in the 2nd after the first draw is c + d  -I- 1 
P (white ball in the 2nd um)
= P ( W ) P ( W /B  + P ( W ) P ) ( W / W )

=  — -— (— ) + — —  (— ) 
c + d + l V p + d /  c + d + 1 \p+qJ

_  c(p+q)
(c+d+\)(p+q)

c
~  c + d +1
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C H A P T E R  3

C O N D I T I O N A L  P R O B A B I L I T Y  A N D  B A Y E S ’ T H E O R E M

VI Conditional Probability
Supposed A and B are any two events such that A is the prior event and B is the 
posterior event. There is the possibility that there are points o f  intersection between 
the two events such that the occurrence of one is conditioned on the other. Thus we 

give the following definition.
Definition 1: Let A and B be two events in the sample space S with given probability 
space IS. A. B. P(.)) where P(.) is a real valued function, the conditional probability of 
event A given the event B has occurred denoted by P[A/B], is defined by

P(A/B) = ,P(B)>0  , this implies that
r ( n )

P( A r*B)= P(AI  B).P(B)

Also P(B/A) — *P(A)> 0 which also impliesP ( A n  B) -  P(B! A).P(A)
l (A)

Example I : Two students arc chosen at random from a class consisting of 18 boys 
and 12 girls. What is the probability that the two students selected are:
(a) both boys (b) both girls (c) of the same sex (d) a boy and a girl.

Solution: Let B| to be the event that the first student selected is a boy.
Let B> be the event that the second student selected is a boy.

Let B, o  B, denote the event that the two students selected are both boys.

(i) P( Bt n  B2) = />(/*, ) , P ( B J B l ) where

P ( B j B t) = ' / 9

3 17
Therefore, P(Bt n B 2) = -  x  —
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(ii)

(iii)

. _5J_
145

Let G, n  G': denote the event that the two students selected are both girls. 
PG. nC,  = P(GX) P(G2 /G,)

12 J2  
30 V 29 

132 22
870 ~ 145

/i, B2 vj G,G, is the event that both students selected are o f the same sex. 
P(BtB2v G lG 2) =  P{B,B2)  + P(G,G2)

Since Bt n B ,  and G,Gz are mutually exclusive

P(B,B2 u G,G2) = 51
145
73

145

2*?
145

(iv) B,G, u  G, B: is the event that the two students selected are a boy and a girl.
(B,G, u G,B2) = P(B,Gj) + P(G,B2)

-  P{B[ ) . P ( G 2 / B i )  + P(Gx) . P ( B 2I G x)
2 1  J1  12 2 1
30 A 29 30 V 29

= 1  r 12/  + 1  x  1 8 / = 7 2 /
5  / 2 9  5 r  729 7145

Example 2:A boy has 10 identical marbles in a container consisting o f 6 red and 4
blue marbles. He draws two marbles at random one after the other from the container 
without replacement. Find the probability that:

(a) the first draw is red while the second is blue 
lb) both draws are o f the same colour
(c) both draws are o f different colours.

Solution:

(a) Let R| be the event that the first draw is red

Let B: be the event that the second draw is blue.
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The event Rt n  B,  is the event that the first draw is red while the second draw is blue. 

P(Rt n B 2 ) = P(R{) . P { B J R x) where

PiR,)  = X o  

p ( b j r x) = y 9

P(R, o B ,)
6 4—  x — 
10 9
4^
15

(b) Let R| be the event that the first draw is red.
Let R-2 be the event that the second draw is red.
Let B| be the event that the first draw is blue 
Let B2 be the event that the second draw is blue.

Therefore
/>(/?,/?, u  /?,/?,) = P(RtR2) + P{BxB2) since /?,/?, and B{B2 are mutually

excusive.
Pi /?,/?,)=  P{RX) P(R2 I R x) 

10 '' 9

P(Bt/?,) = P(BX) x P ( B J B ,)

_ 4_ 3
10 '  9

12
15

, = 1 _
Therefore, n  B\B^  = » + » 15
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3.2 Independence

Recall that P [A/B]
^ n f l ]

/ W
/>(£)> 0

Definition 2: Two events /! and B are said to be stochastically or statistically 
independent if and only if any one o f the following conditions is satisfied:
(i) P(AnB) = P(A)P(B)
(ii) P(A/B)= P(A) if P(B) > 0
(iii) P(B/A) = P(B) if P(A) >0
It is easily shown that (i) implies (ii), (ii) implies (iii) and (iii) implies (i). See Post­
test (2 ).
Therefore. P(Ar\ B) = P(A/B)P(B)  = P(B/A)P(A)  if P(A) and P(B) are non-zero.

This implies that one o f the events is independent o f the other. In fact,

P\.UB\--P{AnB) ._p tBIA)pW = P^)P{A)
P(B) P(B) P(B) ’

So. if P(A). P(B) > 0 and one of the events is independent o f the other, then the 

second event is also independent o f the first. Thus, independence is a symmetric 
relation.

Remark: Two mutually exclusive events A and B are independent if and only if  P(A) 
P(B) 0 which is true if and only if either P(A) or P(B) = 0

Also, if P(A) *  0 and P(B) * 0, then A and B independent implies that they are not 
mutually exclusive.

Definition 2: Events A/, A: ..........4n from A in the probability space [.S'. A, P(.)] are
said to be completely independent if and only if 

(i) P (/f n  A,) = P(A,)P(A,)  fo rte /

(ii) P(At n  Ai n  Ak) -  P(A,)P(A,)P(Ak) for i * j , j  *k,  i * k

(iii) n  A.1̂ 1 = n /> ( 4 )#s|

Note: (i) These events are said to be pairwise independent if 

P(Ai n A l )= P(A ,)P(At ) for a l l / * /
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(ii) Pairwise independence does not imply independence
(iii) .1 and B mutually exclusive implies that they are not independent.

Example 3: Suppose two dice are tossed. Let A denote the event o f an odd total. B. 

the event o f an ace on the first die, and C the event o f a total of seven.

(i) Are A and B independent?
(ii) Are A and C independent?
(iii) Are B and C independent?

Solution:

P[A/B] -  4 ~ P(A)

P[A/C] l* P [ A ] -'/2  

P1C/B| i= P (C )  = '/6 

So, A and B are independent 
A is not independent o f C 
B and C are independent

Example 4: Let A| denote the event of an odd face on the-first die,

Let Ajdenote the event o f an odd face on the second die.
Let A3 denote the event of an odd total in the random experiment consisting o f two 

dice. Then.
P(A,)P(A2) = j x  j  = P ( A , n A 2)

P(A,)P(A,) = j x  j  = PfA2/A,]P(A,) = P ( A , n A ,)
P lA ,n A ,)  =  i = P ( A 2) P lA J  

1 herefore. A|. A 2 and A3 are pairwise independent.

But P( A, n / I ,  n  .4,) = 0 * j  = P(At)P(A ,)P(A ,)

So. A |. A: and A3 are not independent.

3.3 Haves Theorem

Given that P(A/B) =
P ( A n B )

P(B)

66

P( B/A) - P ( B n A )
P(A)

This implies that P (A n  B) = P (B n  A) -  P(B/A)P(A)

Therefore P(A/B) = ~̂ - - A)P('A)
P{B)

fhe above is known as Bayes theorem.

3.4 Total Probability Rule and Baye’s Theorem

If there are two or more events where one is the prior and the other in the 
posterior event, it is often desirable to determine the probability that a particular event 
has occurred given that the other event has previously occurred. Even though this kind 

o f problem can be solve by merely applying the addition and multiplication rule, 
much compact procedure has been developed called the Baye's theorem.

Baye’s Theorem

Let a sample space S  of an experiment be partitioned into n mutually exclusive 
and exhaustive events A X,A2. .... An. Let B be an arbitrary event that occurred after 
the experiment been performed. Such that P (/!,■) =£ 0, i = 1 ,2 ,..., n then.

/5(B) =  s r = i ^ f) W A )
and

P W B )  =

Proof: Let the events A,and B be depicted as in Fig. 1.3

By definition o f conditional probability, we have
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P(B/Ai)
p(Ai n B)

P M
P(Ai n B )  = P(Ai')P(B/Ai)

We know thal

P i A J B )

Such that P{Ai n  B) = P{ B)P {AJB)

P(Aj n B)
" T c/t T

But total probability is
P(B)  =  P(Ai n  B)  + p (A2 n B )  + P(A2 n  B)  +  -  +  P(/ln n s )

Using (1) in (3) we have
P(B) = P^JPCB/ZIO +  P(/I2)P(B//12) +  -  + P(An) ( B / A n)

11

= Y j P(.Ai)( .B/Ai)
i= 1

Using (3) in (2) we have the Bayes' formula defined as:

P(.Ai)P(B/Ai)
P(A‘/ B )  ~  £ "  1 P{A,)P (S//1,)

Example I: The contents o f 3 identical baskets B,(i = 1, 2. 3) are:

Bp 4 apples and 1 orange 
B2: 1 apple and 4 oranges 
Ru 2 apples and 3 oranges
A basket is selected at random and from it, a fruit is picked. The fruit picked turns out 
to be an apple on inspection. What is the probability that it come from the first basket
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Solution:
| et k be the event o f picking an apple. 
I sing the table below:

Slate of Nature P(B.) P(E/Bj) P(Bi)P(E/Bi) P(B,/E)
B, (4A. 10)

B:U aT 40)

X X X

X X Xs X

B3(2A.30) X X 715 X

Total 1 - x 5 1

The required probability 
P(B|/E) -  '/,

^ P I B ^ P I E /  B,)

4 1
5 3

VlS
= X

Example 2 :In a certain town, there are only two brands o f hamburgers available, 
Brand A and Brand B. It is known that people who eat Brand A hamburger have a 
30% probability o f suffering stomach pain and those who eat Brand B hamburger 
have a 25% probability o f suffering stomach pain. Twice as many people eat Brand B 
compared to Brand A hamburgers. However, no one eats both varieties. Supposing 
one day, you meet someone suffering from stomach pain who has just eaten a 
hamburger what is the probability that they have eaten Brand A and what is the 
probability that they have eaten. Brand B?
Solution: l.et S denote people who have just eaten a hamburger

Let A denote people who have eaten Brand A hamburger 
Lei B denote people who have eaten Brand B hamburger 
Let C denote people who are suffering stomach pains 

We are given that 

P(A )- X 

P(B) X
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P(C7A) = 0.3 
P(C/B) = 0.25 

S -  A <JB
As those who have stomach pain have either eaten Brand A or B. then A n B  = tf

P(C) = P (C n  S) = P (C n  A) + P (C n  B)
= P(C/A)P(A) + P(C/B)P(B)

0.3 x X  + 0.25 x K  

= %
P(C/A)P(A)

I hen P( A/C) ---------

0.3 X{&) _  „  
~ ---------  _  7%

%30

P(C /  B)P(B) _ 0.25 A- (% ) 
AndPtB/C) —  ^

= %
So. if someone has stomach pain, the probability that they have eaten Brand A 

hamburger is X  and lhe probability that they have eaten Brand B is X •

Example 4: Suppose 15% of apple and 10 consignments were toxic. If the 
consignment consists o f 60% apple and 40% mango, what is the probability that a

fruit selected at random is toxic?
Solution: Let B be the event of toxic fruit and. A 1 ,A1 be events of selected fruit being

an apply and a mango respectively.

=  ^  =  0 ^ 2) “ 0.4

W / A d - g - 0 . 1 S ;  P ( f i / / l2) =  ^  =  0.1

P{B)  = P{Al )P{B/A l)  +  P(A2) P ( B /A 2)
=  (0.6 x 0.15) +  (0.4 x 0.1) =  0.13

Example 5: Every Saturday a fisherman goes to the river, the sea and a lake to catch 

llshes with probabilities j ;  ^an d ^  and respectively. If he goes to the sea. there is an
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Si)"., chance o f catching fish, the corresponding figures for the river and the lake are
40% and 60% respectively.
(a) Find the probability that he catches fish on a given Saturday.
(b) What is the probability that he catches fish an at least three o f the fire 

consecutive Saturdays?
(c) If on a particular Saturday, he comes home without catching anything, where 

is it most likely he has been?
(d) His friend, who is also a fisherman, chooses among the three locations with 

equal probabilities. Find the probability that the two fishermen will meet at 
least once in the next three weekends? (Any assumptions made should be 
clearly stated).

Solution: Let S. R and L denote the event that he goes to the sea, the river and the 
lake respectively and F  denote the event that he catches fish.

P(S) = ' - ;P( .F/S)=±

P(R ) =  i ; P ( F / f i )  =  |

P (0  =  f P ( P / i ) = ;
(a) Using the idea of total probability,

P (F ) =  P (5 )P (F /5 )  +  P(R)P(F/R ) +  P{L)P(F/L)

(b) Let the number o f Saturdays on which he catches fish be a random variable X  with

P{X >  3) =  P(X = 3) +  P(X =  4) + P(X = 5)

=  ( 3) (0 .65)3 (6.35)2 +  (!j) (0.65)4 (0.35)1 + (j!) (0 .65)5 (0.35)°

=  0.3364 + 0.3124 + 0.116

=  0.765
I lere we need to calculate the probability that he goes to each o f the locations without 
catching fish.
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P ( S / F 1) =
n  _  p(sr\Fl)

P(Fl)

=  p(s)p(f V£) =  M  =  ^ p . 2 8 6
p(p- )  £  ^

Similarly,

P ( « / F 1)  =  M 2  =  ¥  =  ^ = o .
1 20

429

P ( i / P 1) = PWpZ \ ' R) =  =  7 =  0-286

So it is most likely that he has been to the river.
(d) Let S l lS2 denote the event that the first and second fisherman goes to the sea

respectively, and define R1, R2 ,Llt L2 similarly.
The probability that they meet on a given Saturday (assuming independence)

is
P(Sl n s2) +  P(R1 n r 2) +  P (LX n L2)

1 i , 1 1 , 1  i2 3 4 3 4 3
=  -  =  0.333

Probability that they fail to meet on a Saturday is

( i - i )  =  1  =  0.666

The probability that they fail to meet on three consecutive Saturdays is

b - ; )  = £ = 0296
The probability that they meet at least once in three weekends is

=  1 -  P( failed to meet)

=  1 -  0.296

= 0.703
Example 6: Suppose 15% o f apple and 10 consignments were toxic. If the 
consignment consists o f 60% apple and 40% mango, what is the probability that a

fruit selected at random is toxic?
Solution: Let B be the event o f toxic fruit and Av A2be events o f selectedfruit being 

an apply and a mango respectively.
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P(/l ) =  —  =  0.6; P (/l2) =  —  =  0.4 v 100 v 100

P ( P / / L )  =  —  = 0 . 1 5 ;  P{B/A2) =  — =  0.1

P (P ) =  P d A j P i B / A j  +  P{A2)P {B /A 2)
= (0.6 x 0.15) +  (0.4 x 0.1) =  0.13

Example 7: F.very Saturday a fisherman goes to the river, the sea and a lake to catch

fishes with probabilities and  ^ respectively. If he goes to the sea, there is an

80% chance of catching fish, the corresponding figures for the river and the lake are
40% and 60% respectively.

(a) Find the probability that he catches fish on a given Saturday.
(b) What is the probability that he catches fish an at least three o f the fire 

consecutive Saturdays?
(c) If on a particular Saturday, he comes home without catching anything, where 

is it most likely he has been?
(d) Flis friend, who is also a fisherman, chooses among the three locations with 

equal probabilities. Find the probability that the two fishermen will meet at 
least once in the next three weekends? (Any assumptions made should be 
clearly slated).

Solution: Let S, R and L denote the event that he goes to the sea, the river and the 
lake respectively and F denote the event that he catches fish.

P ( S ) = j ; P ( F / J ) = i

P{R) = \ - . P(F/R)  =  \

P { L ) = \ - P { F / L ) = \

(a) Using the idea of total probability

P(F) =  P (5 )P (P /5 ) +  P (P )P (F /P ) +  P(L)P(F /L )
1 4  1 2  1= - x - x - x - x -2 5 4 5 4

=  — = 0 .6 5  20
3
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(b) Let the number of Saturdays on which he catches fish be a random variable X 

with B ( s , ~ )

P(X >  3) =  PCX =  3) +  PCX =  4) +  PCX =  5) = ( ! )  (0.65)3(6.35)2 +

( ! )  (0.65)4(0 .35)1 +  ( ^  (0.65)s(0.35)°

=  0.3364 + 0.3124 +  0.116

=  0.765
Here we need to calculate the probability that he goes to each of the locations without

catching fish

Similarly.

P(F')

P i s W / s )  _ M - 1  =  n?R6
p(f') -  ^

P ( P / n  =  « ^  =  #  =  L  0.429

P(L /F ' )  = nL)Pl' ' /R) =  ?  =  L  0.286 
1 '  20

So it is mostly likely that he has been to the river.
(d) Let Si. Sj denote the event that the first and second fishermen goes to the sea

respectively, and define R/, R:. L /, ^similarly.
.the probability that they meet on a given Saturday (assuming independence) is

P(SX n S 2) +  P{RX n R2)  +  P{LX n  L2)
1 1 1 1 1 1  = - x - x - x - x - x -
2 3 4 3 4 - 3

= rs = 0.33

Probability that they fail to meet on a Saturday is

( i - j K = 0-666
1 he probability that they fail to meet on three consecutive Saturdays is

( 1 - j ) 3 = ^ = 0-296
l lie probability that they meet at least once in three weekends is
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=  1 — P (f a i le d  to meet)  
=  1 -  0.296 

=  0.703

Practice Questions
1. If/11,/12, and A3 be any three events, prove that

3

P M , + /l2 -M 3) =  £  p M i) -  Y , p  M l +  A2 + /13)
1=1 i=j

It is important to note that addition theorem can be validly applied only when 
the mutually exclusive events belong to the same set.

2. A newspaper vendor sells three papers: the Times, the Punch and the Commet.
70 customers bought the Times. 60 the Punch and 50 the Commet on a
particular day. 17 bought Times and the Punch and 15 the Punch and the
Commet and 16 the Commet and the Time while 3 customers bought all three 
papers. Every customer bought at least one type of paper. Using Venn diagram 
or otherwise; find;

(i) how many customers patronized the newsagent on that particular day?
(ii) how many customers bought a single paper?
(iii) how many customers bought Times but not Commet?
(iv) how many customers bought the Punch or Commet. but not the Times?
3. A random sample of 60 candidates who sat for Part I and II of an examination 

in 1984 is taken. The table below' shows the number of candidates who passed 
or failed each part of the examination.

Part I

Part 11 Pass Pass Fail Total

Fail 20 35

Total 24 60

i) copy and complete the table
ii) if a candidate is chosen at random from the sample, use the table to
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find ihc probability that the candidate:
a) passed part II
b) passed parts 1 and 11
c) passed part II but failed part I.
iii) if a candidate is chosen at random from the subgroup o f those who failed 

Part I, find the probability that the candidate passed Part II.
4. Given that:

(i) P(AnB) = P(A)P(B)
(ii) P(A/B) = P(A) if P(B) > 0
(iii) P(B/A) = P(B) if P(A) >0

Show that (i) implies (ii). (ii) implies (iii) and (iii) implies (i)
5. Consider the experiment of tossing 2coins. Let the sample space S = {(H,H), 

(H.T), (T.I-I). (TGI)! and assume that each point is equally likely. Find:
i ) the probability of two heads given a head on the first coin
ii) the probability of two heads given at least one head.
6. Given that two dice are tossed. What is the probability that their sum will be 6 

given that one face shows 2?
7. A certain brand of compact disc (CD) player has an unreliable integrated 

circuit [/C]. which fails to function on 1% of the models as soon as the player 

is connected. On 20% of these occasions, the light displays fail and the buttons 
fail to respond, so that it appears exactly the same as if the power connection 
is faulty. No other component failure causes that symptom. However, 2% of 
people who buy the CD player fail to fit the plug correctly, in such a way that 
they also experience a complete loss of power. A customer rings the supplier 
of the CD players saying that the light displays and buttons are not functioning 
on the CD. What is the probability that the fault is due to the IC failing as 
opposed to the poorly fitted plug?

8. An electronic has 3 components and the failure of any one of them may or 
may not cause the device to shut off automatically. Furthermore, these failures 
are the only possible causes for a shut-off and the probability that two of the 
components will fail simultaneously is negligible. At any time, component B| 
will fail with probability 0.1, component B? will fail with probability 0.3 and
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component B3 will fail with probability 0.6. Also, if component B| fails, the 
device will shut off with probability 0.2 ; if component EL fails, the device will 
shut off with probability 0.5. if component B3 fails, the device will shut off 
with probability 0.1. The device suddenly shuts off, what is the probability 
that the shut off was caused by the failure of component B|.

9. Stores X, Y. Z sell brands A. B and C of men’s shirts. A customer buys 50% 
of his shirts at X. 20% at Y and 30% at Z. Store X sells 25% brand A. 40% 
brand B and 25% brand C'. Store Y sells 40% brand A, and 20% brand B and 
30% brand C. Store Z sells 20%
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CHAPTER4

FUNDAMENTALS OF PROBABILITY FUNCTIONS

4.1 Introduction
A random variable X is a real valued function that assigns values to every elementary 
outcomes of an experiment. Let E be an experiment, with elementary outcomes

el , e2, e3, e4, .........in the sample space S, thenS =  (el l e2, e3l e4............. }.
A .random variable X can take values 1,2,3 ,4 ,........ for finite or countable infinite
elementary event.
An event may consist o f one or more elementary events, for example:

A = {ev e3, ek+1: e,eS}
B =  {</>} a null set 

C = {<?!} a singleton 
D = {ex, e 3} a doubleton

Independent events: Two events A and B are independent if the occurrence o f A has 
no influence on the occurrence o f B and vise versa,

i.e P(AHB)  =  P(A) .P(B)

Independent Random Variables
The random variable X and Y are said to be independent if for any two set of real 
numbers if for all A and B.

P{X < a ,y  < b} = P{X <  a,)P{Y  <  b)
P ( A r \ B  = P(A). P(B)

4.2 Probability Density Function (pdf)
Suppose X is a random variable and 3 a function / w  such that 

(•) /(*) ^  0
(ii) /  u ) has at most a finite number o f discontinuity in every finite interval on the

real line

(*»») C mf(x)d x = 1
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t i \ ) for every interval fa, b ]

P ( a < X < b }  = { * f (x) dx

Then X is said to be a continuous random variable with pdf
1 lowever. f (i) and (ii) above holds and

00

( iii)  ^ / ( x o  =  1' and
i =co

(iv) for all i, i =  1 , ci +  1 ,... ,b s . t .
b

P(a <  X  < b)  = 1=1
Then X is said to be discrete random variable with probability mass function 
(pm 0 f(Xi)

Note:

d rx rx
f a  J hx) dx ~ f{x)> !\x) -  J /(X) dx

Where /Jxj is the pdfof the random variable X and F{x) is the distribution function, 
then

F[t) = /(Oancl

- /= (« ) ]= /io

Consider a continuous random variable X defined on an interval (0. a]. Let x be a 
point on [0. a) i.e. a  value o f x.

P(>a) = Pr{x0 < X  < x 0 +  xa]
It follows that

p(2xa) =  Pr{xo <  x < x 0 +  2*a}

=  Pr{x0 < X < xQ +  x]  +  Pr[xQ + a: < X < x 0 T 2xa]
'-P {x ) + P (x)

=2 P iX)
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11 follows that

P( n x )  =  n P w

If (0 <  x  < a) and we consider/5̂ ) to be contiunuious at x  = 0, then it is

KmPw  =  Pm  =  0

It follows from the above that

Pr(x =  x0) =  0 f o r a n y x 0.
Thus for a continuous random variables we define a probability density function (pdf) 

f(x) such that

Pr{a < X < b] = t f f M dx 

For all real values a and b
Equation (3) can be rewritten as 
Pr{a < X < a + h} = h f a  + 0(h)

Or

Pr{a < X < x  +  dx} =  f o d x  

Front the above, we can deduce the following

(0  fix) ^  0

(ii)Pr{a < X < b) = f *  dw dx

(tit) J  _ f (X)dx  = 1  =  Pr {—oc <  A' <  -cc]

(iv) 0 <  f (x) <  1

In term of the joint distribution function, the distribution o f X and Y is

F(a.b) = Fx(a)Fy (b) V-a.b.

Example: Suppose that n + m independent trials have a common probability of 
success P If X is the number o f success in the first n trials and Y. the number of 
success in the final n trials. Show that X and Y are independent.

Solution

P(X — x, Y = y )  = Q p V ~ *  (y  ) Py  (1 -  P)m~y 0 < X < n

=  P(X -  x)  P(Y = y)  0 <  y  < m
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X and Y will be dependent if  Z is the number o f successes in the n +  m  trials i.e. 
Z =  X + Y

Example

If X and Y are independent binomial random variable with respective parameters
(n,p)  and (m,p).  Calculate the distribution of X + Y
Solution

Let
n

P(X + Y = K)  = ^  P(X  =  t, Y = K -  i)
i= 0 

n

= Y j P(X = i) P(Y = K -  0  
(=0

ii

=K
i= 0

i  =  1

p q m+n-k

where

c n - i o r a
i=o

and (y )  =  0 when j  > r
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4.3 Distribution Function
Distribution function forms the foundation o f the theory of probability and statistics. 
If the value of .Vobserved in n-experiment is less than or equal to a k-times, then

F ,(at) = /> (*< *) = -  
n

If A' is discrete and m is the number of times X  is observed in n trial, then 

n

f x(x) is the (cumulative) distribution function 

/,,, is the probability density function.

Let A' be a real random variable on the probability space(n, A J }). For x e  93, we 

define
(/) P ( X < x ) = F x(x)
(ii) Px(a.b) = P(a < x  < b)

=  f x ( b ) ~ f x ( a ) ( b > a )

Kxuinplc:

Let X  have the distribution function

F  (a ) =
0; 1/ 

1 -  p \  \t 
1

A <-1 
-1 <A<C

1- P + - P M  1- 1/ a > 2
0 < A < 2

Find

W p ( X  = -i)

(») p ( x  = 0)
(m) p ( X > )
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Solution

(/) p{X  =  -  l)=  1 -  p\  3 a jump discontinuity at x = 1

(ii) p ( X  = 0) = 0: F is contains at x = 0
(/,/) P( x >  i) v , o

= F(I) -  ^0 ,

= \ - p + ^ p - ( \ - p ) = ^ p

Theorem

The distribution function Fx(x) o f  a random variable is non-degreasing, continuous 

on the right with Fx(-oo) = 0 and Ft(-oo) = 1. Conversely every function F, with the 

above properties is the different from a random variable on some probability space.

Proof: For x < x '

[ X  <  x ' ] = [ x  <  x ] + [ x  <  X  <  x ' ]  
p \ x  < .y 1 ] = p \ X  <  a-] +  p\x <  X  < a 1 ]

Since p\x < X  < a 1 ] > 0 

Fx( x ' ) -F x(x)>0

I his implies that F  (a ) is monotone non-decreasing in a 

Consider {a ', j; a,1, a 

Since [a  < X  <> dlt] -> <j> as a,1, l  x 

) -  K(x) 0 asx), i  a

Since this is true for every sequence {a,1,} then Fx (a) is continuous from the right.

For a continuous random variable X. the c.d.f is defined as 

= P U X  < x )  =  £ . f (c)dt  
If X assumes a value between and b

Pr{a < X <} =  P(X < b) -  P{X < a)

= F(t» “  F(a)
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=  £ f t * ) dx

From (5) we obtain
_  dh\x)

I (*) clx

From (4) we can also define
Pr{X > x} = Pr[x < X < + c o }

=  Pr{ - o o  <  X  <  + 00} -  Pr{ - c o  <  X < * }

1 ~  P(.X)
This is often referred to as the survivor function 

=  1 “  F(x)

Hazard function is a related quantity defined by ~

For a discrete random variable X. the equivalence o f pdf is probability mass

(pmf) defined as
P(x) = P(X = x,)

t t
F(t,  =  £  P(X =  x t )  =  £  Pr(X =  xt )

t=l C=1

Example:
Let X be the number of success in single trial of an experiment with constant 

probability P. When the trial is repeated n times then
P{X = x)  =  Q )  pxqn~x where q =  1 — P

Recall

n t

1=1 1=1
=(P  +  <0 " = 1

£(X ) =  np, Var (X) = npq = a2
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F(0 =  £  'X *  =  *i)
i =0

Example:

Let the probability space by ('Jt./?.^)and Xb e  the identity mapping o f SJ?to R. wherep  

is the normal probability distribution. Then

It can be noted that Fy increases continuously. Since /*’(•) represented the cumulative 

probability at an event, its maximum value is unity and non-negative. 

i.e. F ( -  00) = 0  = tim F[y)

F(i * ) =  1 = fim F(y)

lim F[s) => lim/7 from the left 

Uni /•[,, => lim/7 from the left

4.3.1 Distribution Function for Discrete Random Variables
Let us define the distribution function for the discrete random variable as 

/•,' (.v)= /*(.\’ < .v). then.

P(.x < .V < .v1 )= 7>(.V < -v‘) -  P(X  < x)

which tends to zero as .v t  .v1 and F * is continuous from the left. 

f {x ' )h /*'i (.v + 0) is the limit from the right 

l'{x )-  F (v - 0) is the limit from the left

It is known that f\.{x) for discrete random variable increases by jumps, and is called

the step-function.
F ,(.q

-X| x, x.
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K .vain pic:
Consider a random variable ..V with distribution function given by

0: x  < 0

1
4 ’

0 < * < 1

1/ .
/ 4 ’ 1 < x  < 2

1/ -
/ y 2 < x  < 3

1: x > 3

( i) Sketch the distribution function and hence or otherwise 

(//) ( 'alculate Pr|,V = j/y |

(iii) Calculate Pr{.V -  lj
(iv) Calculate Pr{A' = 2}

(v) Calculate the conditional probability that X  is greater than 2. given that X  is

greater than

(vi) Pr[2< X  <3}; (vii) P r { \ < X < l }
(viii) l*rJO < X  < ij ( a )  Pr {X>2} ; 0  P r k > 3 }

Solution
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(«) 4 ' - = > < ) = 4 v  = X ) - 4 < >

(iii) Pr(.V ~-\)=Pr(x* -  l ) -  Pr(.V < 1) = 1 .1  = 0

M  Fr(.V = 2)= Pr(A" £ 2 )- /> (^ < 2 )  = ̂  + i j - ^ i + l j

= 1 - 1  =6 2 ~

(v) P(X > 2)J(X > l) = = = “
^ > 1 )  \-F(\) 3/ 9

(vi) F ( i ) - F ( 2) = \ ~ y ?i= y }

(«) f (2-) -F(v ) = / 4 - / 4  = 0

(vii) f ( i  ) - 4 o ' ) = % - o  = X

(iv) l - F ( r ) = l - %  = %

(x) I - f (3')=1-1=0.

4.4 Jointly Distributed random variables
If the occurrence of event X that affects event Y we require the concept of conditional 
probability.

The conditional probability distribution function of X given Y for discrete random 

variable is given by: P(X/Y) = P(y)>  0

P(Y/X) = P(X)
While for continuous random variable:

PW  > 0

f (x /Y )=
1 fylY)

r ( r / n - j & § g p
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Definition: Lei (£2,e, P ) be a probability spaceandlet B be an event with P(/l) > 
O.Then the conditional probability of B given A is defined by P(B/A) =

P{A)
P(A) > 0

But P{AB) = P(B/A) P(A) = P(A/B) P(S) 
Recall the Baye’s theorem

P(Bk/A)  =
ZHs l P(A/BiP(.Bi)

Two random variable. X and Y are jointly and continuously distributed if there exist a 
function /(^d e fin ed  for all real x and y and a two dimensional plane C such that:

P{{x,y)e C} = J  x ,y  J  e C f {x,y)dx dy

{P{X = x t, y  = y{] = pu > 0

ZXpij = 1
The function / (x y)is called the joint of X and Y. Satisfying the following conditions

(0 /o ,y) > =  1, V x . y e C

(u) ^  = 1, for  X, Y discrete
x y

f  x J y  f (x ,y) = 1, f o r  X, Y contiunes
For discrete random variable.
The joint distribution function of X and Y is given by:

P(X,Y) = j  J  f{x,Y)dx dy

x y x y

t= l)=0 1 j
and the marginal distribution d.f for X. is defined as

X, Y, continues

CO
/*(*) = j  f(x,y)dy

Px0 0  =  ^  P{X =  XJ = ^  pij X, Y discrete
j

the m.d.f. for random variable Y is

fy(y) = X, Y, continues

Py (y) = Y,jP{Y = y i )X,Y discrete

Example: The joint d.f. at X and Y is given by

Compute (i) P{x < l ,y  < l / 2}

(ii) P{x < y)
( i t t ) R ( X  <  a )

Example 2:

Given f {xy) = j 2(x + y  -  3xy2)
(0 elsewhere 0 < y  <  1 ' 0 <  x < 1

Find (0  Pr{0 < X < 3/ 4}(tv) P[X/Y < l / ^

GO Pi1/ io  < y < 3/ 4}(^) Pr[X < 3/ 4 / k < V 2)

(iii) P(*.y)

2 e~xe~2y
0 < x  <  CO

4.5.1 Conditional Distribution of Jointly Distributed Random Variables

=  P(y) > 0
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Exercise:
If X and Y are independent Poission random variable with respective parameters A, 
and A2. Compute the distribution of X + Y.
Solution

Let P(x +  y  = n) = Pr(X =  k, Y = n -  k)
for 0 < k < n 

and disjoint events
(X =  k,Y = n - k )

Exercise
Given the following probability distribution function

x/y 1 2 3 4
1 V24 Vl6 C

O

rH

1/q
2 V12 Vs V 24 lU
3 5/24 5/16 C

O-3-

LO

5/8
v 3 V2 v6 1

Find p(XY)

4.6 Independence of Functions of Random Variables
Two random variable’s X and Y are said to be stochastically independent iff: 

hx.y) = A 00/ 200; -co <  x < co 
—co < y < 00

where f (x.y) >s the joint density function of X and Y and / a(x) and / 2(y) are the 
marginal pdf of X and Y respectively.
Theorem: Two random variables are stochastically independent if and only if the 
joint p.d.f can be written as a product of a negative function of x alone and a with 
negative function of y alone.

Where / (.v) is the pdf and random variable ̂ Vand f(x)  is the distribution function.
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Proof:

Let F''[t)~ P{l) then

= / W

Two random variable’s .Vand Y are said to be stochastically independent different: 
/(■'■• )') = f  (x)fi (.')■ < x  < co

-co < y  < 00

Where /(.v,_y)is the joint density function of X  and Land f ( x )  and /,(y )  are the 
marginal p.d.f of X  and Y respectively.

Theorem: Two random variables are stochastically independent if and only if the
joint p.d.f can be written as product of a non-negative function ofx alone and a non- 
negative function ofy  alone.

Proof:

11 /[<., ) - gix ) h{)’) where g(x)aii(l li(y) are non-negative function of.r and;-alone 
respectively, then the marginal pdf at X  is given by

/ M = £ / t , . , i * -

= J  _ s(x)h(y) dy, where g(x)is a function of  x alone

• • AW  = ^(-v)J h ( y ) d y  

= c, g(.t)
Similarly, the marginal p.d.f of Y is given by

= J  s[x )h{y) dx, where h(y)is a function o f  y  alone

A W  = h ( y ) \ " g ( y ) d x  

-  c, h(v)
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But since f lt y) is the joint pdf of X  and

J  |  fix. v fo  dx ~ 1» by hypothesis

j” £  fu. x)(lx dy = [ 'S ,sM hb ) cLx dy
Applying Fubini’s theorem to the finite integer we have:

dy { \ j ' ^ dy)
Letting C, * C3 = 1

l l a ... , = r x ^ ^ K v ) = i

■'■fx.x)=ClSlX) C2h(y)
= J \ ( x ) f 2(y)

which implies that X and Y are stochastically independent.

Fubini’s Theorem: (1) A necessary and sufficient condition that a measurable subset 
A of Q, X Q, has measure zero is that almost every w, -  section (or almost even

iv, sec lion has //, -  measure (or //, -  measure ), zero.

I f  A = A, X A 2, A(a ) = j p f A w J d p ,  (vV|)

= jp,(Aw,)d/i2(w2)

= p (a , ) p (a 2)

Fubini’s theorem gives condition under which it is possible to compute double 
integral using iterated integrals. It allows the order of integration to be changed in

iterated integrals.

Theorem
Suppose A and B are complete measure spaces. Suppose f sy)‘s A X  B measurable if

I.YS

Then Jf (x ,y)d{x ,y )=\  J/(.t,y)</y dx = j [  \ f (x ,y )dx  \dy
A X B  A fl B \ A  J
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The last two integrals being iterated integrals w.r.t. two measures respectively and the 
first then integral w.r.t. product o f two measure.

OR I f  f [x,y)= g(x) h(y) for  some function gaud h

then J g[.x\h |  h(y)dy = J f ( x , y ) d  (.v,y)
1 B AXB

Where A is a unique-infinite measure A, X A2 

Fubini Theorem (2): If h is a non-negative function on X  Q, then 

^  ltd A = ̂  It dp, dp2

= \\h dp2 dp,

The above reduces to Theorem (2) above in the case of indicator function of 
rectangles.

Lemma

Let X  and Y be stochastically independent random variable the pdf of Z  = X  + Y is 

given by g(2-)= [  f(x)h(j>) = j ‘ f(x)h(Z -  x) dx 

Where /(.v) is the p.d.f of X and 

h(v) is the p.d.f of Y.

Proof:

Let X have the p.d.f f (x)  and y  has p.d.f h[y\

pdf of 2? .  p(\z  < z}) = P{X Y < Z) the joint pdf of X  and Y  is f ( x )  h(y) since ,Y 
and fare stochastically independent.

•.c(z)=££7MMv)<fcrf>-

=i»rn dx

Since < G(z)< I, by Fubini’s theorem
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(7(2) = \ j \ x ) H ( Z - x ) d x

(lit

- \ : m

JG(Z)
d i

■ H (2 - x ) \d x

By continuing of distribution function 

*.*(£) - J‘ f (x )h (Z -  x)dx 

Example 1:
L.ct .V and Y be stochastically independent random variables, each having the poission 

distribution with parameter A. Find the distribution of Z  = X  + Y1

Solution

/  (v )  = h(y)=
e'AA'

. ^ ) = Z / ( v) / 'W
l*Uy>

= Y j /  (v) -  x l  S'nce y  = z -  -x
> <ii

Applying Binominal expansion, we have

g( *  S -v!(?-.r)!

= — (A >Af  
2! V '

2!
(2A f  ~ P(2A)
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Exercise
Find g(&) if A' and Y are independent with parameters A, and A, respectively show

that the random variable)'
* ' + x ' ao d l' - ^ 7 Z

are stochastically independent

from an exponential distribution.
Solution: Since Agind A; are independent, the joint p.d.f of v, and v,.//(.vr  .v,) is 

given

tx  Y x {/(•'.)/('■-’) 0 < < 0
1 ’ |0 elsewhere

j 1 0 < A", < 00,0 < x2 < 00
[0 elsewhere

Nw r, =/./(.v, .Y,) = .r, + .v,

r 2=//(.vI.xJ) = - L
•v.+*2

which defines a mapping (l -  l) transfonnation from the space

A -  {(.v, t- x, ),0 < .v, < x , 0 < x, < =c}

unto the space
B = (O’i + J’; ),0 < r , < x ,  0 < >*, < l}.

I he inverse transformations are given by

•v, = .»i v.; x i = y t >2 = .»',(> - ) :i)
dx

d\\
d>\

i _= v,;
dx
dy2

5v,
dy.

i _= V.

= - y ,
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1 he Jacobian o f  the transformation

civ, dx2

dv, dv: Vj V,

fa f a l-.v , - y

dX dy2

3 >f2>\ -CV, -  V, V,)

. J  a 0. since v, is not ilentically zero

. = o < 7 , < o o , 0 < y , < I

|0  '  elsewhere

 ̂  ̂ [e- '1 - v, o < yy < co, 0 < y , < 1

' 1 ’ 10 elsewhere

o < < co. 0 < v\ < 1
e ls e w h e re

Kxercise:
i inel the marginal pdf of y, and marginal p.d.f of vv 

\ and \ are stochastically independent.

)'i e" '  /»(>■;) = 1, 0 < v = < l

hence or otherwise show that

It should noted that
), has the gamma pdf with parameter a  = 2./? ■= 1 

>. has the uniform distribution over (0.1)
\, mill W have exponential distribution with parameter 1 .

Definition (lor more than two variable)
I el A',,A'.......V,,// mutually stochastically independent random variable s. each of

which has the same p.d.f f(x) which may or may not be known. Then
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A . , . I  ~ A x ,) fU s )—A .i.)
By stochastic independence, since the marginal pdfs 

/(■*,) = /('■ ,)./=  I. 2.....n
The random variables are said to be a random sample of size n from a distribution 
which has pdf / ( v).

Exercise
l et .V, mill X.  he two stochastically independent random variables with p.d.f

—— c II < x. <cc
l<tf)

1 //-I - » - »-------- a*; e  - ,  a  <  .v , <  co respective ly .
r\ P )  - F

Where r(-) is the gamma function.
X

Define Y = By defining a suitable Y: , a function of X, and X ,.
A, — A i

Calculate:
(a) thcjoinl pdf of }j and )\ and 

hence (b) the marginal pdf of }j.

4.7 Functions of Random Variables
Suppose .X is a characteristic of interest, the p.d.f fx (X) may refer to the pdf of a 
given population. Another characteristic V (which may be a function of X may be of 
interest Therefore, there is need to obtain the distribution of the later variable.
I bus. given the pdf or c.d.f. of therandom variableX. the pdf or c.d.f. of 
anotherrandom variable Y may be obtained as a function of X.
There are two given major technique to achieve this. They are CDF technique and the 
Frans formation technique.

4.7.1 The C DF Technique
Given the CDFofY (Fr (A)with some function of interest (say) Y = g(x)  is of 
interest.
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I he idea is to express the CDF of Y in terms of the distribution of X. Define set 
Ay = {X/g(x) < y) It follows that [{Y < y}J and X 6 Ay \ 

i.e. Fy(y)  =  Pr(g(x) < y)

In the continuous case

Myl = /'7 ,W  dx
= FX(x2)  -  f x M

and p.d.f of fy(y)  =  df dy  Fy(y)

Example 1:
Given Fv(.r) = 1 -  e~2x, 0 < x < oo
Find the pdf of Y = ex

Solution

/y(y) = p O' *  y)
= P[ex < y]
= P[X <  Iny]  

= PxUny)

but fx M  “

= — ( l - e ~ 2x)ax
= 2 e~2x

and Fy(y) = J0/n> 2e 2xdx

Fy(y) =  e ~ 2x
Iny

|n

= elny~2 + 1=  1 -  y~ 2, 1 <  y  <  CO
/y(y) = ^ /v(y)

a

9 S

0  <  a: <  1

Example 2: 
l.el/*(x) = Lx

and y = 3a: + 1 
find the distribution of g{y) 
Solution

y = 3Ar + y = ^ X  = ^  

Pyiy) -  P(Y < y )
=  P[ 3 * +  l  <y|

(y-i/
= f0 3 2x dx

4.7.2 Transformation Method

Let X be a continuous random variable with pdf / (V) > 0 for a < X < b and y 

r?(x). If there is a one-to-one transformation from A = {x/ fy (x) > 0} on to II 
|K//y(y) >  0) with inverse transformation.

X = w(y) if the derivative d/ dy  w(y) exist, then

/y (y ) = / > ( y )  | ^ |  y  e / i

Where I— I is the Jacobian of the transformation lt/y I

Y could be monotone increasing or decreasing fx(y)  = Hx(y) |^ ;|

99

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



Example 3: Using the last example
f (x) = Zx 0| <  X < 1, and y  -  3x

clx _  1 

cly 3

3(y) = 2 (t 1) * j 

= |C y -D , 1 < y < 4

Example 3:

19Given = j Q
0  <  30 <  CO

elsewhere

determine the pdi of y  — X~

Solution

f (x) = 2x e ~*2

y  = X2 => X = y X/i 
dy  1 -1 /

sOO = fx(y) \~\
= 2 y ' / i e - y  * V 2 y ' 1/2 

= e~y 0 < y < co

4.7.3 Transformation that are not one-to-one
If 5 0 )  is not one-to-one over A = [x/fx(x) >0}; then thee is no unique solution to 
equation y = g(x).  It is usually possible to partition A into disjoint subsets 

Ay ,Al , A3 ... such that f.i(x) is one-to-one over each Aj

f y ( y ) = ^ / x ( ‘V/(y))
i

i. e. fy {y) = ^  fx (xy)where the sum is over Xysuch that /tt(xy) = y
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Example

l c l /U ) - 5 7 ( V 2). * =  -2 ,-1 ,0 .1 .2 .
Find the distribution of Y = |X|
Solution

/ y ( l ) = « - l )  +  / i ( l ) = £  +  i  =

/ , ( 2) =  A ( - 2) + A ( 2) = i r  o

4
77 y = 0

Exercise

1. Let X have a Poisson distribution with p.d.f f(xy = -

x =
I .et Y = 4X, derive the pdfof Y.

2. A random variable X has pdf

f(x) = 1 0 <  X < 1
Find the pdf of Y = - 2 In X

3. If the random variableX~ N (0,1), find the pdfof Y ■
4. Use the transformation method to solve the problem i

. j4X' 0 < X < 1  
10 elsewhere

Use the C 'L)F technique to derive the pdfof

(i) Y -  X \  (ii) w = ex(iii) Z = InX (iv)p =(,Y -0.5)2
In the above example

P{x = 2 / y  = 3) = - ^ 1
17 P{Y= 3 )

—

-  v 6

~ a a *

x!

= 0, 1, 2,...

A'2
example 1.
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CHAPTER 5

SOM E DISCRETE PROBABILITY DISTRIBUTIONS

5.0 Introduction
In this chapter, we will be studying some discrete probability distributions with a view 

to obtaining their men and variances.

5.1. Bernoulli Random Variable
A random variable X, that assumes only the value 0 or 1 is known as a Bernoulli 
random variable. The values 0. or I can be interpreted as events of failure and success 
respectively in an experiment usually referred to as Bernoulli trial.
Definition 1: A random variable X is defined to have a Bernoulli distribution if the 
discrete density function of X is given by

(p * (l -  p )1_*forx  = 0 or 1 )I ~ - M —v .  ,• \
/ M  = = p*( 1 -  p)1 */{o, 1}0 )

0 otherwise J
Where the p satisfies 0 < p < l . l  — pis usually denoted by q 
Theorem 1:If X has a Bernoulli distribution, then 
H(X) = p. Vcir(X) = pq

Proof:
E(X) =0.q  + l .p  = p 

Var{X) = E(X2) -  ( E[X])2 
= 0 2.q + l 2. p - p z = pq

Bernoulli distribution is a special type of discrete distribution sometimes referred to as 
Indie tor function. This implies that for a given arbitrary probability

space[S, A, P(.  )], let A belong to A , define the random variable Xto be the 

indicator function of A; that is x(w)  = then A has a Bernoulli distribution with

parameter p = P[X = 1| = P[A],
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5.2 Binomial Distribution

In Bernoulli distribution, there is just one trial that can result in either success or 
failure. But, in Binomial distribution, we have repeated and independent trials of an 
experiment with two outcomes resulting in either success or failure, yes or no etc.
The probability of exactly .t successes in /; repeated trials is given by:

p'q"~ ; x  = 0, 1, 2, .... ...., n
\-x)
0 elsewhere

where p is the probability of success
q = 1 -p is the probability of failure 
x is the number of successes in repealed trials. 
f(.v) is the probability density function (p.d.f).

5.2.1 Properties of Binomial distribution
(i) It has n independent trials

(ii) It has constant probability of success p and probability of failure
q =  1 “ P-

(iii) There is assigned probability to non-occurrence of events.
(iv) Each trial can result in one of only two possible outcomes called 

success or failure.

5.2.2

(i)
E(X)

Mean and Variance of

f(x) - p'q"-'

a Binomial Distribution

x  = 0, 1, 2, ......... ,n

Mean:

= z  * f {x)

//!
(/7—at)!jc!p  q
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- z.r=0
- • S :

* ------------------ P q(//-.r)!,v(,v-l)! 

(» -!)!
(ii-x)l(x-l)! p'  p x l q"~’

n-1
-  np

frl («-x)!(x-l)! 
Let s = .r -  1, .v = s + 1

("-D I
p q

= np £  (""I)!
L  -------- xr~, p qj.o (/»-.s-l)!jr!

~ "p z*=o

'/ l - P
S

.n-l _

P'q'-’-'

= np (p +q)n‘ = np 
(ii) Variance:
Var(X) = E(X2) -  [E(X)]2

E[X2] = E[X(X-1)] + E(X)

-  z  * (" “ !)
//

/7!
= ^ x ( x - l ) — t p V "

= 2 > ( * - l )

(/j - x)x!

n(n-\)(n  - 2 ) !

(»i -  x)!x(x -  l)(x -  2)!

( « - 2)!

„ 2  _  t=2 n -.Tp p  q

= n ( n - \ ) p 2 T
£  (« -* ) ! (* -2)!

„.t=2 n -  v
Z7 7

Let s -  x-2 x -  s + 2

(if -  2)!= « (« -  D^ 2

-  //(// -  1) p 2 £

U  (#i -  j  -  2)!s! 

( a -  2>

.v

p q

P’q"-’- 2
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£ [* (* - ! ) ]  = « ( /i- l) /r

/. £(JTJ) = 4 V (^ '-1 ) ]  + E(X)
= n(n-l)p2 + np

/. V(X)  = E { X 1) -  [E{X)]2 
= n(n-l) p2 + np -  n2p2 
= n2p2 -  np2 + np -  n2p2 
= np -  np2 
= np (1 -p)
= npq

Remark: The binomial distribution reduces to the Bernoulli distribution when n =  1 
Example 1:
It is known that screw produced by a certain company will be defective with 
probability 0.02 independently of each other. The company sells the screws in 
packages of 10 and offer a money back guarantee that at most 1 of 10 screws is 
defective. What proportion of packages sold must the company replace?
Solutio n

Let X be the number of defective screws thus n = 1=, p = 0.02
Pr (at most one defective) = 1 -  P(X = 0) -  P(X = 1)

/> (^> i) = i - m ' < i )

= 1
' 10N
0

(0.2 )u(0.8)' (0.2)' (0.8)9

What is the final answer?
Example 2:
A communication system consist of// components each of which will, independently 
function with probability p. The total system will be able to operate effectively it at 
least one-half of its components function.
For what value of p is the 7-components system were likely to operate more 
effectively than a 5 components system.

Solution
A 7-component system will be effective
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If  P(E 7 > 3) = P(E = 4) + P(E = 5) + (P(E = 6) + P(E = 7).
= 1 - P(E < 3) = 1 - P(E = 0) - P(E = 1) - P(E = 2) - P(E = 3)

P V + p ' qs + 3 ^ , + p ’

A 5- component will be effective if
P (£ s > 2) = P{E = 3) + P{E = 4) + P(E = 5)

P 'q 2 + P'q'  + P S

The 7-component will be better if
P(E1 > 3) > P(E5 > 2); for q = 1 - p.

Complete this 
Try for 5 and 3.

Example 3:

For what value of K will p (x  = K ) /  . ^  t/ P ( X  = K  - 1) be 8reater or less than 1 if X is a

b (n, p) and 0<P<1.
Solution

P(X = K)
P(X = K -  1) } p k- ' ( \ - p y - k"

k - \ j
(n - k - l)P 
k ( \~ P)

: .P(X = k)>P(X  = k - 1) iff 
(n - k + l)P>A:(l - P )  
i.e.K <(n + l)P

This implies that for the binomial distribution b (n, p), as k  goes from 0 to n, P (x=k) 
first increases monotonically and then decreases monotonically, reaching its largest 

value when k is the maximum.
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5.3 Poisson Distribution
When n becomes large and p is fairly small, the use of the binomial distribution in 
calculating the various probabilities becomes cumbersome. To overcome this 
problem, we use another probability function which approximates the binomial 
distribution. This probability function is known as the Poisson probability function 
which we shall be considering in this lecture.
A random variable closely related to the binomial random variable is one whose
possible values 0, 1,2, 3,.....represent the number of occurrences of some outcomes
not in a given number of trials but in a given period of time or region of space. This 
variable is called the Poisson variable.

5.4 Properties of a Poisson Experiment
A Poisson experiment is a statistical experiment that has the following properties:
1. The experiment results in outcomes that can be classified as success or 

failures.
2. The average number of success(A) that occur in a specified region is known.
3. The probability that a success will occur is proportional to the size of the 

region.
4. The probability that a success will occur in an extremely small region is 

virtually zero.

Note:
(The specified region may take many forms e.g. length, an area, a period of time, 
volume etc)
A Poisson random variable is the number of successes that result from a Poisson 
experiment.
The probability distribution of a Poisson random variable is called a Poisson 
distribution.
Given the mean number of successes Athat occur in a specified region, the probability 
density function (pdf) of Poisson distribution is given by

P(x: A) = e-*U')
x\
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where .t is the actual number of successes that result from the experiment.
A ~ np (// is the total number of observation in the experiment and p  is the probability
of success).
Note that mean A and variance are equal i.e. A = mean = variance. Also A is the 
parameter of the distribution, with e= 2. 71828
Some examples of random variables that obey the Poisson probability law are:
1. The number of customers entering a post office on a given day
2. The number of misprints on a page (or a group of pages) of a book.
3. The number of packages of instant noodles sold in a particular store on a given

day.

Identities:

,v=o •

, , A2 A'— 1 + A H------ 1- ---- K...
2! 3!

Using the result, we have

e x A'
2 X , = I

= e

-  e

x\
<r. It

y -
&  *

e "1 =1

5.5 Mean and Variance of a Poisson Distribution 
(i) Mean

E(X) -  Y jXP(x )
T = 0

'  e Arz
z -

x\

e ’ '■ A' 
x\

r  = a '-'.a

108

= t
« = | x ( x -  1)!

= a y  Z Z fZ
(x -])!

L e ts= .r-  1

= * t
.0  si

= A

(ii) Variance

Var(X) = E(X2) - [£(.r)f 
E(x2) = E[x(x-1)]+E(x)

E[x(x-l)]= £  t ( x - l ) e ’xA*
x\

- X  i . r - 2r. _ - x  <j.r

= A2 2  A
t - i  ( r - 2)!

I-et s=x - 2
r. — A

= y  L - L
s . O  S\

= A2

Var(X) = A2 + A - [ A ]2

= A2 + A -  A2 

= A

r  = r ~ 2 A2

Example 1:

The average number of homes sold by Assurance Homes Company is 2 homes per 
day. What is the probability that exactly 3 homes will be sold tomorrow?

Solution: A - 2 since 2 homes are sold per day on the average
x = 3, e = 2.71828
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, . e’ *AsP(x; A = np) = ----—
x!

= 2.71828"2 (2)*
3!

P(3; 2) = 0.180
Thus the probability of selling 3 homes is 0.180

5.6 The Poisson Distribution as an Approximation to the Binomial 
Distribution
Let n and p be the parameters of a binomial distribution.
Therefore mean A = np

Variance a 2 =np(l -p )
If n -»oo and p -» 0 simultaneously, in such a way that A= np is fixed, then we can

say that p = where A is a fixed value.

Then as n increases, the binomial probabilities. 
' n

P(x) = p s (1 x = 0, 1, 2,.... Get closer and closer to the Poisson

probabilities.

Proof: Given that

e~xX'
P (x )= ------- where A =np,x = 0, 1,2,....

x!

P(x: n, p) = p(x:«, ^ / )

x = 0, 1,2 ...... n

n(n -  1) (n - 2 )  (/;- x + l)(//-x)! A1
x!(/; -  x)!

n ( n - \ )  (n -  2). ...(/i-x + 1) ^  
x! nx

1 1 0

but lim

_ n ( n - l ) ( » - 2)......(n - x  + 1)
nx x!

, - * ?
n

1 - -  1 - -

lim 1 -

n(n - l ) ( n - 2)....(/i - x  + 1)

e~xX'
Therefore, we have---- 7- ,  x = 0, 1,2....

X !

Thus, the binomial pdf approaches the Poisson as n increases and p  tends to zero.

5.7 Hypergeometric Distribution
Consider a lot consisting o fm  + n items of which m  of them are defective and the 
remaining n  of them are non-defective. A sample of r  items is drawn randomly 
without replacement. Let x denote the number of defective items that is observed in 
the sample. The random variable x  is the hypergeometric random variable with 
parameters m  + n and m. Then, the number of ways selecting x  defective items from

m defective items i s ^ ) ;  the number of ways of selectingr -  xnon-defective items 

from n non-defective items is(r  ” Therefore, total number of ways of selecting r 

items with x defective and r  -  x non defective items is. ^

Finally, the number of ways one can select r  different items from a collection 

of m +  n  different items is (m *  n). Thus, the probability of observing x defective 

items in a sample o fr  items (probability density function) is 
(m )( n )\x J \ r - x J  r „ ,  o ^~?Tn+~iv\ ' for x = 0 ,1 ,2 ,...... r, x < m and r  -  x < n

r )
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Example 1:
In lottery, a player selects 6 different numbers from 1,2,.. .,44 by buying a ticket lor 
t naira (N1.00). Later in the week, the winning numbers will be drawn randomly by a 
device. If the player matches all six winning numbers, then he or site will win the 
jackpot of the week. If the player matches 4 or 5 numbers, he or site will receive a 
lesser cash prize. If  a player buys one ticket, what are the chances of matching, (a) all 
6 numbers (b) 4 numbers.
Solution: Let x  denote the number cf winning numbers in the ticket. If we regard 
winning numbers as defective, then is a hypergeometric random variable with 
m + n  = 44, m  -  6 and n = 38.

I
(a) P(X = 6) =

S f f c . b n x ;  o r i i c r i r o b  : 

dtnobrm  nw sv ;

■ b) ?(X -  4) -  I

f 6
(  38?

u i U J
44^

6 j

f 6
U 38)

u 1 2 ...

■ 4 4 \

A 6 J.

1
f44?

6

6138!
44!

1
7059052i'Uqn>2Ki rt-v.mn'Vxo-

O' 7 •' ' . .
fo siqrrtpa . A wfLeh 

-  ").QC. t-933

arc
>.

mo!

Example 2 :.
As part of a health survey, a researcher decides to investigate prevalence of cholera in 
S sub-urban areas but of a city’s 28 sub -urban areas. If 6 cf the sub-urban areas have a 
very high prevalence rate, what is the probability that none of them wh! be included in 
the researcher’s sample?
Solution:

. rmy ?■ \ 
-  i ; .r-x:Retail that we have f i x )  = ~

Here, x  =  0, n  = 22, m + n = 28 and m = 6

- as the p. d. f  for hypergeometric distribution

12

T  am, we have

2 8 -6 ]
U J l  8 - 0  J

'28]

U J

C ompiate this

7.» Mean and Variance of ElypergeoriA rk  DistritosiJf/j n
(§) Mean:

H(x) = t  xf(x )
.!=»

/nc nc 
m + n 
Cr

ml
(jn -  ;;)i.v!

II
C

- s ni+itc

I
x  m(-m - 1)! 

(m-A-)!.v(.r-l)!

c
c

r - x

- r a tw* nt+n
. -  c

c

M = * -  1 =  s + 1

this implies
,.i> —1-----
_ ~  (W -J-l)!*!

C
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= — . c cm+n^  i r-j-l

= —  . Cm+n r—I
m
n+n

C

m
m + n\

{m + n -  r)\r\

m
m + n!

_ (m + n -r )!r!  

Simplifying gives 

E(x) =
mr

(m + n - 1)1
[(m + n - l ) - ( r - l ) )  ( r - 1)!

(in + n -l)!
(m + n - r ) ! ( r - l ) !

m  + n

(ii) Variance:

£ (x 3) = e \x (x  — X) +  x]

= £[x(x-l)]  + E{x)

E[x(x -1)] = £ x ( x - l ) / ( x )

IHr- n
= Z  x(x ~ ^  — 1' inc. c,.

m + n

c.

Continuing gives
m(m -l)(m  -  2)!v -  , 14 (/i i - x ) ! x ( x - 1 ) ( x - 2 ) !

= 2 ^ u - i ) -------------  ------
i=2

"CW - . t

c

,s ^  (w -x )!(x -2)! 
= m (m -l) 2  ̂ ------------ ^ T
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m(m - 1) ^ ( * -  2)! . c
lll+rt S~> /  J

W i-2 (m -x ) !(x -2)!

let s = x-2 x = s + 2
m(m - 1) ( m - 2)!

Hl+hf' L—i (m - i1 - 2)!j ! f'J“2

m ( m - l )  x *Ca "Cr , 2m+n ̂

m(m - 1) b+m. 2
m+n /-*

r
m(m  - 1) 

m  + n\ (m + n - 2)!
(m +  n - r ) ! r !  [(m +  n - 2 ) - ( r - 2 ) ) ( r  — 2)!

m ( m - l ) ( m  +  n -  r) !r! (m + / i - 2 ) !

(m + n)! (m + n - r ) \ ( r -  2)!

m(m - l ) r ( r - l ) ( r  - 2 ) 1  {m + n -  2)!
(m + n){m + n - l ) (m  + n - 2 ) !  (m + n - 2 ) !

rm(m -  l)(r -  1) 
(m + n)(m + n - 1)

E(x')  = £[x(x-l)] + E{x)

m ( m  - l)r(r- 1) r m

(m +  n ) ( m + n - 1) m  + n 

Therefore, K(.v) = E(x2) -  [£(.t)]3

m(m — 1) r(i— 1) rm ( rm
(m + n){m + n -  1) m + n \ in  + n

Simplify this last expression to obtain rm
m + n — ) m+n )

' m  +  n - r  

, m + n -  ]
(Post-Test 2)

Note: If the sampling was with replacement, r and p = would be the appropriate

binomial parameter and its respective variance would be r ( 1 ----— ).
m +n V m + n /
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The binomial variance is slightly greater than the hypergeometric variance because of 

the factor ( ~ “ ) >n the hypergeometric variance.

Asm + n becomes very large compared to r, the hypergeo metric distribution tends to 
the binomial distribution.

5.9 Binomial Distribution as an approximation to the Hypergeometric 
Distribution

Suppose the p.d.f of a hypergeometric distribution is given by

then, we have the following theorem. 
Theorem:
Let m, n ->ao and suppose that

—  = rm, , - + p , o < p < \in + n

then

n
r - x

in + n 
r

Proof:
We have 
'm) n )

( m +

l r ;

PxqH~\  x = 0,1,2....... /-

M [ " ' ml
LJ [ r -x ; il g 1 & U_

ft! ( r-x)!

m + n 

r

(m + /Q!
(m + n -r)!rl

ml  ______ n\______ ( m  +  n - r ) l r \

( m - x ) l x \  { n - r  +  ;c)!(r — jc)! (m- \  n)\

_ r 'j w!w! (m -f n - r )i 
Kx )  ( m  -  x ) \ ( n  -  r  +  x ) \ ( m  /?)!

_ f  r ̂  ni(in - 1)...... (/>? -  x +1) (m -  cc)! n(n -  l)....(n -  r + x + l)(;t -  r  x)!
VV (m-x)\(n-r-Tx)l(m + n).... {(m + n ) -  (/•-!))

f  lw(/w-l)..... jm -(x - l)}  n ( n - l ) ......[ n - ( r - x - 1)]
_  v -V _______________________________________

(m + + n) -  (r - 1)]

Divide through by m+n

f  "  1 (  - _ 1 ) m x - \
) * f "  )( n

1 f  ® /--X-:.]
\m+n) \m+n m+n J rn +■ n m+n J  [jfj+n ) yni+n .'jj+n, \m+n i j +n

m+n m+n r - 1 )
.m+n in+n m+n)

) f  m  V  m i } f  m x - n
) \ m  + n ) \ m  + n m + n ) \ m  +  n m  +  n  J

(  " ) [  n > ) f n
r - x 1

, m  +  n ) . m +  n m + n  J \ m  +  n m 1... \  ( r - 1)
( m  +  n)

... m „ , nSince------ P, hence ----------- => 1
m + n

I here fore
in -h II
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lim»»■*-«—»»> l X
m + n

P'c,'

m

This result implies that we can approximate the probabilities —y

n
r - x

m + n 
r

by

P by setting p = m provided m, n are large. This is true for all x = 0, 1,-v m  f  n
2, ..... r.
If m, n, are large, approximate the hypergeometric distribution by an appropriate 
binomial distribution. If the need arises, we may also go a step further in 
approximating the binomial distribution by the appropriate Poisson distribution.

5.10 Negative Binomial and Geometric Distributions
Negative binomial and Geometric distributions are two families o f discrete 
distributions that are very important in Statistics. The Geometric distribution is so 
named because the values of the Geometric density are the terms of a geometric series 
while the Negative binomial distribution is sometimes also referred to as the Pascal’s 
distribution.

5.11 Negative Binomial Distribution
Consider a succession of Bernoulli trials, let P(r) denote the probability that 
exactlyr + k (k > 0), trials are needed to produce k successes. This will so happen 
when the last trial, that is, (r + /c)th trials is a success with probability p and the 
previous (r + k -  1 ) trials must have (k -  1) successes with probability 
r  +- k -  l C(c i Pk~l qr , where q = 1 — p

118

P(r) =  prob o f  (k -  1) successes in (x  + k -  1 )trials 
x prob o f  (x  + k)th success 
= r  +  k - l Ck_lPk- 1qT.p

= r + k -  r  = 0, 1 , 2 ....................... eqn. (1 )

Pk(fe +  r  -  l)(/c +  r  -  2) .... [k + r + 1 -  ( r  +  1)] ,
= ------------------------------ H------------------------------ 9r

Pk(k +  r  — l)(/c + r -  2) ....(/c +  l)fc ,
= -----------------------ri---------------------- ’

=  Pk( - i y - k c rqr
= - k c TPk( - q ) r................. eqn. (2)Note that:
(i) r  + k — lck_l Pkqr> r  = 0, 1,2 ........

=  r  +  k -  l CrPkqr. r =  0,1,2.........

(ii) 2 Z P ( r ) = P k Z?=0- k Cr( - q r

= Pk[ l - q ] ' k
= pkp~k = 1

Equations (1) and (2) for k > 0 are known as negative binomial distribution.

5.11.1 Mean and Variance of the Negative Binomial Distribution 
(i) Mean

Recall that the moment generating function (MGF) of a random variable A',
M(t) = E(etx),

using the moment generating function approach, therefore, from equation ( 1), the 
MGF of/? is

M(t) = E(etr) = Y JC° 0etr(r  + r ~  ^  P*<? •

But ( 1  -  * ) - »  =  Z ” 0  ( ~ n )  ( - * ) '  =  E,” o ( n + j j ~  !) * J  for - 1 < x < 1
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Therefore

M M = ^ e " ( ~ rk) p k(.-q y .

=EK.„ ( “ * )/> * (-* « ')’■

=  p ‘ ( i - 9ctr *
Now, M'(f) =  k qecPk(1 -  qe1)- *-1

kq
E(R) = = 0 =  —

V
E(R)2 = M"(t)

= k qetPk(1 -  gt?1)- *-1  + (fc + l)g ecP*(l -  q e T ^ k q e 1 
Complete the solution using V(/?) = E(/?)2 — (E(/?))2 (see Post-test 4)

5.12 Geometric Distribution
If in equation (1), we put k = 1, we have

r  + k - l Ck_lPkqr 
= rc0P qr

=  q r p , r  = 0,1 , 2, ....
and q = 1 -  p, we have geometric distribution.
The following describes the Geometric distribution.
Consider a sequence of Bernoulli trials with probability p  of success. This sequence is 
observed until the first success occurs. Let R denote the number of failures before this 
first success. For instance, if the sequence starts with F representing failure and S
success, with F, F, F, S ........ then R=3. i.e. this distribution describes the event of
first success after nlh independent trials with probability p, 0 < p  < 1 .

Moreover, the probability of such a sequence is P

[/; - 3]= (</)('/)('/)(/>) = q' p = 0 -  pY p
Generally, the p.d.f, f(r) =■ P[R = r] of R is given by

f ( .r)  = (1 - pYp.  r = 0, 1 , 2  ......
f ( r ) = qrp, r  = 0,1,2 ............  ( 1)

120

Some authors define the geometric distribution by assuming 1 (instead of 0) is the 
smallest mass point. The p.d.f then has the form

« r ) ={op(L 7 l l ' r = 1 -2-3 ............... (2)

5.12.1 Mean and Variance of a Geometric Distribution
Consider equation (2)

(i) Mean

etl -  p = q
E ( R ) = Z ” /  p ( i “ p)r_1

*  E(R) =  Y ” r p ( q y - '

v-*°° d 

d v 100

- * * i l j * r

= p Z 7 ^  + g2 + <?3 + ' " )dq
But (q + q2 + q3 + — ) =  q(l  +  q +  q2 +  q3 + — )

- f e )
Therefore, £(/?) = P ^ ( ^ )

' ( l - q ) C l ) - q ( - l )
= P (1 ~ q ) 2

( ( l - q  + q)\
= p \ o T q y ~ )  

/ (

E(/?) = -  
V
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(ii) Variance

£(«2) = Y "  r 2 p ( l -  p)r_1
4—'r= l

= Y °°  r 2 p ( r
*—Jr=l

Z“  d 

d v ' ,co 

d
= P j j ( q  + 2 q 2 + 3 q 3 + - ' )  

d
= p - q ( l  + 2q + 3q2 + 4q3 + - )

Recall that 1 + 2x + 3x2 + 4x3 + ••• =

Therefore, we have p — q (•■ -dq V(l-fl)2/

= P

(1-X)2

( l - q m )  + 2 q ( l - q )

= P

(1 ~ q Y
[Cl — qr)][(l - q  + 2q)]

(1 - q )4
1  + qr n  

= p l(T 3(1 - 9)3
r 1 + 9 

P i ( l - 9 ) :

f(-p2) = 1̂ ]  since q = 1 -  p 

Therefore,!/(/?) = £(/?)2 -  (f(/? )):

(P)2 J

2 - p

(p):Hi)'
1 ~ P

r,2
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Thus, the mean and variance of this form geometric distribution are ^ and I r ­

respectively.
Example 1: A fair die is cast on successive independent trials until second six is 
observed. What is the probability of observing exactly 10 non-sixes before the second 
six is cast.
Solution: This is a negative binomial distribution problem. So,

U - l  ,
p k ( \ - p Y r  =  0 ,1 ,2 ......

Therefore, we have
ClO + 2-1^

0.049

Example 2:
Team A plays team B in a seven game with series. That is the series is over 

when either of the teams wins four games. For each game, p(A wins) = 0.6 and the 

games are assumed to be independent. What is the probability that the series will end 
in exactly six games.
Solution:
The game will end is either A or B wins the game series.

p(game ends) = p (A wins series in 6 games) + p (B wins series in 6 games)

^ ] ( 0 .6 ) ‘ (0.4)’ + [^ 0 .4 ) ‘ (0.4)2

= 0.207 + 0.092
= 0.299

Note: that
p( A wins series in 6 games) = p [A looses 2 games before 4 wins]

= P(Y = 2)

= 0.207
Example 3:
In a sequence of independent rolls of a fair die;

1 2 3
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i. Whai is the probability that the first four is observed in the sixth trial.

Solution: This is geometric distribution problem

P(R = 5) = j  = 0.067 where R denotes the number of non-fours before the 

occurrence of the first four.
i. What is the probability that at least six trials are required to observe a four.

Solution: P[* > 5] = \ -  P[R £ 4]
= !-[/>[/? = 0']+ P[R = l]+ P[R = 2]]-t- P[R =  3+/>[/? = 4 j

7776
Complete the solution

5.13 Multinomial Distribution
We know from binomial distribution that each trial of a binomial experiment can 
result in two and only two possible outcomes. In the multinomial experiment, 
however, each trial can have two or more possible outcomes. So, a binomial 

experiment is a special case of a multinomial experiment.

A multinomial experiment is a statistical experiment that has the following properties: 

• The experiment consists of n repeated trials

1 2 4

• Each trial has a discrete number of possible outcomes
• The probability that a particular outcome will occur is constant for any 

given trial
• The trials are independent
A multinomial distribution is the probability distribution of outcomes from a 
multinomial experiment.
Definition: Suppose a multinomial experiment consists of n trials, and each trial can
result in any of k possible outcomes £1,£ 2^ 3. .....»£*• Suppose, also, that each
possible outcome can occur with probabilities pa, p2, P3, ..... , pk . Then, the probability
p that Ej occurs nx times, E2 occurs n2 times,...... , and Ek occurs nk times is

P =  [(n ^ ln fc !)] fr1"1 P2"2 .....Pk"*] where n =  na +  n2 +  n 3 + -  4- nk

Example 1:
A bowl consists of 2 red marbles, 3 green marbles and 5 blue marbles. 4 marbles are 
randomly selected from the bowl with replacement. What is the probability of 
selecting 2 green marbles and 2 blue marbles?

Solution:
The experiment consists of 4 trials, so n = 4.
The 4 trials produce 0 red marbles, 2 green marbles and 2 blue marbles; so

nred ~  0 ,  Kgreen ~  2 # W-blue ~  2

On any particular trial, the probability of drawing a red, green or blue marble is 0.2, 
0.3 and 0.5 respectively.
Using the multinomial formula, we have

= f._____2!_____
l(na!n2! .....nk!). [P i"1 Pz"2.....Pic"*]

'(oT^Tii)] [(0-2)°(0-3)zCo.5)z)

Therefore p = 0.135.

1 2 5
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E xam ple  2:
Suppose a card is drawn randomly from an ordinary deck ofplaying'cards and then 
put back in the deck. This exercise is repeated five times. What is the probability of 
drawing 1 spade, 1 heart, 1 diamond and 2 clubs?

Solution:
The experiment consists of 5 trials, n=5
The 5 trials produce 1 spade, 1 heart, 1 diamond and 2 clubs; so rij = 1 ,n 2 =  1 ,n 3 = 
1 , n4 = 2
On any particular trial, the probability of drawing a spade, heart, diamond or club is 
0.25, 0.25, 0.25 and 0.25 respectively. Thus, p1 = 0.25, p2 = 0.25, p3 = 0.25, p4 = 
0.25
Using the multinomial formula, we have

P =  [(nj n,r.'....nt l)]^ ’,lp a ’" .....P*"*]

[(1! i n !  2!)] [(° z5)1(0.25)1(0.25)1(O.25)2]

p = 0.05859

Practice Questions
1. Suppose that a fair die is rolled 9 times. Find the probability that 1 appears 3 

times, 2 and 3 twice each, 4 and 5 once each.
2. In a city on a particular night, television channels 4, 3 and 1 have the 

following audiences: channel 4 has 25 percent of the viewing audience, 
channel 3 has 20 percent of the viewing audience and channel 1 has 50 percent 
of the viewing audience. Find the probability that among ten television 
viewers randomly chosen in that city on that particular night, 4 will be 
watching channel 4, 3 will be watching channel 3 and 1 will be watching 
channel 1.
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C H A P T E R  6

SO M E C O N TIN U O U S PR O B A B IL IT Y  D ISTRIBU TIO N S

6.0 Introduction
Having studied some discrete probability distributions in the last chapter, this chapter 
now deals with the study of some commonly used continuous probability 

distributions.

6.1 Normal Distribution
A random variable X is said to have come from the normal distribution if its 
probability density function (pdf) f i x )  is define as:

/ w =  1 a M 2.-co .* < o o
V2^  v ;

With p >  0 and a 2 > 0
The mean and variance of the normal distribution can be obtained as follows:

E(x2) = f  xr f{x)dx
J-CO

- i
1 _i  /x-  P. 2

V27T(7Z V °

— i#\ 2

dx

Let Z = —a
rt£ ' d x

1
a

X =  H + 8 Z

E (x7) = — —  f  (p +  aZ)r e J 2odZ 
a s 2n J-oo

1 f "  _z*
= ~ ^ j=  J (p + crZ)r e 2 dZ 

When r = 1
1  r  z2

E(X) = — = (p + aZ) e z dZ 
\ 2u J-m
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i r r  _£i r  -
= v f ? l " L e l + a Lz2 Z e ~ d Z

r* i  *  r  1 JL
= H ~T=e 2 +cr Z - — e * dZ

J - m V 2 n  J .  co \ f 2 n

Recall that ~  e 2 is a standardized normal distribution with 0 and variance 1. 

Therefore

E(X) = /i( l)  + o-(O)

Since - j=e~~  =  1 and therefore 

•• E(X) = n

r* 1 z2
E{Z) = Z - = e ~ T d Z

■'—co yj2 n
To obtain the variance, set r to 2 in equation ( 1 ) and use 
Var(X) =  E(X2) — [£,(A')]2, we proceed as follows

E(X2) = ~  [ Qr -f c r Z ye '^ d Z
v 2n J— co1 f 00 z2

= - =  (p2 + 2/i(JZ +  cr2Z2) e ~ d Z
V27T J —co

r —
J-,,V2d

r  1 ^= ^ T = e 2 dz + 2 nd
J - o o  V  2 tT=  /^2 C l)  +  2/icr(0) +  cr2 ( l )

/T(A') = /72 + cr2 
Therefore

r® 1 z2
Ze i dZ + o2 \ —= Z 2e z dZ

J-my/2n

Var{X) =  (n2 +  a 2') — p 2 
= <r2

6.2 Exponential Distribution
The exponential distribution (also known as negative exponential distribution) is the 

probability distribution that describes the time between events in a Poisson process, 
i e. a process in which events occur continuously and independently at a constant 
average rate. It is the continuous analogue of the geometric distribution, and it has the
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key property o f being memoryless. In addition to being used for the analysis of 
Poisson processes, it is found in various other contexts.

The exponential distribution is not the same as the class of exponential families of 
distributions, which is a large class of probability distributions that includes the 
exponential distribution as the baseline distribution

A random variable X is said to have an exponential distribution if is probability 
density function is defined as 

f i x ’) = X e-^ .X  > 0
Its corresponding moment about the origin is derived using

4  = E(xr) = C x ' m d x
J — 00

= /*  xrXe~Xxdx 

= A r ^ e - ^ d x
J  —  CO

dy
Lety = Xx, —  = e 

• dx
dx =  y  andx = j

= ^ i o <V e vdy

= ^ i is in c e r a  =  y a~1e~ydy

Therefore, the r h moment about origin of an exponential; distribution is

The first four moments can be demanded as follows 
When r =  1, we have the mean

SinceVa =  (a -  1)} 
When r = 2
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T3 (3 -  l ) j  2 
^  X2 X2 ~A 2 
From which variance can be obtained as follows
VarQ0 = EV(2)-[E tX )]2

1"\2= ^2 “  O l)

=  F - ( l ) 2
1

7
When r  = 3

_  T 4_  ( 4 - l ) j  6
%  A3 A3 A3 
and similarly with r  = 4

i _  r5  _  (5 “  D i _  2A 
" 4 A4 A4 “ A4

V
!

6.3 Gamma Distribution
line gamma distribution is a two-parameter family of continuous probability 
distributions. The common exponential distribution and chi-squared distribution are 
special cases of the gamma distribution.
In each of these three forms, both parameters are positive real numbers.
The parameterization with k and G appears to be more common in econometrics and 
certain other applied fields, where e.g. the gamma distribution is frequently used to 
model waiting times. For instance, in life testing, the waiting time until death is a 
random variable that is frequently modeled with a gamma distribution.
A continuous random variable X  is said to have a Gamma distribution if its probability 
density function is defined as follow

_ X
f M  = ‘- ^ p , x > o .c c > o ,p > o

6.3.1 Moments of Gamma Distribution

x re ~ i x a_1 
Vcc Pa

dx

130

Ifw elety  = 7 => dx = (Sdy P

E(,Xr) = Y ^ f “(fiy)T+‘" le-rt)dy 

E(.Xr) = I / -  yr*a~2e-yp iy

Recall from Gamma function that 

Ta = e~xx ~1 dx, then
o r

E{Xr) = — T(r 4- a) This gives the rth moment about the origin from which the 

first four moments can be derived.
When r  =  1, we have

£ t f )  =  ^ r ( r + a )

£ (* ) =  ^ « ra  

=  ccp 

When r  = 2

„ P2E{X2) = J -T 2  + a 
Ta

/?2(1 + a ) r ( l  + a) 
r  a

/?2(1 + a )a ra  
= To 

= a ( l  + a )/?2
Therefore, we obtain the variance of X using the fact that 
Var(X) = E(X2) -  [E(X)]2
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= a( 1 + a )/?2 -  (a/?)2

= a /?2 + a 2/?2 -  a 2/?2 
1/a rp O  = a /?2 
When r  = 3

£ (* 3) =  ^  T(3 + a ) and finallyra
with r  =  4, we have 

£ (**) =  F r r (4  +  a)

6.3.2 Moment Generation Function of Gamma Distribution
The moment generating function of a random variable X distributed as Gamma i.e. 
X~GA(aP) is derived as follows:

Mx(t) =  E(etx) = f  elIf { x ) d x  
j  — 00

/"or — h <  t  < h

etx e Pxa~l
M,(0  =_  Jo

Ta p°
dx

1 C e t x e ~ * x a- X
--------- -̂-----------------  dx
ra p a  Va P a

r a p 1 i: dx

.  1 rv■>(*' ‘) x a
EccPa Jo

= 1 r« iF)̂r a P a J0
Py

* * i-pt

dx

dx
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= f a l "  l “ ery"~I ^

Since Vx =  / “ e5'}/®-1  dy as before. 

Then,

Mx( t )  =  (1  -  / ? t ) - ‘

Differentiating the above and setting t to zero, we obtain the first four 
moments about the origin as follows

Mlx(t) = ap a - p t r a- 1
E(X) = M](0) =  ap 

M]1 = - a p 2( - a  -  1)(1 -  p t y a~2 

E(X2)  = AfJKO) =  a 2p 2 + ap2 

Var(X) = E(X2) -  [E(X))2 

= a 2p 2 + a p 2 -  (ap)2 
= a p 2

The characteristics function, the second characteristic function and the 
cumulate generating function can be obtained respectively as 

<Px(t) = (1 -  Pi t)-a , cj>x(t) = - a  log(l -  pi t)and 
Kx{t)= -  a \ o g { \ -  pt)

6.3.3 Maximum Likelihood Estimation of parameter of the Gamma 
Distribution

Let X\,Xi,.. .,Xn be a random sample of size n taking from Gamma distribution, the 
likelihood function is
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L =
(Ta)np an '

The corresponding log-likelihood function is

Z”= i xt
n

LogL = ----- - —  + ( a -  1 )^ l o g x t - n logr(tr) - a n  log/?

Differentiating this with respect to a and /? we have

dlogL y 1 ra l  , o—  = ^ \ o g x i - n — -nlog(3
i=i

3/o^Z, _  sr=i^/ an 
J

pci
where <p(a) =  —  equation ( ) can be written as 

dlogL v-1
^  log*i _  n - nlog/?
i= 1

6.4 Pareto Distribution
The Pareto distribution, named after the Italian civil engineer and economist 
Vilfredo Pareto, is a power law probability distribution that is used in description of 
social, scientific, geophysical, actuarial, and many other types of observable 
phenomena.
A random variable A'is distributed Pareto with parameters /? and K. if its pdf is given 
as

f W  = % .  K > p , x >  0 
It is interesting to show that

/ ” /■(*) dx =  1 , this is as follows

dx

dx

1 3 4

K(3K
£-(*+i)+i

k FTTT+T
I00
\p

0 0X~K
-K(3K —  . n  

H K  \ P

P K loo _ -/?* p K

X K \ P  00* p K

= 1
6.4.1 Moments of the Pareto Distribution

The rth moment of the random variable X~PAR(p, K)

= KpK
, r -K

U' = ^ — 
r—K ■

r - K \ Poo
p

<PK 1 | co
K -  r x K~r IP
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_ KpK /  l 1
K - r  U  K-r p K~r.

c

&1
1 1 \

K - r V  pK-rj

KpK
{K -  r)pK~r

E{Xr) =

k p k

: \k  -  r)p«p-r
Kpr

K - r
The above is the rth moment of a Pareto distribution. . 
When r  = 1 , we have

b w  = J ! L
K -  1

Similarly, when r  = 2, 
K p2

W 2) = K - 2

we have

From which variance can be obtained as 
VarQ0  = £?(*2) - [ £ ( * ) |2

K P 2 f  K P  \ 2
K - 2  \  K -  1)

KP2 K2P2 

K - 2  ( K - \ Y

Fn?(.V)

K(K -  1 )2p 2 -  K2P2(K -  2) 
(k  -  1 )2(K -  2) 

KZ2\(K -  l )2 -  K{K - 2 ) |  
( K - l ) H K - 2 )
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Kp2 [K2 - 2 K  + 1 - K 2 + 2K) 
(K — l ) 2(K — 2)

Par (A') =

K P 2 C D
(K -  1)20< ~ 2) 

KP2

( K - D K K - 2 )

6.5 Maxwell Distribution
In physics, particularly statistical mechanics, the Maxwell-Boltzmann distribution or 
Maxwell speed distribution describes particle speeds in idealized gases where the 
particles move freely inside a stationary container without interacting with one 
another, except for very brief collisions in which they exchange energy and 
momentum with each other or with their thermal environment. Particle in this context 
refers to gaseous atoms or molecules, and the system of particles is assumed to have 
reached thermodynamic equilibrium.

A random variable A" is said to follow Maxwell distribution if its pdf is defined as

It is required to show that the above is a time pdf and we proceed as follows. 
Our expectation is that

f(x )dx  = 1 ; then

dx

ax
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dx a2
Since x 2 = 2a2y

x

= (>/2y)‘ dx =
a2dy

= -?=dy(y[2y )a  y[2y

j  IcJye  dy  

2V2a3 f ”  I  -v ,
^ 7 f / 0 >*' *

_2_ 3 __2_1 1 
J R V2 ~  JR 2 V2
Since P^ = Vir, we have

2 1 1
F i 2 r 2 = 1  « E D -

2

This affirms that Maxwell distribution is a true pdf.

6.5.1 Moments of the Maxwell Distribution

/•on = ( xvw dx
J  —  CO

■ f  

J r
J0

V  dx
n

x2+re 2a7 dx 

Using the notates earlier, we have

When r = 1

I m - T T r H

2§ar2
~V^T

2ia 2?2a
V Z ~ ~ j T

When r = 2

£ « 2) =
?1+in2 3 2

Vtt P2 + 2
4a2 5

E(XT

2
i h 2 +r 2 +r00 2 T - ^ ~ a 3 + r e - y« 3 J< 1  1> 2 ? y z

. 1 1 f c o 2 1+J y 1+ J a r e - y
> T - 1 I  I  

'0  2 z y 2

dy

dy
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From which the first four moments can be derived

c- r 5 3 3  Since I -  = - r -
2 2 2

3 1 1 _  3 1 
2 2 f 2 _ 4 f 2

ypn 4
= 3a2

Var (X) = E(X2) -  [E(X)]2
/   ̂ \  2

= 3 a > - f e l

n
When r = 3

Since fa = (a -  l ) 3m n  =
25a32}

5 _ n
2 2z a3 22a 3 

V7T 7T

fc’O T  =
21+5a4 3 4
“ V T ”1 2 + 2

23 a4T j

= ~ V T ~ '

8a4-  r -  8a4- -  T-
2 2 _  22  2

8a4- - -  r-
s m ~  r n

= 15 a4
The third and fourth moments about the mean, i.e. n3 and ^4 can then be obtained as

/16
*  = 2a T " 5 J i

= a4( 1 5 - -

Finally, the coefficient of Skewness and Kurtosis is thus:

(3-i)1
5, = ~ 0.48569

5v - ^ t- 3  ~ 0.10818
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C H A P T E R  7

PR O B A B IL IT Y  G E N E R A T IN G  FU N CTIO N S (P G F )

7.1 Introduction
The probability generating function (PGF) for a discrete random variable is a power 
series representation (the generating function) of the probability mass function of a 
random variable X.
PGFs are often employed for their succinct description of the sequence of probability 
P[X = /'] and to make available the well-developed theory o f power series with non- 
negative coefficients.

Definition 1: The probability generating function (PGF) of a random variable X is 
defined as:

G,(t) = E[t ‘ )

- I  f  />[* = *].t
where:

Gx{l) is defined only when X take values in the non-negative integers 

P(X=x) is the probability mass function of X.

The notation Gx is usually used to emphasize the dependence on X.

7.2
1.

2 .

3.

Properties of PGF
The probability mass function of X is recovered by taking derivatives of G.

P(k) = P(X = k)= GlK)( 0) 
K\

If X and Y have identical PGFs, then they are identically distributed, i.e. if 
there are two random variables X and Y and Gx = Gy, then fx = fy.
The expectation of X is given by 

E(X) = G ‘(1)
Proof:

G(t) = F.(t*) = £ C P ( .r )

142

G \t)
dG{t)

dt
= £ * / "  '/>(*)

= Y j x Pw  => G(i>=

4. The variance of X is given by:

Var [X] = g1i,"+ g ;1)-[g ;„]2 

Proof:G;„ = Y x P<*>
X

Gtn = I ( x 2-x ) i> , , / '-2

=
J  X

o,„ =

(7,,,"= E(x!) - E(x)

G,., = E(x2) - g ;„

V(x) = E(X2) - [E [X )Y
r ~t

V(x) = E(X2) ■ M
But IE(x2) = <

Therefore Var [XJ - g„i + g ;„-[
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7.3 Probability Generating Functions

1. Bernoulli Distribution
The probability density function (pdf) of a Bernoulli distribution is given by 

?[X =x]=P'q'-J

(i) Mean:
Gx(t) = E[t*]

= £ j t 'P[X  = x]

= t°p°ql4) + t ’p 'q1' 1 
G*(t) ^  q + pt

Gl)=P
G;n = P = E(x)

(ii) Variance:

G " « - ^ a a
dt1

Therefore, G '(t) — p 
G"(t) = 0

But Var(X) = E(X2) - [E(X) ] 2

And Var<X) = G "(l) + Gl,„ -  iG'(i)]2 
This implies that 0 + p - p 2 =p(l-p)

Var(x) = pq

2. Binomial Distribution
The p.d.f of a binomial distribution is given by

where:
n is the number of observations 
;> is the probability of success 
ij the probability of failure

144

x  is the random variable

(i) Mean: 
G(/) = E [0

= £ f P [ X  = x]
»»»

= [p /+ 0 -p )]"

G(t) -  \pt+q\"

G '( . ) = ^ 0
dt

~ n \p t+ q Y  

G'(t) =n (pl + q)' 

G '( l)  =n (p + q ) ‘

P

P

P
G1 (1) — np=E(x)=Mean 
(ii) Variance: 
p"(t) -  n(n-l) (pt + q)n‘2 p2 
b " ( l ) ~ n(n-l)P2

•. Var(x) - G 1 '(ij + Gl,u - [C'cuj2

- n(n-l )p2 i- np-n2p2
2 ? 2 2 2 ~ n p *- np- np -  n p

■- np - np'
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= np(l-p) 
Var(x) = npq

3. Poisson Distribution 
(i) Mean :
G(t) = E (tx)

e~AX*
x\

CUII

=

G(t) =

G‘(t) = Xe~x^

G'(t) = /Uf'lw

~Xe° =

G11 (t) = X.Xe-*'* 

= X2e~i+il

G "(l) = X2e~i + i  =  X 1 

(ii) Variance :
Var (X) = GII(1) + [GI(1) -  [G'(1)]2]

= G"(1) + G '(1 )-[G i(1)]2 

=  X2 +  X  -  X2

=  X
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C H A P T E R  8

M O M E N T  G E N E R A T IN G  FU N C TIO N S

8.1 Moment Generating Function
The moment generating (m.g.f) is one which generates integral moments when these 
moments exists.
(i) For the univariate random variable X, the mgf is given by

«,(< )= ,-0  ,
Where t is a dummy variable

(ii) For the bivariate case -'e have corresponding

Where tKand t2 are dummies and the random variables X x, X 2 are jointly 
distributed.
(iii) In general for multivariate case, we have

(<„/„-(.)=  E{e... ......... -■)
The moment generating function Mx(t) of a random variable X is defined for all real 
values of t by

Mx(l) = l£{etx)

( YixetXP{x)'> i f  X is discrete 
[ / ^  e txf(X) d x ; i f  X is continous

Mx(t) is m.g.f. because all the moments of X can be obtained by successively 
differentlaity Mx(t)  and then evaluating the result at t  = 0.

Example: I f / (x) = X = 1 ,2 ,3 ,4

M M  = Z U i e ‘*fw

= - e l +  - e 2t +  - e 3c + - e 4t4 4 4 4
If Aj and Xx have the same pdf and Y = X2 + X2 

My(t) = £ [e t(*i+*2)]
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=  E(e“ ‘.e“ *)

« , «  = [M ,(0]2
=  i e »  + i . e3 .+ ± e«  + i . e« i . c«  +  i e« :l e «  + i eet 6 16 16 16 16 16 16 16

Example:
i y

Let Y be a discrete random variable with pdf x  — 0,1,2,

y=o yi

w

= r
y=o

et>'(Aet)>'
yi

y=0
=  =  p A ( e f - l )

v ( ^ f)y , t a « r) _ ^ f ( A 0 2 
Smce =  Z “ 7 T - Ae = — = 1 + 1 T —

y=o

MJ(t) = Ae(exp{(A(ef -  1)}
m;(0) = a

My(t) = (Aec)2exp{(Ael -  1)} + Aec exp{A(ef -  1)} 
=A2 4- A

V'ar(y) = m; ( 0) -  (Afy(O)]2 => A2 + A -  A2
= A

Obtain the l/a r(r) given that

Yar(x) = M;(0)-fM.;(0)]2

>49

For the discrete distribution. If X has a pdf / (x) with support {a1( a2, ...) then

« ,C 0  = X e" dw
R

= /(•.)«“ ■+ /(a1)«“ , + -
Hence, the c.d.f. at effll is = P(X =  aj). Thus, the probability of any value X 

say a f is the coefficient of e tVl.
Example: Let the moments of v. be defined by E{Xy =  0.8, r = 1 ,2 ,3,...)

Then
oo r  oo ^

Mx(t)  = M(o) +  ^  0.8 (—) = 1 + 0.8 0.8
r = l  r = l

= 0.2 + 0.8 ^ 0 . 8  ^  ??
r = 0

= 0.2eot + 0.8e“
Thus, P • X =  0) = 0.2, P(X = l+ =  0.8

m; ( 0  =  ^ e ( O

= *[£«(*“ )]
= E[Xetx)

Since the interchange at the differentiation and Expectation operator is allowed, we 

can assume that;

for discrete case
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• " / » * ] - / s « B,/r» * ‘
for continuous case

Example 3:
From an Exponential Distribution

Mx(t) =  £(«'*)

= J  etxXe~^
o

dx

= aJ  <T<j-(A-t)x

A
A-t

The above function is only defined for t < A

2A
m; co) = F

Var(X) = M »  -  [Mi(o)J

= ^ - g ) 2

f o r  t < A

A2
Example 4: Given prove lor (i)Normal Distribution

(ii) Standard Normal Distribution
An important property of m.g.f. is that the m.g.f. of the sum of independent random 
variables equals the product of the individual m.g.fs.
Let Z = X + X2 where Xi and X2 are independent with m.g.fs Mx(t) and My(t). The 

m g.f of Z is

Mx(t) = £[ef(x+y]
= E[etx.ety ]
= K(etx) E(ecy)
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=  0 x ( O -  0 y ( O
Also, the M.g.f. ol a random variable uniquely determines the distribution.
Example:

If X and Y are independent random variable with parameters (n,p) and (m,p) 
respectively. What is the distribution of X + Y.

Mx(t) = (Pet +  <?)n; tfy(t) =  (Pec + <7)m
•• t) = A#x(t). My(t)

(Pe‘ +<?)n (Pec +  q)m => (Pef + £?)n+7n
Example

Calculate the distribution of X + Y when X and Y are independent. Poisson random 
variable with means Aj and A2 respectively.
Solution

Mx(t) =  e ^ et~»
Mx+y(t) = Mx (t)My(t)

= e Ai(tft- l)eA2(et-l)

=  e W , - A 2 ) ( e ‘ - l )

Hence, X + Y is Poisson distributed with mean (A2 +  A2)

Example: If X and Y are independent Normal random variables. The distribution of
X + Y is

M*+y( 0  =  Mx(t). My(0

=  exp +  (px + p 2)t)

If X and Y arc independent discrete random variable with non-negative integers 
{0,1,2,...} as range with geometric. Distribution function 

=  q’P- with

m.g.f Mx(t)  =

What is the distribution of 7. = X + Y
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Solution
MAO = MAOMy(.t)

l - 2 qec+ q2e2t

Replace e f by z  we have

M 0  = (i-qz)2

= P2 2_^k + l  qkZk
k=0

The distribution of Pz  is a negative binominal distribution.

-i ve~ X
Examples: Let f a  = -------; x = 0 ,1, 2,

X !

M x(t)= 1 L e
e~l Ax

x**0 x\

=  e - * Y & y'  1  jrl v--0
=  e \ +  Ae

, (Z e 'f + + ... 
2!

-A  „Ae'— e e

8.1.1 Moment Generating Function for Normal Distribution
1  J / X - U \ 2

f w  = !( ¥ ) 2
M

V2n52
CO

A O  =  E(e“ ) =  J  e a f a d x

oo
/= e

1 -X *z£ \7
e b / dx

' f i n d 2

152

00 [(t ^) ~2B2tx
1 f  " «s»—

V S i j i  J  e dx
— 00

Note that

K* -  /O -  ^ 2t]2 = ( X  -  /t)2 -  2(x -  n)a2t + a2t2 
= (x ~ P)2 — 2x62 + 2[i o2 + a3t 2 

(x -  n)2 -  2S2tx = [C -  H) -  er2t]2 -  2\i6zt -  62t2

Mx(t) =
V 2 t c 8 2

u j

/ \[(X-n)~(T\2-2llS2C-lT2C2]
iP----------dx

A2 n a 2

If we I *f»y =  S 2 ± ± £  
6

dy
d x = ^ => dx = Sdy

MAO  = e" t+—

w
/ (pVTn

_yl
e 2 fidy

15 3
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1„t+££i f  1 _zi= e* 2 ——  e 2
J 0V2tt

dy

The function in the integral is a standardized normal distribution. 
Therefore.

Mx(t) =  e^£+ 2
since

f  —l = e ~ y ^  dy =  1 
J (p V 2n  — 00 •

Lei X~Nn(jin, A), then the moment generating function of X is given as 

Mx(t) = e*V  +

Proof
We know from Alternate Integral that

CO  0 0

j  ... J  e 2*lAXdxi. . .dxn = (27T)n/2|>4| 2
-00 -00

Where A = I  = variance -  covariance matrix
OO 0 0

= (2 7 T ) 'I |/ i r i  J  ... |  e x p [ ^ - i ( x - / i ) 2i4_1( x - / i ) ]  dx1 ...dxn
-00  -00

If wc Icl

L = tx " ( x  — a/)1/! 1( x - / i ) ,  then simplifying this we have 

L = -  ̂ ( x  -  yt -  At)x(x -  y -  At) + tV

154

tV
00 00

t H + r t  At r r r 1

M*(£) = (2ton/2u i v 2 / • • • / exp [ - 5  "

-A t) ]  dxa ...dx„

If we lety  =  x - y  -  At

» . 1 .1 , „ 00 «e c y  +  - t xAt r f  i , .

(27r)n/2|A|V2_.
CO -C O

By examining

J  ... J  e ~ 2yi/>~ly dy 1 ...dyn ,

=  (2tt)t1/2|A|1/2 i.e. Ankens inTeyrat

— 00 —00

Mx( t ) = ------- 77 r - ( 2tr) / 2|A|2
(27r)n/2|A|=

M(x) =  e ‘*y + ; t xAt

8.2 Bivariate Distribution
Let A' and Y be jointly distributed as

= exp {- (*+;>)}

Obtain the joint m.g.f.

Solution: M, ,.(/,,/,)= )
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= \ \ e e ^ * r)dydx.

= JJe-4'-',)-r<l- i ]cJxdy

Exercise
(1) Obtain the joint m.g.f if^x.r) = exp|~^(j:2+y ) |  -co<x,>'<oo
(2) Obtain the joint m.g.f. if

fu.r) = £ e A' 0 < x < y

8.3 Obtaining Moments from m.g.f

Since m.g.f. continuous and differentiable in /, it is easy to obtain r h moments e {x ')  
from m.g.f.
(i) The Univariate case

I  r \  «/,HE \X ‘ )= -jpr Mx[0\ where r is a posterior integral 

Example

The m.g.f. for the binomial distribution is

w , ( 0 = ( ? + /v ) r 

4 0  = J l MM = j t [q + Pel)

M',[l) = n(q + Pe‘f  '(Pe'j 
(o)= nP

£'(.v)= M \\ t )=  n(n -  1 fa + Pe')" ~(Pe' )’ + n(q + Pe1)" ' (/V )

M['(o)= n(n - \ ) P 2 + nP 

r  -

— n(n -  1 )P? + nP —n~P'

156

=  npq

Practice Questions

1. Obtain E X \ E X \  hence Kurtosis and Skewness of X

2. The m.g.f. of a random variable is (/) a(a  -  l)_l (/i')exp{ur + { rY  } 

Obtain the mean and variance of X  for (i) and (ii) above.
3. For the bivariate case

! f e ) = S ^ (ao)
K , . ' ,  (°.°)

For r and s non-negative integers.

4. ror K „ ,2(tl,t2)= a 1,a 2(at

Obtain E(X,),E(X2),e [x x ) E{x\)Var(Xx\  Var(X2)and C o ^X x,X 2)

5. Obtain the m.g.f. if the joint distribution is given by

v 1 2

0 0.2 0.3
1 0.4 0.1

Obtain the estimate of the means as in the above table.

(3) For M X) X; (/„ /,)=  expj/.m, + t7m2 + X-  (/,2r ,2)+ 2pr, r2 /, t2 + 1] x] 

Obtain the same mean as in (4) above.
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CHAPTER 9

C H A R A C T E R IS T IC  FU N C TIO N S

9.1 The Characteristic Function (c.f.)

The characteristic function (px(t) of a random variable X is the expectation of a 

complex function of X. It is defined as <px(t)= E(e'u)

(i) for the bivariate case

(ii) for the multivariate case, through characteristic function is given as
.t > (/,./,

Unlike the ordinary expectation, the characteristic function always exists.
This is because

| <PX (/](= \Ee,L'\ = \E(Cost x  + iSintx)j = 1 

Examples:

The characteristic function for the binomial distribution is given by

= ( / v + 9 )'

Exercise

Obtain the joint characteristic function for the following: 

(*) /(x ,y )  = exp{-(jc+ v)|

(//) f ( x ,  v ) -  —  expj - —(r" f  y ’\
2 n [ 2

(/«) P{x,v) =

158

:---
--

---
' 

"• 
 ̂-

f 
-

x /
/  y

0 l 3

l 0.1 0.2 0.3

2 0.1 0.05 0.25

).1.1 Moments from Characteristic Functions

(i)

at

for univatiate case: The rlh moment can be obtained as: E (x r)= prrf'fO) 

This is obtained by differentiating tpfyr times w.r. to / and evaluate the result 

1 = 0 , then divide by i[r).
(ii) For the bivariate case

E (xr H =  1 , f ' r ’ v o 1001E \X  i  ) ,{r+I) j V*.y

r ( y r ) 1 ^ ,r> a (00)

1 rrr,0,0)

9.2 Exponential Distribution
The p.d.f is given as

X <  X  <  00
The C.F. is

oo

eitx-e~X/°d7

- } { • * * >
dx

= 6 ~ \ e - 0~l -it
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(1-iflt)

01 (t) =  +£0(1 -  i0 t)~2

m1 = 0 1(O) =  7 = 0

0*(t) =  2i29 2( l  -  i0t)~3 
0 n (O) =  2 9 2i2. 

m 2 = 0 l l (O) =  2 6 2 

Var(r) = m2 -  tn\
= 2d2 -  92

= e 2

9.3 Gamma Distribution
A random variable is said to have a gamma distribution with parameters (t, A), A > 
0 and t  > 0 its density function is given by

fix) - r(*)
0

x  > 0 

x  <  0

where

integration by parts yields

T(t) =  j  e~y y l l dy 
o

= - e - v 1 | o + J  e_y(t _  1)y t

= ( t  — 1) J0°° e~yy l~2dy 

= ( t - l ) r ( t - ' l )  .
If follows that

T(n) = (n -  l)r(n -  1)
= (n — l)(n  -  2)f(n — 2)

160

T!
. . - ;---

--->—>

=  (n -  l)(n  -  2) ...3.3 f ( l )  and f ( l )  =  / 0° V xdx =  1

The Characteristic Function of the Gamma distribution is obtained as: 

0(0 = E(eicx) =  /  e itxf (x )d x

Aeitx-Ax (Ax)K- 1

I W / e^.A-^CA x)*"1
r(/c)

=  i l ; oox it-ic - a - io dx
r(k)Jo A
r oo e - ( A - “ ) x  A k x k _ I  ,

=  Jo ------ roo------ dx

0 (0  = ' W" ‘t)x <**

Using Laplace transformation, we have
Ak

Ak(A4)k(A-it)k

0 1(t) =  iU fc( A - tO _k" 1
i * AkA-k_1 k 

i ~  A

K )

mi = 0 l (O) =

m2 = 0 1J(O) =  + l)AkA-k-2

Var(x) =  m 2

M©
 "g

II 
1

+ £
f k \ 2 k fk \ 2- G e)

_  fc 
”  A2

+ » ~ ( l )

If X is a random variable of the discrete type [i.e.x  =  0,1,2,...] with probability 
function. P(X = x,) =  P(X), then the characteristics function of X is define by

«K0 =  £ (e ltx) = I * P fce‘tXk ....................... (1)
If X is a random variable of the continuous type with pdf/(x)
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(2)then 0 (t)  = E(eitx)  =  f*™ f w e ltxdx 

since [eicx] = 1 and T.k Pk = 1 or f ^ f a d x  = 1

then /_+rA x )fe£trl dx =  1

The summation in (1) and the integral in (2) are absolutely and uniforming converged. 
Thu, the characteristic function 0 ( t)  is a continuous function for every value oft.

Properties
(0  0(0) = E(e°) =  E( 1) =  1

(ii) [0 (0 1  =  |£ (e ‘“ ) |  S  £-|e‘“ |) =  1
Hence, |0 (t) | <  1

(iii) 0 (—t) = E[e~ltx) =  E(_Cost X -  i S i n t x ) = E(Cost x ) — iE(Sint x)

0 ( - t )  =  E (e itx) = E(Cost X +  i Sin t x) = E(Cost x) -  

iE (Sintx')
thus, 0 (—t) =  0 ( t) ;  a conjugate to 0 (0  

All c.f. must satisfy the above condition.

Example:
Let X be a random variable from the Bermoulli distribution. Obtain the Characteristic
function
Solution

0(t) = V
*—l k=0

=  Z i = o * =  0.1
_  gl'tOpOgl _|_ eiC(l)p1q°

= q + P e il 
= 1 -  P + Peu 

= 1 + P (e<£ -  l)

162

Example: The moments of a characteristics function can be obtained by continuous 
differentiation of the function (discrete or continuous) r time and dividing the result 
by ir

i.e. pr =  ; r th moment

Thus, = 1st moment

Second moment p2 =  1 ; P3 =  ■ /3 ;

Since 0 r (t) =  irx rf(X)eltxdx 

and 0 r (t) =  Z k irx rP(Xk)e itXk 
Example 1:

= iPeicp = i2Pelt 
0"(O) =  i2P

E(x2) = $ r  = P

E(X2) -  (E(X))2 
p2 = Var(x) = P -  P2

= P ( 1 - P )
= pq

Example 2: Suppose X is from a Poisson distribution the characteristics function is 
given by

co

0 W = I
x=0

, tCX/lxe •* 
x!

it-*x
- o o Y ^ '  )

= e L ~ * -
x=0

= e-*e* 'U =e*<-e‘l -V  

<p'(t) = \ teu . e ^ eit-V
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Pi
_  * '(o ) _  Xt _  , _  t -  £ -  A

0  (t ) =  Afe‘t.e A(eit

• = A ^ “ e ^ ' ,- 1>[Ae“  +  l]

0*(o) =  A?[A +  1]

cr2 =  M2 =  £ (* 2) -  £(JQ2 
=  A(A + 1) -  A2 
= A

Example 3: The characteristics function, and moments of the standard normal 
distribution is given as:

00

0 (0  = j  eitrf(x)dx
-00where

00

= 0 (0  = |  e*txe~* dx
— 00

1  /■ ”  _  f x 2 - l t x \  ,

= F ^ J - e (— J dx
By completing the square in the experiment

= J L . J e - U l z ± ) \ M ! . dx
■ F 2 n  J  \  2  )  2

00

1 f - i  ( x - i t \ 2 - t 2/
= f 2 n J e , (— ) e ' 2dx

164

- m  H P r f * ' - '

0'(O = - t  e t2/2; 0'(O = 0 

e W  = ^  =  £ =  o 

m 2 = E(x2) = * M  = t 2e - t2/ 2 - e- t2/ ,

i2

£ - 1 = 1  
“  i2

Var(X) = m 2 - m l  
= 1 - 0 = 1

Exercise:
Obtain m 3 and 77i4whatare your observation(m2,7n3)7n5)ableto equal to 

zero
For Binonial distribution

00

0 (0  =  ̂  e ltxPx (  1 -  />)»-*
x=o x

= £x (* )  (P <?ft)x( l  -  />)"-* 

=  {Peu  +  q)n

<t>Xt) = n(Pei t+q)n- 1iPelt

0 '( 0) =  inp 
<P2(.o)ma =  —  = np

F ar (A) =  n(n -  1)P2 + np -  n2P 2 
=nP (l -  P)
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0*(t) =  n(n -  a X P e lt) 2( P e uA-  q)n~2 +  in P e u (P eu  +  q ) n " 1 

= in ( n -  1)P2 +  in P  
m2 =  n(n -  a)P2 +  np

9.4 Characteristics Function of the Sum of Independent Random Variables
Let X and Y be two independent random variables with characteristics function’s 

e lCX and e‘Cyrespectively. Let Z = X+Y and let 0 z (t),0*(O ancl 0y(O denote their 

respective C.F.S. then

0 2(t) = E(elt2) = E[el«*+y)]
= E[eltxelty]
= E(eitx) E(eity)
<PxMy(t)

This can be extended to any arbitrary number of independent random variable’s
i.e. if Z = Xl + X 2 + - X n with C.F.S. as 0 z(t), 0 1(t), 0 2(t) +  - ,  0„(t)

then

02(t) = 0i(t)02(O02(O -  <PnCO

Example: Suppose two independent random variable Xi and X2 have POl (A*) and
POI (A2). Determine the characteristics function of Z = Xi - X 2
Solution 2r „ - A 2

= r ) = l 2 f _
r! "  J r!

W i = r )  =  ^ r - : P ( X 2 = r )  =

0*x(t) =  0 X2(t) = ^
But the C.F. of (-X 2) is

0x: (O =  ^

0 Z(O =  e ' * * - ' )
e [A,e‘c+Aze lC-/ti-A2J

0 1 (0  = a ,  -  A2e(A>e<t+A2e' “- A*-^]

166

_ 0 i(° )  _  , .rrij — ; — /Ij a2

02 (0  = t'2(Ai - A 2)2e( 1 

P2 = Ai +  A2

Example:
Let X, Y and G be two independent random variable with binominal distributions and 
let the characteristics function of X and Y be respectively.

M O  =  [ i  +  P («“  - 1)]"1 
0 2ct) = [1 +  -  X)]"*

w o = [ i + p ( « “ - i r
‘ Consider the r.y z = X + Y + G 
Because of independent of X, Y and Z

0z (0  =  0 l(O 0 2(O 0 3(O
= fl + P{elt — l ) ] n»+n*+n3

The above is a binominal distribution where the addition theorem for the binominal 
distribution holds.

9.5 Some Special Probability Distribution
These are probability distribution of special importance in either theory or practices.
9.5.1 The One-Point Distribution
A random variable X has a one-point distribution if there exist a point x0 such that 

P{X = x0) =  1 (degenerate distribution)

We say the probability mass is concentrated at a point.
The distribution function is given as 

_  fO.x <  x 0
~  U.X > x 0

The characteristics function is defined as

0t(O — eitx° 
m, = 0 ' (o) = x0

m k = 0 (k)(o) = x£k)
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Var (x) =  m2 -  m* 
xg -  xg  =  0

It can be shown that if the variance of a random variable X equals zero, then X has a 
onc-point distribution.

Proof
Since expression [X -  £(X)]2 > Oi.e. non-negative 

Var (x) = £[(* -  £ (x )]2 =  0 
Iff. P[X -  E(X) = 0] =  1 or

P[X = £(*)] = 1
Thus, we find that the random variable X has a one-point distribution.

9.5.2 Two-Point Distribution
A random variable X has a two-point distribution of there exist two values xx and x2 

set.

P(X = xa) =  P, P{X = x2) = l - P  (0 <  P < 1)
If we put x, = 1 and x 2 =  0 we have

P{X = 1) =  P, and P(X = 0) = 1 -  P 
Then the above qualities as a zero-one distribution.
A very good example of a zero-one distribution is the Bernoulli Distribution 

0(0 = Pelt l + (1 -  P)eu 0 
= Peil +  (1 -  P)
= 1 + P [eu -  l )

0'(O = P 
0 (0  = P 
0'"(O = P

For every K

mk = P

Pi = Par(x) = m2 -  m2 
= P -  Pz 
= P ( 1 - P )

168

**
 ct -tl.

Show that /j3 = m3 -  3m1m2 + 2m\
= £(1 — P )(l — 2P) and

Exercise
Obtain the mean and variance function for each of the following: 

(/) r f '  = e x p j i> / - - i r V j

(/7) f f 1 = a [ a - i t Y

(ui) ( p t h ) = - a . r f a

9.6 The Inversion Formula
The characteristic function corresponds to a family at distribution which is obtained 
by adding an arbitrary constant to a d.f. o f a random variable. The inversion formula 
is a tool that can be used to get back the original distribution function on the entire 
real line if the characteristic function is known.

Theorem
Let F{x)and tf>{'] be the cumulative distribution and the characteristic function 

of A' respectively, then for given real numbers a and b, the inversion formula is 

defined as

F(ll] -  F, , -  P.im —  f -------
,n| f — 2 tt l  it

Proof
c

‘ 2n  J it

4 i ]dt

First we need to show that |<P,l' ,|^  that e -  e 
it

is bounded.

169

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



< E^Costx+ 1S int x\

£ E[Costx+iSint x) [Costx+ i S int jc)
< e (Cos21 x + iSin2t x)

i e\<P['] 1

< lje ‘*<fc|
a

Cl
/•

<jdx Sin is |e",uj < 1
<l

< b - a  hence bounded.

Now it is possible to apply the Fubini's theorem to Ic as

- J  r e""* -*
2/r it i e‘udF{l)dr, (a<b)

- s i // (x)
Where ey',JC-°>_e"(r '’•can be written as

Car/(x-  c) + iSin t ( x -  a ) -  Cost(x-b)+ iS in t(x-b )

. j  _ _J_ j  j  Cos-/(x -  a) +iSin /(x  -  a)-Cost  (x -b )+ iS in  l(x -  a ) d t ) ^

multiply numerator and denominator by i

I r 2i (  Cost (x -  a)+ i Sin t(x - a ) -  Cost (x -  b) + / Sint(x -  a)dt) \  ,
= 2tt}x i [  it y  "
asC ->x>

170

= — J — j /  Cost ( x - a ) -  Sin t(x -a )+ i  Cost ( x -b ) -S in  t(x -  b)dt}JF^

Since the integration of a Cosine function gives a Sine function which will later 
vanish

-  J . j  Sin t(x - a ) -  Sin t(x -  b) ̂

By complex integration [ ̂ ‘n- Vdv = —
{ v 2

and ^  dv = ~SgnP  where

Sgn P =
1
0
-1

it
it
it

P> 1 
F = 0 
P< 1

Corollary: (Modern Probability Theory, (1985)
(1) Distribution function F  of a random variable and its characteristic function 

determines each other.
(2) If FJxJis the d.f. of a random variable then by definition, it determines the 

characteristic function uniquely.

Proof:

If Fand F 1 are the two d.f.s. corresponding to a given characteristic function 

then from the above theorem.

^ , - ^ , = ^ , - ^ 1  (*><■)

At all the common points of F  and F 1.
Allowing b to vary for fixed a

K.\ - = = a constant

Bui F ^ - F ( +  qo) — 0. Allowing b to increase infinitely through continuously points 

of F  and F 1. This implies that F ^  -  F{u) -  0 and hence continuity points of both.
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j Sin f( x - a ) -  Sin t(x -  b)^

k k .  ,---- + —= 0; x<a, x< b
2 2

0 + - j  = \ x = a, x < b

y ^  + y ^  = x \ a < x < b

-* /^  + 0 = y^ - ,x < a,x = b/ ^ _ /^ = 0 ; x > a ’ x > b

■ -  Jo-dFu) + j +  j W „ ,  + J - ^ ,
-* -II -* -«

= (̂o+Ol “ ^u-0) + I f a )  ~ V . )  + ^  [̂ (o*0) — ̂ *(o-0) 

“ ^*) “ (̂U)

II' (i and /) arc points o f continuity of F .

Example:

If <p\'] = [q + pe" )", calculate the p.d.f of a random variable X. 

Solution

7T -> CO

Given ^J'1 = (<? + pe")’

172

\ e‘' (g + p e ^

2*-J,

- £ J ' - £ C K ' ‘*
= P V  J J c o j f ( x - y ) - i S ,/w /(x -y)rf/

Let //  = /( .r-y )

i
= ̂ Z [ J - p V _/2 J C a y /(x -y ) - /S w /(x -y )*

But

_ rS & i/^ -y )* r C<»/(x-y)
I ( x - / )  0 J (x -y )( * -y )

= /r -0
F T )

■ - S  "
* r A j .
rim

= zi*a\J,

/> V " '

/ > V '

7 ;
/> V "

OR
/ - v ;(3= w/ v

/ / ■ ^  ( f - x )  f i r - *
J ? ( f  - x) /w/s | t “#/#”

,  J O ?  ( C i s L f i a ; -
•#>  > > (/■ -x j /* w li

1 7 3
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PART TWO

174

C H A P T E R  10

IN T R O D U C T IO N  T O  M E A SU R E  T H E O R Y

10.1 Introduction
Probability theory is a part of mathematics which is useful in discovering the regular 
features of random events or phenomenon. In probability theory, the sigma algebra 
(which we shall define later) often represents the set of available information about a 
phenomenon. A function (or a function of a random variable) is measurable if and 
only if it represents an outcome that is knowable based on the available information 
about the experiment, the event to which it belongs and the probability function.
For us to understand how a probability measure can be obtained, let us develop an 
abstract model for the probability of an event particularly for infinite sample space fl 
from a specified experiment.

10.2 Abstract Model for Probability of an Event
I.etfl be the sample space such that H = {w* i =  1,2, 3 ,........ }
w, are called indecomposable outcome or simple events.
The is a decomposable or compound events, that is Ex = {wj i = 1,2,3 }
The elementary definition of probability is

r , ( r \  _ No o f  fa v o u r a b le  cases
^ '  T o ta l n u m b e r  o f  ca ffles  ...................... '  '

Since events are subset of H , it follows that the union and intersection of a finite 
number of events and the compliments are also events.
(1) For the model of mirror reality, the operation above can be represented by 
A, B, A U B,A n  B, A , B . That is all statements about events can be written in terms 
of u,.n.
(2) A random for defining probability in term of weights is to allow for the fact, 
that some events are more likely to occur than others. The weight of a set is just the 
sum of the weights associated to each point in the set.
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Let ft be sure event, the impossible event will be (p. Let A be a non-empty class of 
subset of ft called events. Let P(be the probability) be a real-valued function defined 
on A. Such that P(E)denote the probability of event E.
The pair A, P is called the probability field and the triplet (ft, A, P) is called the 
probability space.

10.4 Axiom for Finite Probability Space
(i) If Ej 6 A for i = 1,2,..., n then

n n

| J e< G A and f~ | Et G A
<=i i«i
0 0  If E G A .then E' 6 A
(ill) If E e  A . then P(E) >  0, also P(ft) = 1
(iv) If E and F are any two disjoint events, then P(E + F) =  P(E) +  P(F)
(v) If A, B and C are any events, then:

PiA i) + P(A2) +  A3) =  P(Af) + P(A2) +  (PA3)
= P(AX) + P(.A$A2)  + A \A \A i  +  -

The number of possible outcomes of an experiment (E) may be finite ot infinite.
Let w denote a sample point (an outcome) from the experiment.
Let ft denote the totality of outcomes of E i.e. ft =  {w1( w2, ...}
Let event A={w: w< eft}be a subset of ft. e.g
(i) B={Wj -  oo <  w < co); all values on IRL
(ii) C={wi: a < w < b}-, all values in the range (a,b)
(iii) D={w,: w0); a singleton.
(iv) E={w,: Wj, w2, }; a doubleton.

(v) F={w: iv. = 0); an empty set.
The class of all subsets of f t  is called the power set of ft such that if f t  contains n 
points, there are 2n subset of ft.
Thus, if f t  is finite, the number of all possible subset is also finite.
The power set of f t  when ft = {w,. w2, w2. w4) => 24 = 16
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Any collection of events is a class of events. Classes will be denoted by A, B, etc. 

Example
Let ft be the real lineR containing all the real points w. i. e. ft =  {w: — oo <  w < 

oojalso let
A -  {w : we(—co, a)} and 
B =  (w:we(c,d)}

Define:
(0  A n  B ; (ii) A u  B\ (iii)Ac and Bc and give your assumptions
(iv) Show that the compliment of an interval need not be an interval.

Solution
A r\B  = <p i f  a < c < d

= (c,a) i f  c < a < d 
= (c,d) i f  c < d < a

A U B = {w: either WCA o r c < w < d } will not an interval i f  (a < c < d)

Ac =  (w:a <  w <  oo)
Bc = (w: <  wor w > d)
Ac n B = B i f  a < c < d 
Ac U B = Ac i f  a  < c < d

BCAc i f  a < c < d

On your own. define the above if c <  a < d ■ or i f  c < d < a 

Sequences and Limits
A sequence of sets is an ordered arrangement of sets in order of magnitude 
.Monotone increasing sequence: A sequence of { sets  {/ln} is said to be monotone 

( increasing if An Q An+, for each An.
If the sequence {/!„} n =  1,2,... is monotone increasing (non-decreasing) if for every 

n, wchave An+1 3  An
Then the limit of (/ln) is the 3mm of the sequence i.e.
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A = Y  An =  lim AnZ_j n—oonil
or

k =1 k = l
= {w: iv belonging to all Ak except Av ...

CO

Sup
= i >

k = T

For any arbitrary monotone increasing sequence {An), the limit is
OO OO

C = linAn = li sup Ak = |~ | Ak [J Ak
k= l  k=n

Monotone decreasing sequence: A sequence of sets {An) is said to be monotone 
decreasing if An+1 Q An for each An.
If {An) n: 1, 2 ,...) of events, is monotone decreasing (non - increasing) and for every 
n we have An rj An+1 , then the limit is the product of event [An) i.e.
A — Final An — limn_oo An or

= {w: iv belonging to at least one o f  An, An_ i ...)
n oo

ri/,',=‘4 i e A n l A
k= \ k - 1
For any arbitrary monotone decreasing sequence {An},the limit is

OO

In f

n■ a OO

( J ' 4* = An; U  a ‘ = a i. e. An T A

k=n

Limits: B -  UmAn = lim inf Ak =
k - l k = i

Note that

(0  linAn £  linAn
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(ii) The limit of {An} is said to exist if limAn =  lim An =  A,

(iii) If {A^} is not monotone and A exists then An —» A i.e. An converges to A.

(iv) Even if 1im An does not exist, limAn and lim An will always exist.

Example:
Consider the sequence {4n} where

A„ = w: 0 < iv < b +  ̂ ^ " /n ; (b > 1)

Does the series {An} converge?.

Solution

fiv: 0 < w < b + —\ ‘, i f  n  is even,
Let Cn =  * nJ

[w: 0 <  w <  b +  ( 7 (n + x)) j ; i f n i s  odd

limAn =  {w: 0 <  iv <  b)
Similarly,

{ [w: 0 <  w <  b -  (Vn)]l t f  n s 

[iv: 0 <  w < b -  (V (n + X) ) ] ; i f  n is even

limA„ = {0 < w < b]

Therefore, lim An *  limA„
Hence. {/!„} does not converge

Exercise:
If An = A: n = 1,3,5,...
= B:n = 2,4, 6, ...

Show that lim An = A u  B, limAn =  A n B 

When docs lim An exist.
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Exercise:
Examine the following for convergence, if convergent, derive the limit;

W  ^ -  =  (0 ,V 2 n ) .^ " «  =  [ - l .  V(2ntI)]

tb) An = | the s e to f  rational in ( l  -  1/^n  +  ^  1 +- */n)j 

(c) An = 2-1/n, 2 +  2/n), n is odd.

10.2 Obtaining Countable Class of Disjoint

Lemma 1.1: Given a class =  1,2..... n}of n sets there exists a class
{/?,-, i =  1, 2.....n) of disjoint sets such that U”=i At =  Ef=1 Bt

Proof: By induction 
A^ U A2 = Al + ACXA2 

= Bx + B2 = E?=l B( (say)
This is true for n = 2
Suppose it is taie for all n < m > 2

Then =  ( U ^ / l i )  U /lm+1 •

=  Z r . i» i  + ( E ^ M m+i
m

= ^  Bi +  Bm +1
i=t

Where /im,, and are disjoint. The lemma holds for n =  m +  1. So Bi c
V-'
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 'Sl> vv
 .a- Corollary:

p |  /l, =  i4x +  A\A 2 + ACXAC2A^ + -
£=1
If

co
W 6 P j  Ait then w belongs to some /lf

i=i
Thus w may belong to Ax or Acx or Acx or A2 or A \A \  i.e. w G Ak for some k. 
=» iv £ U ?.i establishes equivalent of both sides of (*)

10.4.1 Definition: Additive Set Function
A set function /u is said to be additive if V A,B,sJ. = <p(A) + <p{B) and by finite

induction.

= ), V-i-t- j  A, fl = (f

Note
• Once the value + oc,-oojs not allowed i.e. <f>*-co

• If all the values of <p are finite, then (p is said to be finite i.e. |$o| < oo

• If every set in a given class d is countable union of such in d and which is finite, 
then (p is said to be z -  finite.

10.4.2 Continuity of Additive Set of Function
An additive set function is said to be
(i) Continuous from below if

for every increasing sequence \En} t

(ii) Continuous from above if 

</\ f E„]=r- (_f (p{E„)\A
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For every decreasing sequence {En} 1

s.t. <p(E„) < co for some values n = n0 and hence for all n i> n0.

A set function is said to be continuous if it is continuous from above and below.

Theorem
Let cp be finitely additive and continuous from below, then f i is t  -  additive. 

Proof

Given a sequence of disjoint sets{£„}, then

Let N be a finite number, since (p is finite additive, then

V.ns| J » “ l 

N N -fl

S X s I X»i»i n“  i-V . .
Let Sv = En be an increasing sequence

l»«l
(p\?im S y J= Cim tp(Sn)

■ # ■ )

By finite additively

nsI ns|
(pis r -  additive.

1 8 2

Theorem

The probability function Plmi is a set function that has r -  additive property and hence 

is a measurement space.

Krample: Let (O..F) be a measurable space on which a sequence of probability 

measure Pi,Pl ,...Pu... defines a set function.
< j

Show that P [ E )d . / ^ J—  /^,(£)is an additive set function.
2" .,

Solution
It is required to show that 
(0 0 < /? .,< l

(ii) Plm, is counrably additive and is a measure

(iii) Prove that P(f2)=l

(y) t̂£) = ~  ̂ (E) + ^ r P:(£) + JT PJ(M + ”

but l- P ,m 2  0. - L p 2lE)> 0 ...

and +
2-

y - i - .  s - 2 _ = _ l » i 
n r2 n “lfl * i - r  i _ y 2

0 </>.,< I

(ii) 1.x! 1/i, i be a sequence of disjoint set, it is required to prove

/« i | , » . . \ >  i )• * v.y __ '» 1

from i .1’ c
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4
1=1 /  nm |

* 1  ®
= u *U-i /

= t ± t r M
nm | ^  1=1

Since each of /*„ is a measure and 0 < P(t) <  1
*

■■■-I
1  1=1 , 1 ? !L«-i z J- Z ' W*-i

= 2 > U ) * i
i-i

- Z ^ )1-1
^.)is countably additive.

(Sii) = 1 ^ . ( 9 )

= ± ±  (1)*=l z

1 1 1 . 
2 4 . 8 -

>1 • S in 6 S K =.—  = - ^ _  = l 

• -1-  ^  :

10.5 The Halley-De-Moivre Theorem

Theorem: Let { f jb e  a class of events each of which belongs to a r -  field 91, and 

each of which may or may not occur. Then 

P\at least one o f  the event E\ occur}

= / f O £. ) = ! > ( £ . ) -  Z ^ . n £ j +  Z r a . n £ / n £ ‘ +( - T l« ’(n £ ,)
V i  = | /  » « l IS  li j& n  IS 1<  7< *S » i

1 8 4

Proof: (Using mathematical induction on n) 

for n =  l:  P {E,) =  )

for n =  2: P (E , [ J E 2) =  P f c ) + P (E 2 ) - P ( E xV \E2)

The result is true for n = 2

» = 3: />(£, U £ 2 U E, )=  />(£,) + P(E2) + P(E,) -  P(E, R E2) -  P(E, R £ , ) -  P(£2 R £ 3)
+p(E ln £ , n E J)

Assuming it is true for n and also tme for n = m -1, we have

p (£ ,U £! u ...U £.,.i) = / :( u £. 1 = Z />(£ . ) -  i > f e n £ y)+ I f e n ^ n s y )
V  i - i  /  <■ ! i< /< y< o«+ i i s i < y < i & n + i

t ( - i r !p (£ ,n £ 3n ...£„ .,)

« = m : i { y £ , l = / ( [ j £ , U £ . ] - i p ( £ , n £ y n £ „ ) +  x ^ n ^ n ^ n * . , )
V i - i  y  V  i - i  )  i s < s y s * s o » - i

1 r  £(£, n  e 2 n ... n  )

Assuming it is true for it = m, we need to prove that the theorem is true for n =  m +1

m
Le tE  =  [ jE n then

/-i.^ Q e ,.J = P ( E U E .J
= ! > ( £ , ) -  Z p ( E ,n £ , ) + ( - i r

«■ I

+ ( - i r p [ f V
v .- i  y

ISi</<*>
+ z ^ M ^ n  £,)+ ...

IS/< j<kSm*i

This implies that the result is true for all positive integers n.

1 8 5
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Erwuupie:

Lc-i 11 be events which belongs to a r -  field %  shew that^e  probability

that exactly K events occurred out of n is given by

i < -r.O
'—

- I K
n + k \

m
Where S, * fl Ea f | ... D £» )

From Halley-De Moivie theorem

)E.] = Si - S 2-+Si - . . .  + ( - l} - 'S ll
<«i J

If k = 0, no event occurred:

-“(A*, U£, U...U £ j  -  1 ■- / ’(ft'U E, U -U £n)

= 1- S’. r V o . t f - S . ,
, . -  P{nOn o f  the events occurred)

Example 2: . . .
Suppose /r letter and corresponding envelopes are typed by a typist. Suppose 

further that the messenger, who is in a hurry to leave for the post office, randomly 
insert letters into envelopes, thinking erroneously that all the.letters were identical. 
Finch envelope contains one letter, which i.e. equally likely to be any one of the p  
letters. :
li) • Calculate the probability that at least one of the letters is inserted into 

its correspondence envelope.
(it) Find the limit of this probability as N -» oo

■ft

m

Sotuttrn:
(j) Let l:\ denote the event that ihe i h letter and envelope •march

C:( ’M y V - l ) /  C\ n ( N - 1 ) N - 2 ) ;* '"  ^  >/!
r y~ r3 X4

-■ l-  r 1 Since e 'x = 1 - x  + :----—  +  ----- ...
.. 2! 31 • 4!

6V-I ‘

{i.e.Pmi?(q/'l or 2 o r3 or...or N match) envelope ■

.v..p(|Ji:, j -  i -er'1 = 0.63212
V<»i .>

( n )

.  = 0.6

Takirfe limit as N  —>x>

_  l r
______ j

1 .
L  ___  4 -

2!
i

3!
” I

4!

1 + 1 1 1
_____ .1.

1
2! 3! 4!

10.6.2 Countable Probability Space
Sometimes it is impossible for all the sample points in a fi to be equally likely. 
Hence, each P, is viewed as unit probability mass among the sample points following 
a certain rule or law. This law is sometimes referred to as probability distribution.

Example: Fora geometric distribution 
Suppose Q = {0.1. 2. ...}and

/ » , , * ( \ - 6 ) 0 \  x  = 0. 1,2...... (0 < ^  < 1)

187

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



Then Pt -  P[x) > 0, £ / | v) = J

If ACO^then P(a] = Y j P[a '
xO.4

Poisson Distribution

C-et <fi= fo, 1. 2 ,...} and A is a class of all subsets of £1 If P specifies that

e lX
PU) = x! (X> 0\ x  = 0, 1, 2,...

T^en P(s\ is a Poisson distribution and X  is a Poisson random variable

Definition 3:

A class of sets A is called a field or a -  field if and only if the following conditions 
hold true.

1. If E, 6 A, then U"=i Ei 6 A
2. If E 6 A, then E' G A 

From the above, it follows that
3. If Ej 6 A implies U"=i Ei G A

Example h
A = {fi, 0}is a field.

IB = [A, A }is a field C = {A, H, 0} is no t a field, since A g C
G= (A, B . A B . A  U B.A U B ,  a  U B ,A  U B , A B ,A B , A B , A B ,  fi,0 } is a field. 
The class of all subset of a given set fi is a field.

Example 2:

(1) Let fi =  fa, b, c, d} and 5 = {{a}, fb, c, d}, fi, 0} 

i-e. ? a field? Yes P(a) =  ^ , P(b, c, d) =  ^

//ps-CQ, l;, P) is a probability space.
Yes, since  ̂forms a field.

1 8 8

,2) From (1) let \  =  {{a}, fb. c}, fd}, fi, 0} and P{a} = P{d} =  V 4 c) =

Pffi} = 1, P {0} = 0.
The triplet (fi, L P) is not a probability space since  ̂do not form a field.

Exercise
(1) If fi = {w1,iv2}and IF =  {fi, 0}
Show that F is a o -  field.

(2a) Is f  = {/Ft, £2» ■*•.£*} afield.
(b) Hence or otherwise obtain all the elements of the a -  field of t.

(3) Consider the sample space
F =  {0{W!, w2}, {w3, w4}, fi}

\ f  A =  = {w3#w4}
Show that F is a field; •

Exercise:
Let Er,Ei, '..,En. denote an infinite sequence of events in a — field A.

Define
, " W . .

m=n . •
OO

B„=
m - n

(a) Prove that BnCEnAn V-n .

(b) Show that {/4n} is monotone decreasing.
(c.):show that {fln} is monotone increasing.

10.7 Sigma Field (o -  Field)
A non-empty class of sets which is closed under complementation and countable 

unions (or countable intersection) is called a field.

Note:
• A field containing an infinite number of sets may not be a 0 -  field.

1 8 9

M 
I

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



Into section oi an arbitrary number of a — fields is a o -  field.

1 0 .8  B o r c l  H e l d

Hus is a subset of the real line. Let C be a class of all intervals of the term 
(--oo, .v).* G IR as subset of the real line !RL Also let ( 0  = Tl be the minimal field 
generated by d.
f hen 'ft contains the intervals of the form [x, oo) (i.e. compliments of (—«>, a), it also 
contains the intervals.

(-<»,a | = n  ( - 00, a + “ ). by coutable intersection 
, ' (a.oo) = (-oo, a |“ by complimentation

(a.b) = (—co,/;) n (a, oo),a < b 
(a,b\,[a.b).etc fo r  a.b G K.

I enuna
1 ct be the class of ail intervals of the term ({,b),(a > b)a,b e IK but arbitrary. 
Then a ( t \  = V).
Proof: By (*) (overleaf) a.b.cty  for all a, b. Hence,
By definition of minimal field. a ( t x) c  
fo prove inclusion 
Let x e (a.b) then.

U“  i( - n . x ) e o ( e x),V 

=> (-oo.Jf) a (et) ^ x

l' c  rr(/',) as defined in the last example.
If is also possible to prove that die Bore! field is the minimal field containing any one
of the following-

e, = {(—oo, x |.x  6 IR} 
f ;i = ((a.ftl.fl < b.a.b e r- ’ 
f  , -  ([a. b I, a  < b . a . b  < ■'}

C,, -  {|a.b),a < b.a.b e IK)

— 11 a c o ) ,  v t- IK) . t c .

: mi

i

10.8.1 Borcl Set
Borel field and Borel sets play a very important role in the study of probability. 
Monotone field: A field A is said to be a monotone field if it is closed under 
monotone operations, i.e. if lim An e IF whenever {IF} is a monotone sequence of set F. 

i.c. Ane F./t,, T A => A e F 
A„e ¥.An l  A => A e F

Theorem: A a -  field is a monotone field and conversely.
Proof: Let A be a a — field and Ane A. If An T A, then A = U„ An\s a countable 
union sets of A\. Hence A e A. Similarly, if An l A.A = C\nAn is a countable 
intersection of sets of A.

••• A e A\, hence, A is a monotone field.
Conversely, let A be a monotone field and let Ax, A2 .... be sets belonging to A.

Then
n
( J  Ak and
k=l

n
j "~j Ak belong to A\ since A is a field.
k=l

These are monotone sequences whose limits ( J  Ak and p |A k
k= 1 k=1

must belong to A.

Thus A is a a -  field.

10.9Kandom Variable in Measure Space
l et ft be the sample space with sample points w. Interest is usually in the value n*) 
associated w ith w.
(a) Point function: function on the space ft to a space ft assigns to each point 
w e f t  a unique point in ft denoted by X(W). Thus X(VV) is the image of the argument w 

under A' i.e. value of X at w f t  —— » Q'
i/rnuw n r u n g r

The set Q* = |X(lv): we ft| which is a subset of Q’ is called the strict range of X.

If i f  £1" => X is a mapping from ft to ft.
The symbol X(vv), etc will be used to denote functions even though they denote 

values of functions.
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Kxample 1:
Let n = |0, ±1, ±2,... |; ft' = (0,1,2,... |

ft = 10,1,4.9...,]; i f X {w) = w2

Thus .Vis a mapping of ft into and onto Q*...0 0i - 1 ii- 2 2±  3 3
iv, = w2 => X(wl) = X ^jone -  to — one 

In this case X(wl) *  X(w2) A w, = w2 

X(w) =  w2is not 1 — 1 function 
Since w, = 4-2, w2 = — 2 have the same image 

X(w i) = 4 = X(iv2)
If ft is the real line (-co < w < co) and ft = (0 < w < co)then X(w) = exp(w) is a 

1-1 onto function from ft to ft and 1-1 from ft to ft. If the range space is & or its 
subset, the function is said to he a .numerical’ or ‘real-valued’ function.
(b) Set Function

II the arguments of a function are sets of a certain class, then we have a set 
function. Suppose Zl- E A\, we associate a value p(/l), (say) then n is a set function. f.i 
may represent entity such as weight, length, measure, etc.
The interval (a,b) may be associated with b -  a\ f(a ,  b) U f (c .d )  = (b -  a) + 
(d -  c), etc.
I wo real valued function X and Ton ft are said to be equal iff X(iv) = Y(w) V- w e ft.

i. c. X = Y
Or X ^ Y  iff. X(W)̂ Y lw)

II X(W) = C F w eft, then X  is degenerate.
(c) Inverse Function

I he set of all points w e ft whose image under X  is w1 is called the inverse of {w1} 
denoted byX~‘({w}). The

X_1((w}) = {{w c“ft}: X(vv) = w1)

Note that for a point w' e ft12 one or more than one points in ft whose image under 
X is w l. Let /!' c  ft1. The set of all point for which X(W)e /?1 is called the inverse of 

/Sunder X denoted by X-1  (H1)- % ,

With every point function X, we associate a set function A”-1 whose domain is a class 
s(j of subsets of ft and whose range is a class'^ (say) of subset ft. Then, X-1  is called 
the ‘inverse function' (or mapping) of X.
X ( B )  = |X(w):w E  B \ . B C a

X ~ l ( y )  = \ B  ( B ■): B e y  I
X -I( f t)  = [w:X(w)c f t| = f t

Lemma:
Inverse mapping preserves all set relations.
Proof: Let W c  C c  ft’, then

X '(« )  = \w:X{w)e B \ c \w.X{w)eC\ = X ~ \C )
(d) Indicator Function 
A real valued function lA defined on ft as

xa _  (=  1 if w e A 
' " A (=  0 if w e.Ac

is called an indicator function (characteristic function by some authors). The strict 
range /,,is /„(ft) = (/„(w): weft} = {0,1}. If B is a set function and B c  R, the range 
space then lA l(B).= <j>. ifB does not contain '0' or T  

= A, if U contain 'T  but not '0'
- A(\  if 13 contain '0' but no t'T  
= ft, if 13 contain both '0' but not'T  

Thus IZl(B) = {<p.A.Ac.n} = <x(/l)
Clearly Cl/X lakes value C on A and 0 on Ac 

Hence. (CI.JJU = l^(.A)

Properties
(i) If A c  H <=> lA <  lB
A r =  13 <--» l,\ = 1 .m
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/„ = /2(/t) = l A(.A).!n  = 1
(ii) l(A(:) = 1 -  [(A ); l(B—A) =  1(B) -  >A 

o n »i

m u . u  = f^ j^1 = I >
j=i t=i

= min (Iai*-—Un)
0 V)*(AuR) ~ U +  *B ~  IA- ' b “  maX Oa- ' b)n*(A+B) =  *A +  1 [ J  A i =  ^  l A i ^ l A i A Ai +  ^  1A i ^ * A i A Aj +  A k i= i i= l i= i

Let Bk c  fl ,then w eX_1(n Bk) <=> X(W)€ n Bk

<=> X(W)€Bk Ft 

<=> w €X_1(Bk) f1t 

«  w e n  X_1(Bk)

Hence, X"'1 

Similarly,
k ‘

(as above)

(iii) weX~'(Bc) «  X(W)€l3c ~  XM  € B

<=> weX-'(B)  
.■.X~'(BC) = (X -‘( S ))c 

Clearly ( f t )  = [w:X(Ml)cft') ^ f t

X~'(<f)) = 0. (prove)?

Corollary: (A)

If A\ is a field, a class of subset of ft, then the class of IB o f all sets whose inverse 
images belong to A is also a o -  field.

194

Proof:
l*i.B ...........................................cA00

(=i

=> P |  B.elB
1

Thus, B is closed under countable intersection. Hence, IBis a o -  field.

10.9.1 /(A) as a Measurable Function

Since lA '(B) = {<plA,Ac.Cl} = <t(a)
Let A\ be o -  field in fl. If/If A, Acalso belong to A and lA 1(B)eA =* A eA 
Thus, /„is A -  measurable iff AeA .

10.9.2 Induced a  -  field
Let X be a real valued function on ftand Bis a Borcl field. By corollary A’(overleaf) 
the class of Sets X~ x(B) = B cB} is called the o -  field induced by X.

10.9.3 Function of Function
If X is a function from ftto fl and X is a function from fl to fl , then the function 
X (X’(w)) from fl to fl denoted by X X or X (X) is said to be a function of function • 

or composition of two functions X and X .
Its inverse (X X)~l is a function on the subset of fl to the subset fl such that for any 
BC fl".

W xX y K B ) = \ w : X l {XM )eB] =

=  [w:XM e X ' - ' t f )  (XlX)~l =  X ^ X 1' 1
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10.9.4 Measurable Function
l.01 X bo a real valued function on ftto R.
Dctlnitiun 1: Lei

1H5 is a a field of subset of ft. If X “1 (Ii)e A for II Borel sets B  e IB. then X  is said to
bo function measurable with respect to A, i
DefinationZ: If ft is also the real line R or its subset, and If A' is measurable w.r.t. the 
Morel field 18 on the domain; then X is called a Borel function.

10.9.5 Random Variable (Economic Definition)
Suppose ft be a sample space. Let A\ao — fieldof events associated with a certain 
fixed experiment. Any real value A\ - measurable function defined on ft is called a 
random variable. Thus,’X is a random variable iffB~x, the a -  field induced by X is 
contained in A\.
Suppose we define two non-negative functions 

X(w) = *(w)» '^X(w) ^  0 
= 0, it X(W) 0

and

X(W) ~ (̂w)> < 0
= 0 if X(wj >  0

The above are respectively called the positive and negative parts of X. Then 
A' ’ and X are Borel function of X and will be random variable if X is a random 
variable 
Note:
1 11 These functions play an important role in the theory of integration of 

probability function.
(2) To show whether a function is a random variable, it is not necessary to 

determine whether X~l (B)e A\ for every B in 33. It is sufficient to verity 
X ~  l(f) c  A where C is any class of subsets of R given in sub interval on 
page 8.

1 %

Lemma: A' is a random variableiff A " '(f) c  A\. where f is any class of subsets of 

R which generates 33.

Proof Show that X l (f) c  A » X - ' ( S ) c  A .S in ccfc  A and X ' '(33) c  A\,X"'(f) c  A\ conversely.
Since A\ is a a -  field and

X~l(t) c. A  =* a(X_1(-)) c  A 
=> X~l (a (f)) c A  

=> A

10.9.6 Vector Random Variable
Suppose w eft, the associate X(w) = (X\wy, Kfvv)) a point in the 2-dimensional 

huclidian R2. The Z define a function from ftto R2. Consider the class of 6 of all 
rectangles bounded by the lines xx = a.x =  b,y = c,y = d,a < b,c < d arbitrary, 
flic minimal o -  field containing f  in Borel field (332)in R2.
/. is called a 2-dimcntional random variable ifZ "’(332) c  A\.Z~l(®2) «s a a -  field 

induced by X.
Illustration

QO •S„ = £  X t, E(Sn) = nA.a(Sn) = VTil
i- I

flic moment generating function of Znis given as

M _  „CO ,  (VJ

log/W/(t) =  —t'fnA -  nA -  e

=  - t V 5 * - .U  ( i - U + j s + s 5 + 5 ^ + - 1  )
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1 , *,2 lini log »/.(£) = — => My{t) -  e 2 
l|-«CX» ' * 2

= m g f  o f  A/(0,1)

Problem
Suppose that S„ has the binomial distribution b(n,p)- show that

distribution
%n----------- » N (0. 1)

Theorem: Let Yn, n > 1 be a sequence of real converging to Y0 Then the sequence 
r,+y2 y,+rz+r:, y1»y2+-.y,,i

x ' 2  ' i  n

Also converges to Y0 However, the inverse is not true.
Proof:

Let > 0, we find n, s.t.n > n => (V̂  + ••• /„) — K„| < £

Since Yn -» K0 3 no s. t. |Tn -  K0| <  e/ 2  K > 

l ind > n0 s. t. — K0| < e/ 2  for convinence

We claim that n > n, => -  '"0| < £

Then iriii1 it
|(yl+yll)+- + (y,,o+yo) + (y„oM+y0)+--My,t + y0)

it! n

n  0 n

V  \Yi- Y 0\
n i—i n0 + 1 Z_i1=1 i=n0+l

* * / 2  + '-T *el 2 

S £/ 2 + e/ 2 
<e

Thus, (V" “  K(lVn ^  0 i.e. Wl.LAN holds.

Cov (XY)- H(XY) E(X) E(Y)

,/ I _  |(yt+yo)+-t(yno+»b)
K°l “  I n

CHAPTER 11

LIMIT T HEOREMS AND LAW OK LARGE NUMBERS

11.1 Introduction

The law of large numbers is concerned with the conditions under which the average of 
a sequence or random variable converges (in some sense) to the expected average as 
the sample si/.e increases.

11.2 Concept of Limit s
Let .v„ be a point in some intervals oflhe real line '.H. Let /  be a function which is 

delined at every point of /  except possibly at .v„. The limit of the function as x 

approaches v0 is /, written as

1 irn /,\, = L ov /( f| > L as x —> x

If for any positive number X (no matter how small) there is some 8  greater than zero 
such that

|/ ( i Z.| < £■„ for all 0 < |.v~.v(1| < S

I rom the above definition, the number e  > 0 is first given, then we try to find a 

number d > 0 which satisfy the definition.
Example 1: Prove that < in i (3.r — 4) = 14

Solution: Given A > 0 , find 8  > 0 [depending on 1 .1 s.t. 0 < jv - 6) < d. we have 

\ f  -  14| < e
-> |3.\ 4 14| |3 ( .v - 6 | 3j.v 6| <  38

N o te  th at  | \ 6 j <  A

IR S
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Example 2:

Prove that ( x  + 1
'-*2 3*+ 4 10

Solution: Given £0 > 0, we went to final

0 < |x -  2| < £, we have <

/ ( x) ^ _ * + l 3 x + 2 x - 2  • 8
J '  10 3*+ 4 10 ~ 10(3* + 4) 10(3x + 4) '  10(3x + 4)

If x is sufficiently near to 2 so that

3.r + 4 > 10, thus 1 <1
10(3*+ 4) 10

Thus l / M — I 10(3.r-4) 100

8  = 100 £
Theorem: Let /  be the constant function defined by = C where C is a constant

tint f ( x ) - C

Proof: Given s>0,  find 8  > 0 such that 0< |* - t7|< 5 =>|y|T)-Cj<£-

The distribution of certain statistics of interest are too complicated to derive for 
differing sample sizes. In many cases, limiting distributions can be obtained as an 
approximation to the exact distribution, when the number of observation N is large. 
Thus, most important theoretical results in probability theory are limit theorems.
Let consider some useful limit theorem.

11.3 Markov’s Inequality
Markov’s inequality can be used to obtain approximate probability of an event given 
that the mean of the probability distribution is known.
Theorem: If X  is a random variable that takes only non-negative values then for any 

value u > 0

200

p { x >  0} < -â

Proof
Suppose X  is continuous with density function

= [ V w  * + « £ V ( x) a

> £ x f  (x)dx

> j~af(x)dx

= o ^ f ( x)dx

> aP(X £ a)

/. aP[X > a) < E (X ) => P(X  £ a) < -̂ a

The above is for a single variable X. Suppose we have a sequence of variable 

{X„}, n = l,2,...n, then we have the Markov’s inequality for a sequence of {A',,}as

P X .

11.4 Bienayme-Chebyshev’s Inequality
Theorem: If A  is a random variable with mean n  and variance a 2, then for any value

e> 0 :

O"

Proof:
Since ( x - r t  is a non-negative random variable applying the Markov’s inequality

with a = k \ we have P{{X -  /j )> K }< —-— ~ ~<r

but since {X -  ft)" = K '  iff \X - | > &,then the above (*) is equivalent to

2 0 1
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The above inequalities are important in that they enable us:
(i) derive bounds on probability when only the mean, or mean and variance of 

the probability distribution are known.
(ii) Determine the convergence of a sequence of random variables or sum of 

independent probability distribution.
(iii) Prove important results in statistical theory

Example:
(i) Suppose it is known that the number of eggs sold in a poultry farm in a 

month is a random variable with mean 75 crates.
(ii) What is the probability that the sales for next month is greater than 100 

crates.
(iii) Ilf the variance of the sales for the month is >5, determine the bounds on 

the probability that sales in the coming month will be between 50 and 100 
crates.

Solution: Let X  be the number of eggs sold in a month
(i) by Markov’s inequality

P(X>Vto)< —  = -  
v 7 100 4

(ii) by Chebyshev’s inequality

/>).*'-7 5 |>  25 = —
' 1 1 252 25

p \ x  -  75| < 25} > 1 — — = —
1 1 J 25 25

24So the probability of sales of eggs for this month is at least —

Definition: The sequence {Xn} of a random variable is said to be stochastically

convergent to zero if for every e>  0 the relation

2 0 2

lim P{jXM| ><r:}= 0 is satisfied.

Note: It is only the probability of the event tends to zero as n->oo, it does

not follow that for every e: > 0. we can find a finite n0 such that for all n > n.'; the 

relations \X,\ <e will be satisfied.

Example 1:

Let {A'J be a sequence of binomial random variable with

=.0 =(")/>" ( i - / > r

To show that lim pfx„|>e}= 0
Hf* * ’ '

Solution:
By Chebyshev’s inequality we have 

E(Xh)- n.p\ Var (x)=  or
v  n 

Jnpq
But Chebyshev’s inequality states a  = r

■Jn
a  2 /

P \X  - p \ > e } < ^ -  fo re > 0.

a V  ,
or P \X \>  K a  < ^ r - 4  - — 7  1 n| 1 k2a 2 nK:

p \X n\ > k o } < \
A

Lotting 11 — - wc have

P\X  |> e}< -^ - = 
n e
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Prj X . - n p \ > e } < &

Chebyshev’s Inequality
This theorem is often used as a statistical tool in proving important results in statistics. 

For example:
lfVar(x) = 0 prove that 

PX = B(x)=\
Proof by Chebyshev’s inequality, for any 0 >  1.

Pr  (l-K — mI >  — o

as n —» oo and using the continuity property of probability and Chebyshev inequality.

” P (E2.  {| 1 - " i > ^ }  = 0
=> p[x  *  n\ =  o
This implies strong convergence (Strong convergence)

11.5 Convergence of Random Variables
Convergence in law denoted by

L
Xn -» X if at every continually of X through distribution function F of 

Limn_ 0o /y,(x) ^{x)
Where Pn(x) denotes the distribution function of Xn

11.6 Laws of Large Number
This refers to the weak or strong convergence of sample mean 

X # = %i t0 a corresponding population mean (/j ).

2 0 4

11.6.1 Weak Law of Large Number (WLLN)
Let Xx,X2, ... be a sequence of iid random variable’s each having finite mean E(Xi) = 
H. Then for any G > 0

> 6j _ 0

as n > co
— p

1'his implies that Xn -* fi
Proof: suppose the random variable has a finite variance a 2

£ ^  y ar f Xi+X2..Xn\  _  <F_

It follows from the Chebyshev’s inequality that

Thus, as as n -» oo
X\ "h X2 ...xn

lim P (n-*oo (. -A * > € } =
x n -* n

Convergence Almost Surely

X n is said to converge to X  almost surely, almost certainly or almost strongly 

denoted by X  „—— if Xn(w) —> ^ (M.,for al w except for those belonging to a 

null set N.

Thus X„ -^ ± -> X  iff X„(w) Ar„,.) < oo

Thus, the set of convergence of {Xn) has probability unity.

Lemma:

X n———>X iff as n ->co

-> 0 V an integer
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Proof:

Now AyOv)-* .^(w), if for arbitrary r > i ,  there exist some 

/?„(»•. r)s.l.V K >n„ (w,r), \X „ (w ) -X (w ]  < / r

Moreover X m — > X  imp lies that P[Xn -  X] = 0 

Using de-Morgan rules,

[ » : \ X . ( w ) - X M \ > y $ \  = 0
r  n

i.e. for each r

[ w . \ x A » ) - x ( .w ] z . y r\\±<i

Equivalently for each r

& t f u k - * l * X l ] = 0

Replacing the above by the complimenting condition we have

/{ n k - * i < x ] ) - >i

Note:
Lemma 1:A sequence of random variable’s converges a.s. to a random variable iff the 
sequence converges mutually almost surely.

Lemma 2:If X n — —  >A\then there exist a subsequence{Xnk}of {Xn}which

converges a.s. to X.

Convergence in Distribution

If F„[x). is the d.f. of a .random variableX,, and F(x) the d.f of random variable 

X . then }Xn} is said to converge in distribution or in law or weakly. It is denoted as 

X" ——-> X,  Fn -> F  weakly or Fn(x) -> F(x).

Theorem 1: If X„ —— >X , then F„ F(x), x e C(f)

206

Theorem 2:IfX„ —-~>Cimplies that Fn(x) -» 0 fo rx  <G, Fn(x) —> 1 forx>Cand 

conversely.

Proof: If X n ——» C, Fn (x) -> F(x) where F(x) is the d.f. of the degenerate random 

variable which takes a constant value C since 

fO, x < C •
,-'1 {l, x > X

Conversely, let Fn(x) —> F(x) as defined above.

Then PrjjT ,-C |S;e] = P[A', £  C+s]+Pr[X„ S C]

= 1 ~  r [X n < C+ e]+ Pt[ X £ C]
= l-F „ (C + e -0 )+ /; i(C -e ) 

which tends to zero as n —> co.

Hence A',,--

Suppose X n's  are discrete random variables taking • values 

o , i ,2,...s.t.p (x „= ;)= /> ,.if p„->p, a s n - » 0and S takes value

/ with probability Pt (i = 0, 1, 2 ,...) and hence = 1 ■ then

.ICT
So that X a converges to X  in distribution.

Examplc:Let A^be a binomial random variable with index hand parameter 

P„ s.t.as n -> co, "Pn -> X > 0 and finite. Then we can verify

(K = 0, 1, 2,...)

The binomial random variable leads to Poisson random variable with parameter X in 
distribution as n-*co.
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Convergence in r,h Mean
A sequence of random variables is said to converge to X  in the rlh mean, denoted by

Xu ~±~>Xif H\XU - X\r -> 0 as n -> « .

For r = 2, it is called the convergence quadratic mean or mean square.

For r = I. it is called convergence in the first mean.

Lemma: If X „ ~ r~> X  => E\Xn\  -> E\Xf

Proof: For (r < l)put(Xn - X )  and X for X in tyheincqulaity

4 ' f. r s £ K - * r + 4 * r
Interchanging X n and X in inequality and combining, we have

E \ X l - E \ x \ < E \ X a - X \

Thus X n — r--* X  => E\X ,\  => E\X\

. I

Then /*{.¥„ -  X\ >e} <

: . X m- ~ * X  as n .-**>.

Lemma
The binominal distribution b (k ; n. p) approaches the normal distribution as n <- oc

i.e. /?(k; n ,p )~  - = T ‘---- e ^
J i n  npq

Proof

Let A(k;n, p) = n\
K l(n-K )

_ k  n-Kp q for large values of n.

The above represent P[SK -  K ) where S t is a random variable which denote the 

number of successes in n . Bernoulli trials with probability success for success in each 
trial.

11’we let n >xandkeep /’ fixed then p \S n - np\> np) ->0 ¥ e > 0  by the law of 

large number. Accordingly \K -np\jn -» 0.

208

.(**), , k - n p  ......
Now let y p = " r  - ■ ......

Jnpq
Since n and k are large, we can expressed the factorials in (*) above by means f  the 

Stirlings formula/approximation as
e*"1

b(k, m, p )—  --------------

r k*Yi(2^  (2n Y n k*y> (n-k )

» ( nq

p k q " ' k e e

(2n Y ^ k ( n - k )  U  A n - k  

Where 0  -O lH) - 0 (k)- 0 ( n -  k)

UsingM< l[ I +i +_l_

Substituting for k

ltf|<----
1 1 12n

from ( . . )  the above can be rewritten in the form

1
+ P

1 +  X k

1
+ —

1

K q  q ‘ XtV / " ‘IJ

,  . r  v n as n -> °°, then 8 —>0 and e* —> 1 ■ If we assume that V« -> u as n

which can be approximated by

J — for large n 
Jnpq
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To estimate the quantity  ̂̂ J  |̂ — U- 

T'aking logarithm of the above gives

« ' o e[ y ' y ( n - K ) iog { y n _ k)

Which can be rewritten in the form

nq
• «

- t i p

f

\ + xk ~
\ n p

log 1 + * J —
PJ

nq 1 +■**,/—  lognp I+X* J ~
i nP J

Upon substitution for K.

Since x /̂7 ^  is small, we cam expand the Logarithmic function in power series. 

Using the Taylor expansion then a reminder

log(] + x) = x - y + ^ - ;  (o< |e3|< x )

(* *) above becomes

- | * ;  + C X V i  '

Where C is a constant

If we assume y  -» 0 then can be approximated by

—  x:

Hence (*ii)is asymptotic to e ^ x‘

Gathering the estimates (i), (ii) and (iii) above, we have

b( k; n, p)~ 1
J i n  npq

The normal approximation to the binominal distribution.

2 1 0

11.6.2 Criterion for Convergence in Probability
The following lemma gives the necessary and sufficient condition for convergence in 

probability.
Lemma

x - W E ( £ i ) ^ 0 a s n *

|x„|1
X >0 iff E

Proof
U W J

0 as n -> co.

IXI ’ • |x  I
For any X , the r.v. is bounded by unity. Taking g(x) = rj-77 1 for € > 0

\V»\

J  _ W _ 1 — 1- < e [  - 1 ^ ) /
li+KlJ 1+e * i ,+w j/ r+e

From RHS E M
b + w j

From LHS p \x ,\ >e]-» 0 => j  0

But K
■K

E\

is a non -negptive r.v. so

>o

Theorem: If f [x) is a continuous real valued function and

X,  — X,  then f(x)

11.6.3 De Moivrc-Laplace Limit Theorem
If S  is the number of occurrence of an event in n independent Bernoulli trial, with 

probability E for success in each trial, then
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If wan bvary so that a3n '^2 -»0and C2« '^  -> 0 as n -»oo.

11.6.4 The Weak Law of Large Number

Let A'l,X ,,...X nbe a sequence of independent and identically distributed random 

variables each having mean E[X,)=/u and finite variance a 1. Then for any e> 0 

P^X  -  p| > £ j —> 0, as n —»oo

Proof
It follows that

e [x ] -  // and Var (x)=  —
n

From Chebyshev’s inequality we have 

’ 1 n s"

/.lim p jx - / / |>e } -0
This theorem was first proved by Jacob Bemowlli

11.6.5 Bernoulli's Law of Large Number

Let fc}  be a sequence at random variable with pdf

Further let X n = Yn -  P sequence of random variables {A',,} is stochastically 

convergent to 0 for any e> 0. i.c. lim P(jXn|> e) = 0

\

P 'O - P ^ f o r  0 < P < 1 and r = 0, 1, 2,...

Proof:

W c  have E (X  J = 0

n

212

Now using the Chebyshev’s inequality

:.p\x,\>e)<Zr

= ><=}< ^  ■■■, " • It follows that lim P(jXn| > e)= 0  as n-»co.
n s '  n~'*

11.6.6 Strong Law of Large Number (SLLN)
This refers to the strong convergence of the sample mean to the population mean, 

i.e. Xn => E{Xi) = p

i. e. Jirn P{sup \Xn -  p | > e )  = 0 

Or

P lim [Xn = ix] =  1
n —*on

Note that SLLN holds iff the population mean exist.
Theorem: Let /V„X?, .- .X n be a sequence of independent and identically distributed 

random variables each having a finite mean // = E{X ,). Then with probability 1

X x * X, + ... + A,,—----- ----------- - /j as n -» co

Or Prjim (X, + X, +... 4- Xn )/n = p  j= I

Theorem: Let [Xk),k = 1, 2 , ... be an arbitrary sequence of random variables with 
various ok and first moment Mk. If the Markov’s condition (i.e.lim n_co ak = 0) 
is satisfied then the sequence [Xk -  Mk) is stochastically convergent to zero. 

Proof
Suppose Xk arc pairwise untouched (i.e. independent). Consider the r‘h variable 

*, + *2+••+*„
Ym =

Wc have
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l  A
E(Y^  =  n I ^k=l

Such Xk are pairwise uncorrelated, we have

^ 20 'n ) = 4 V "p Lk=i

If

Ifl
n

 ̂ n
im — V  at -  0-00 n 2Z_i 

k<=l
Then by Chebyehev’s inequality (theorem) it follows that

lim />[|rn - E ( ) 'n) |> e ] = 0n-*oo

Thus, the sequence — Mk} is stochastically convergent to zero

2M

C H A P T E R  12

P R IN C IP L E S  O F  C O N V E R G E N C E  AND C E N T R A L  L IM IT

T H E O R E M

12.1 Introduction
The Central limit theorem is concerned with determining conditions under which the 
sum of a large number of random variables has a probability distribution that is 
approximately normal.

12.2 Convergence of Random Variable

A sequence of random variables {Xn} is said to be converge to a random variable .A" if 

W  w)} converges to X(w)<co asn —>co for all w e f l  Thus {Xn} is said to 

converge to X  everywhere.

If X n(w) converges to X(w) only for w'EQf* w e  A, then C is called the set of 

convergence of X,. If Ce A, then tim X n is a random variable clearly, C is the set of 

all w e Cl , at which whatever be £ > 0, \Xn (w)~  A'(w)! < e  for all n greater than 

n = N0(w) sufficiently large symbolically for = n + m, m > 1 

C = [w :X m( w ) ^ X ( w ) ]

= n u n [ ~ | * ~ w - * w H*•>0 « ni

Equivalently, replacing “for every £->0 by for every — k = \, 2, ...e
k

Since C is obtained from countable operation on measurable set, C is measure from 
C e A.

Now |/ ( .v ) -C | = |C -C | = 10]<£ 

Hence \ f (x )  — C\ <  s V x
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This theorem tells us that the limit of a constant 8  that constant.

Remark:

If f a  has the limit Las x -> x  then f a  is said to converge to /.

OR

If C is the limit of f a  as x a then f a  is said to converge to a constant C written 

as Ax) ~*C as x->  a

Note that the constant Lor C can also be a random variable.

Convergence in Probability

A sequence of random variables {XK} is said to converge to X  in probability, denoted 

by — ~->X, If for every e > 0, as n ->oo

equivalently, if for ¥■ e > 0, as n <- oo

P[)Xm- X < e ] - ¥ l .

Note:
This concept plays an important role in statistics, i.e. consistency of estimations, weak 
laws of large numbers.

Equivalcntrandom variables: Two random variables X  and X '  are said to be 

equivalent if X  -> X 1 a.s [almost surely]

Lemma: X n— and X n——>X' =>X and X '  are equivalent.

This lemma shows that a sequence of random variables cannot converge in probability 
to two essentially different random variables.

Lemma: X n -»0, i f  c\Xn\  ~>0 

Replacing Xn by (.Xn -  X )  we have:

X n -+X<*> iff X n- X — ^ 0  

1\X" -  X \  0 implies X n — 1

216

This lemma provides us with sufficient evidence/condition for the convergence in 

probability.
The proof of the above follows from Markov’s inequality.

i.e. P[
as n —̂ oo

Theorem: Let X  be a k-dimensional r. vector and g  > 0  be a valued (measurable) 

function defined on 9?*, so that g(x) is a vector random and let C > 0, then

Poof: Assume X \s  continuous with pdf Then

-- fg{xltXi.... Xt ) f ( x , ..... x t ) d x „ . . . ,  dxk + J (gx,......,xt ) / ( * ....., x t ) d x ...... d x k

A

Where A =

( x ) ]  -  } & ( x i ” — >x k ) / ( * p  »* 

A

Using the result from Markov inequality

)A » ~  A

A

= CPfeW e A] = CP\g{x) > C]

, ^ f W 2 C ] S £ M

Note:
If A' is of discrete type, the proof is initial analogous. 

Special Case I: (»)

Let X  be a random variable and take g [x ) - \X ~ L \  ,/j - J i ( X \  r > 0. Then

2I7
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p\x-^\>c]=A
Cr •

The above is known as Markov’s Inequality

Special Case II:

If r in (*) above is replaced by 2(i.e. r = 2) we have

4*- - 4 a c]= p \x - r f  i  c!]s ̂ L A . s
This is known as Tchebichev’s Inequality.
In particular, if C = K g  then

orpj \ X - ^ > K a \ i - L
A

Remark

Let X  be a random variable with mean ^  and variance cr2 = 0. Then the above gives 

p \ x  -  //| £ c ]=  0 for every C > 0 

This implies that p ( X  = /j ) = 1

12.3 Cauchy-Schwarz Inequality

Let X  and Y be two random variables with means u, ,/i2 and positive variance 

a' and a 2 respectively. Then

Or equivalently,

-  o f  o f  < E[[X -  n  )(Y-  AA)] £  ofo} 

and E [ { X - ^ ) { Y - ^ ) ] = g -g \

iff ( * = * ) = i

2 1 8

Proof:

Then X, amd Yt are standardized variables hence

i f f - \ < E ( X ,  >',)<!

Which becomes (replacing X , and Y{ by their itandardized variable)

Note:
A more familiar term of Canchy-Schwarz inequality is

e -[x  r ) < £ ( * 2)£ ( r : )

12.4 Borel-Cantelli Lemma

In the study of sequences of events A,,A}... with Pk = P[Ak ); a significant role is 

played by Borel-Cantelli Lemma.
i.e. (i) If the series converges, then a finite number at events

Ak occurs with probability 1.

(ii) If the events are (completely) independent, the series diverges,

then an infinite number of event At occur with probability 1.

Theorem:
Let {An} n = 1,2,... be a sequence of events and P{A„ )denote the probability of the 

event An where 0 < P(An)< 1. Then if
JC

(i) If £ p (Aii)< oo with probability one only a finite number of event 

An occur.

2 1 9
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(ii) II the events {An}n = 1,2,...are independent ^ P { A n)=<x> with prooaouuy
/=i

one, an infinite number of event An occur.
ac

Proof: Suppose ao
i=i

Let A denote an infinite number of event An occur

' - n i k

=> A C ( J  An
n^r

Meaning that P{a ) < A  ( J a ,, <

30

as n oo; P(An) 0
/!=/'

hence, P(a ) = 0 ^  P(A„)< °°
fi=l

(ii) If An are independent and

£ > ( 4 , )  = c°
nor

then A - l - A  if f  at most finite number of events An occur.x x
hence, A = \ J f ) A n

<•■1 «i-l

In view of the independence of An, we have

\ - f (a ) = p {a ) ^ p(\j ( ) a„
k. r n | «=r

= L ^ f m ) = x
r * l  \.«n| /

220

i.e. The infinite product of the r.h.s of the above is divergent. Hence, P ( a )=  1 which
x

shows that ^  P(An) = oo 
<i=i

12.5 The Central Limit Theorem
Theorem: Let X1,X2, ... be a sequence of independent and identically distributed 
random variable’s each having mean p  and variance a. Then the distribution o f

X] +X] +,,, + Xj;—7l/i
adn

what intends to the standard normal as n -» co. 'fT at is

as (  > co
In simple language, the theorem states that a large number of independent random 
variables has a distribution that is approximate normal. It provides a simple method 
for computing approximate probability for sum of independent random variable’s and 
explain the fact that many natural populations are normally distributed.

12.6 The Central Limit Theorem
Let {Xn,n  >  1} is a sequence at random variable Define 
Sn = Xi + X2 + " X ni a(Sn) as the standard deviation of Sn and Zn 

_  Sn-g(Sn)
*(Sn)

Then Zn converges in distribution to /V(0,1). This is an example of SLLN.

Example
Suppose Xs above are i.i.d each with the Poisson distribution with parameter X. Show 
that the SLLN holds.
12.6.1 Central Limit Theorem for Independent Random Variables
Let Xi,X2, -  be a sequence of independent random variable’s having means p, = 
E(Xf) and variance a? = Var (XL). If (a) the Xv are uniformly bounded, that is for 
some M',P$\X‘i\. < M) = 1 for aHTaad
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i\

uu

( h ) ^  of  =  co, then
1=1

P<
Z U C X i- f i )

<  a

ZT=i°?

• -* 0 (a) as 7i —* co

Kroncker’s Lemma (Proposition)
If a1( a2, ... are real number such that

co n

Z-r  < oo, converges, then lim )  — = 0  
l n-*oo Z—i n

1 = 1  n-*oo

12.7 Strong Law of Large Numbers for Independent Random Variables

Let Xi,X2, ... be independent random variable’s with E (A",) =  0, Var (Xs) =  a? <  °o.

If i <  0, then with probability i.

0 a s  n  —» co
X1+Xa+-+Xn

Note: It can be observed that Kolmogorov’s inequality is a generalization of 
Chebyshev’s inequality. If X has a mean n and variance a 2, then by letting n =  1 in 
Kolmogorov’s inequality we obtain

P{\X -  n\ > a) < -jj{which is Chebyshev's inequlaity)

Where Xl ,X2, — Xn are independent random variable’s with E{Xf) =  0, Var (Xs) = 
of; then Chebyshev’s inequality yields 

n  2

f{|Jfi +  -  +  Xn | > a } s 2 ] ^
1 =  1 ‘

Kolmogorov’s inequality gives the same bound for the probability of larger set of 
variables. The theorem (Kolmogorov’s) is used as a basis for the proof of the strong 
law of large numbers in the case where the random variable’s are assumed to by 
independent but not necessarily identically distributed.
Proof: (Of strong law of large numbers for independent random variable’s)

2 2 2

■*T
8 7#

.. 
v,

..:
;. 

. .
---

-—
c 

....
...

...
...

. 
—

We will show that with probability I,
CO

Let X1,X2l ...Xn be independent random variable’s with E(X[) = 0, Var (X,) =  a 2 

we have for some a > 0 by Kolmogoro’s inequality

S B .  X % = °
l=j

By Knonecker’s proposition, we have that

t=i
=  1

Pr < Max 
Ijsksn 
l l=J

This implies that

1 %> a }  = 0

n
im )  * l/ n = 0 or equivalently that
-«oo Z  j1 =  1

lim ) --------- =
n-cc Z_j n

1=1 

and that

p f  lim Xk = o] =V|| •• Li )

2 2 3
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Definition 1:
Two sequences h{Xn(w)}, {/„(vv)} of random variables are said to be "Trial 

Equivalent" a finite number of terms, 

i.e. for almost all w Q, X n (vv) = Y„ (vv) 

for all but a finite number at n

Lemma

if ' Z Pr^ - x , M * y , ( w ) }  < oo i.e. trials
ml

Then Pr{w: X n (vv) * Yn (vv) inf initely after }= 0 

Proof

Let En = [Xn(w) *  ^ ( mO) => Pr [En occurs inf initely after) = 0 

Since X P\En} —v oo in converges

PrjPirn sup En J = 0 or 1

Definition 2 . . . ;

A sequence {y„}is said to be a truncation at the sequence {A'Jat [an)where {a,,} is a 

sequence of positive real number if

We know: \X,\ < an => -a n < X n < an 

Y / / / X Y / / / -\ cut off the {an} at {Aj in order to obtain {T„}
’ 0 »n

Lemma:

Let the sequence {/„} be a truncation of sequence {Xn} at sequence {a„} be finite i.e.

Yn - XPrlA^I > an }< co

then

Y„ (w) —> X n (w) as n —v oo

224

-■> A„(w) -v A'(w) as n  ̂co

Proof
Given = X„ Pr{X„\ > a„} < co

=> PrlEn occur infinitely often} = 0 
Pr jlim sup E n j= 0

P'1 f!UE- ■<>k w-l mw 1x  X >
n u ^Pr = 1 by de - M orgasloa

/.P r = 1

=>Prjlim infE„j = l

Pr{A\(w) = y.(vv) V except a finite number of n} 
=>(jT.}and{Yn} are Tail Equivalent.

Examples
Let En = {vv: Yn(w) -> A„(w) as n ->»}

=*P(E) = 1

i.e. A -  [A*. -  Y„ Vn except finitly inany nj 

P(/l) = I 

If we E amd w e A
we E fl A = B = {w: Y„(w) —> A„(w) as n -> co amd X„ = Y„ V except finitrly many n)

r=.weA 'f|A=e>weB 
(Efl A)< B

thus P(E) = 1. P( A) = 1 P(B) = 1
where V. and A arc defined on the same ample space.
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Hence, they are tail equivalent.

12.8 Bolzano-Cauchy Criterion for Convergence

Lemma: Let C be a fixed real number. If |C| < AT efor some K  > 0 and every€> 0, it 

follows that C = 0.

Proof: suppose not. Then C *  0

Since € 

Then |C|

is chosen arbitrary, put e into let e= > 0, since K is
2k

J =

given.

K e which is clearly a contradiction except for |C| = 0

12.9 First Borel-Cantelli Lemma

Theorem: Let {£„} be a sequence of events each of which is a subset of ft such that 

£ F where F is a a  -  field of sub-events of ft defined on the probability space

(ft, F.P), then ^ P ( E En)< co => pjlim supEn J= 0.

[iffE .} is a sequence o f events we are often interested in how many of the event occured] 

OR

If f c )  is a sequence of events in a a -  field F, w here ft, F, P is a probability 

space. Then P({Eon})< 30=5 /4im  supE„ }= 0

Proof:

Let £  = lim sup E»-«, r n
Then £ - f ) | j £ „ ;  clearly E c  (J  E„ V-m e N

226

By Bolzano-Cauchy criterion for convergence 

£ /> (£ „ )<  °o
0* I

given any e> 0,3 an N0(e)

Such that V-n > N 0.

hhK
^ / >(E „l< e and lettingK -» co

Now Z

P(E)< Z p (£. <e—> 0

Where ecan be taken arbitrarily close to zero,

i.e. only finitely many En occurred.

Is1 BC-Lemma does not require independence of the event En.

12.10 Second Borel-Cantelli Lemma

Let {£„) be a sequence of independent events on the same probability space 

(fl, F, P)then if £  = lim sup En;m Mt

! > ( £ . ) = «°0-1
=>£(£„ occur infmtely often) = 1

i.e. £jiim supEn j= 1 .
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Proof:

Recall that hm sup En = p | \ J e „ s
, m=l m m

,im *UP (En)]  i = P{hm inf Enc}= pjlim (fl )}

For any N >  0 and every K > N

Since E, s are independents E f 's  are independent too.

am-N  / m N

Since J~[(l -  P{En)) < J"J e ,,[K'1 = e "" by exponential property
mN mN

as K oo; £  P(En) -» oo i.e. £  P(En) = co
" » N n=N

- I P ( E . )
=> lim e "" -> 0

Af-w:

=> 1 -P {E )  = 0 ^  P(e )= 1.
Theorem:

pr{lim sup En }= according as J P ( E n) =

Whenever Et,E 2>..., En,... are independent
r

I e- (|) J^2]E(A n)<oo, p(iim An)=0iib|
(ii) 1 J = ooand A/jrare independent

*»*l
p(!im (A j)= l.

< co
ICO

228

Corollary to 2ml B.C. Lemma

If A7 .fareindependentandX„ -> 0 (a.s)

Then 2 >|jr,,|>c]<<x>
.rr»l ; . • * . '

Whatever be C>  0, finite 

Proof:

If Xn's are independent random variables /!„ = [jx„|]> C are independent. Since 

X„ 0 a.s. iff.

> C]< oo as n -» 0 and for any C > 0

We have / ’(lim SUP A.n J= 0

Since PE(A„)< c o .

Note:

The converse of Borel-Cantelli lemma is not true if An's are not independent.

12.11 The Zcro-Onc-Law
Let A„ A-,,..., be events and let A be the smallest c r -  field containing each of these 

events. Suppose E  is an event in A with the property that, for any integer j\, j 2, jk 

that events.

E  and Aj, f) Aj2, f l ... fl Ajfc are independent.

Then PIE) is either 0 or I.

Exercise 1: If P(An) — V n eQ ; ]f^PAn = oo
2 ml

Does [An}converge??

--> /'(lim sup A3) = 1

Bui ±P(.4„ J~rc=> P^lim inf An )■--- 0
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Thus lim sup An * lim inf An
n-Kt, n-*xj

Hence {An} dos not converge.

Exercise 2: Let X  have the uniform distribution (X ~ p (0 ,  l)) consider the sequence 
o f events {An} .

Where An = jw: X(w)  < — | .  Are {An}independent.

P ro o f :  f ( t ) = l 0 < x < 1

ThCn 5  P Â" ̂  ~ 5  n ~  +°° Harmonic Series Diverges

But En ^ A n+lz>An+l=>...

/ ’Jim sup A )=
I M 7 '  "  )

,,,BI n**ni /
T in )-

= ^ W =0

Clearly the above violates the 2nd B-C lemma as the sequence {/*„} of events is 
overlapping and the therefore not independent.

Proof:

Let on Q -A ( 
on AJ

Then J IAj{, fAl2 .....//!,* dP = P(Aj, f | Aj, f l . - f l  Ajk f |£ )

= p(Aj1nA j; n . . . .n A j j / ’(£)

230

By independence of E and Aj, f | Aj, D ... fl Ajk 

= jA jl:'Aj,...AjkdPP(E )
n

But (fl, A, P)is a complete probability space.

.■ .p (/fn £ )= .p M ^ p [e )

For all A e A, in particular A = E.

:.P{E)={P(E)}2 

Then P(e ) = 0 or 1

Completeness
A measure space (H, 0 ,  P) is said to be complete if Acontains all subsets of sets of 
measure zero.
Note
(i) A non-empty event with zero probability is negligible
(ii) Every subset of a negligible event have-zero probability;

Lemma

(1) Given a probability space (H.A, P)and a sequence {£„. u - 1.2,...} of event 

where EnCH and E T V-n

Prove
(1) lim inf En C lim sup En

n - v n  n-f«>

(ii) lim inf P(En)< lim inf P(En)
n -* r n-Kc

(2) Let (Q, F) be a measure space, on which a sequence of probability measure is
» 1

defined. The set function P(e ) dA Pn(£)

(i) Show that 0 < /} ,<  1 .

(ii. i i )  is countably additive and is therefore a measure

(iii) Prove that Fj(f2) = 1.
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Solution

(i) P(E)=—  Pn(£)>  1 .Since Pn (e )^  1 and 0 lim (En) = 0
2 n 2 " n-*w

(ii) Show l im j ;  P„ (£ )  = P. (£)
n=l *• n»l ^

(Mi) P ( f i ) = Z j r P . ( n ) = i ; ^ ( i )
n = l ^  ^

5W =

~ 2 + 4 

T ~ 2

+ . . .

12.12 Limit Theorems for Sums of Independent R.V’s 
Lirideberg-Levy Theorem

Lcl X r .\\... be a sequence of ij.d.r.v each with mean 0 and

r J (o < r  < co) Then + * 7 + — + X* 71/(0, l)
zTn

Proof:
Consider an array Xi

* „ * i . * ,

Condition 1,2 and 3 of Lindeberg’s Theorem are satisfied. 
We only need to verify condition 4.

Let e> 0, Bl = n r :, then

— Z  J  -m pn  t

Since X s are i.i.d.

n
n r2,i* \x.dp

variance

232

Now let Au {w: \X,(w)| ̂ e  zTn}, then An l<p 

and iim P(An) = 0
I N - X

and dm f X]dP = 0/IMC. J
Am

This verifies the 4lh L.T. so by Lindeberg’s theorem

X , + X 2 + -  + X n_ _̂  in distribution
tTn

Lindeberg’s Theorem (The Conditions of Lindcberg Theorem)

Let 1 X itX 2, . :X k t

i ->^n >•••^2*3

Be a rectangular array of random variable satisfying the following condition.

1. V-n > 1 X n ,X n ,...Xnt_ are independent

2. e (* j = 0;

3- B] =  r ;  + r ; : + ... +  r ; 4. wrlA 5 ;  >  0 

*«0
K e > 0 .

Let S„ = X„ + X„ +...+ X .  and N  a random variable with standard normal 

distribution

Then ———  —» -j=L= T e ^4//
5, 42n  ■“

The above statement is basic to the central limit theorem 

However, i f E(XiiL ) = 0

dt

and
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Lyapunov’s Theorem
LetXi be a sequence of independent random variables. If a positive number 8  can be 

found such that as n —» co; / > 1.

u„ *=i

k = I V2 jr

Proof: • /*.•; • • : . - . -, '
The random variables, define above satisfies 1, 2, and 3 of Lindeberg’s theorem. It 
also satisfies the following:

(i) for some fixed & >  0 > E \X » k \2+S <  00

(>o (im ■ i E £ i^-*r+' = ° then° n t.i

We now need to show that condition 4 of Lindeberg’s theorem is satisfied.

Let Var(X,)=b for  / = 1, 2 then Bn =bTn 

Setting E(X,) = ar, condition 4 becomes
/ \ x a*hVn

Vr,b2\  ! ^ - a^ dFM = J +|,r-a|>*fl, o+e/rfp -»

which approaches zero since the Var(Xt)<  oo anc/ 6 = 0 

Now wc need to show that condition (2) implies condition (4)
This follows from the inequality

234

1

eoW-.i

By hypothesis (ii) above

1
«<-” 6d V*

i? .+rf
= 0

. jSl q 5* i i _ » #(o, l)
"5 ..
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C H A P T E R  13

IN T R O D U C T IO N  T O  B RO W N IA N  M O T IO N

13.1 Brownian Motion (Weiner Process)
Brownian motion describes the macroscopic picture of a particle emerging in random 
system defined be a host of microscopic random effects in d-dimensional space, Peter 
& Yuval (2008). At any step on the microscopic level, the particle receives a 
displacement caused by other particles hitting if or by an external forces so that it’s

•• ** H

posterior at time-zero is So, its posterior at time n is given by S„ = S0 + ^ x ,  where
■̂1

the displacements X t,X 3,... are assumed to be independent, identically distributed 

random variables with value in TRd. The process {S’,,:/*£ 0}is a random walk, the 

displacements represent the microscopic inputs. Thus Brownian motion is a kind of 

stochastic process.
Any continuous time stochastic process {#(/):/£0} describing the 

macroscopic feature of a random walk should have the following properties:

(i) For all time 0 </,< /, <... <tn.

are independent, we say the process has

independent decrements.
(ii) the distribution of the increment /?((Wi)- /? (,)does not depend on t, we say the 

9
process has stationary increments.
(iii) the process {/3{l):/ > 0} has almost surely continuous paths.

(iv) It follows from the CI.T that these feature implies the existence of and

a matrix le '.R ^ su ch  that for every t > Q  and  h > 0 ,  the increment is

multivariate normally distributed with mean h/.i and covariance matrix /?XXr

Any process {.V,} with the above feature seem be represented by

& i = A .i + M + £ / W  J'” t>0

236

Where /?(ll|is the initial distribution 

//, is the drift vector 

^ i s  the diffusion matrix

13.2 Brownian Process
If the drift vector is zero and the diffusion matrix is the identity, then is

termed/referred to as the Standard Brownian Motion. Hence, the macroscopic picture 
emerging from a random walk can be fully described by a Standard Brownian

Motion.

13.3 Multinomial Distribution and Gaussian Process
The most important joint distribution is the multivariate normal (or the multinomial) 
distribution. It arises in many applications and has some properties that makes its 

manipulation very simple.
If A is any (/jx»)symmctric matrix, consider the quadratic form 

= A X
n n

= X 2 > *  x<xj
, . |  J w  I

Where x  e 91 is the point which has coordination xf and a column vector with

transpose/. If A is positive-definite, then (2n) ^  [def A) ^ e x p j - - /  Ax^ is a

probability density on 91".

Let V = A'1, then V is also positive-definite and symmetric.

Definition 1:
A collection (X„ Kjwhich has the joint density. 

(2x)% m(def.V)T

is said to have the multinomial distribution A'fO.K)
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Definition 2: If //,, are finite real numbers then X  =

C^i+M ^2 + /^2» -> ^ n + A. )joint p.d.f

(27r)/^-(det. P ) ^  exp ~ (±J Y~'(x~m)} a°d l  *s sa>d to have the multinomial

distribution n (̂ j, v )

Definition 3: Letr be any set (usually a subset of the real axis). For every t fe r re t  

A ^ b e  a random variable defined on a probability space (Q, A,P). Then the family 

,w): re  r} at random variables is called a Stochastic process.

Definition 4: Let V(s,t) = e \ X ^ - ' / u, \ x ^ - J} be the autocovariance function at 

M M  for all relevant values of t and s and pt = E ] x ^ \  p s = ZsjAQ,)]

Definition 5: A stochastic process Af(r,w) with the property that all its. finite­

dimensional distribution are multinomial and E(X,}=0,

E ( X „ X , ) = V { s , t )

Where K(v ) is a positive-definite function on r , is called a .Gaussian Process with 

autocovariancc function

Remark:

• Two Gaussian processes with the same autocovariance function have 
the same finite-dimensional distribution

• The most important example of a Gaussian process is the Weiner (or 
Brownian motion) process.

Definition 6: A Gaussian process is said to be a wiener (Brownian) process 
i f  (/') r = (0, ao)

(H) -T1(1) =- 0 and

(iii) = m in(j,/)
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13.4 Properties of a Brownian motion (B. M)
The following are the properties of a Brownian motion.
1. The Brownian motion is a Gaussian process with autocovariance function.

V { s , t ) = E ( x , . X , )

= min (5,/)

2. The autocovariance function
P(.v,r) = min (i-,/) 

i.c. symmetric for r = (0,co)

3. Let A ^be a B.M. process and define A'(.s,f)= Xlt) -  X {s), the increment

process on the interval' (s,t\ Then A(j ,/) ~ A^(0,/-i)

4. Given the Brownian motion process

£ ( / ) = 4 K /+A M d f )

= 3/r
5. The Brownian motion process is continuous everywhere but is nowhere 

differentiable.

Definition 7: Let T be any set (usually infinite) and possibly uncountable) and let 
P{-, •): TXT -> 9? be a function with the two properties.

(ii) for any finite subset }er and any real numbers Z2,...,Zn not

all zero

I 2 M ',  < > , .* ,>  0.-1 /-i

then P(v ) is called a positive-definite function on T 

Lemma:
P(/,./,) - min (r,,r,) is a positive definite function on r
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Proof:
(/) Clearly V(/,, /,) = V (/,, /,)
(/'/') I f  0 < I, < /, then

Z E ^  i > t e  *, = Z  Z  min 0 / . t e<-i / 1 <-i ,-»i

„ i  ‘-i  ,-i
(1 <./.)

•S/rar min(/i./()-/. /dr / = j and

Since b> symmetry, we may interchange / and7 to cover cases in which f

- I ' .  T  + 22 . L * ,
••I /"ni

Expanding the square bracket gives

= * .-+ 22 , 2 ;* ,

= *,’ + 22,(2 ,.,)+  2* .!* ,.,)+ ... + 22,(2 . J  + 2(2 ,.2 .)

■ f t * . /"I*!

I * ,  I - I  I * ,(-/♦I

Writing the expression in full, we have

- / , k  IZ . (3, + * + . . .  + 2 .  f}

1 C |(^; + -  H )' -  (£; *- £ , + ... + }

• -  • M . , ' * J  -?„■’ }

Hut / w  ,. by hypothesis, rewriting 

The above expression we have

z * . + ('z -O + (/> -':)[ Z * , z * >
/■I

+(/«

• Z f c  ' . - i J E * //-I

Where /„ -  ()./, >

Clearly the last expression in the “curly bracket] is a positive number. 
J(.v,/) = min (.y./) is positive definite.

Theorem:
Let V(/)be a Wiener process and let X(.s.t)- ^  lit * A',.,denote the increment of the 

process on an interval (.v,/), then 

(/) A (.v,/) -  iV(0,/- .v)
(//) // (.v,, /,) anil (a,, /.) arc disjouit intervals.then X ( s t. tx)andX(s,, t2)are

stochastically independent.

Proof
(i) A',#,is Gaussian, therefore the joint distribution of A',f, and .Y(#, is

multinomial and so .Yj(J -  Aj,, -  A',, N(o.r’)

where r -  I a r ( X ( s j ))

-4 * 1 .1 - - O '
= 4 ^ i ,  -  2avv, + -v,;,]
~ r ( t . / ) - 2 l ( s . t ) +  V (.v..v)
- / -  2.V + .v
- /  • .V

mi) 'A c ;*-<unie without loss of generality that v, < tt < v. < Then A(.v,. /,) and

(•. . i nave nuiltinormal joint distribution with covariance given by
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/ r [A '( v  / , )(A'(.v,, /,)]=-- E [,V (a, ) -  A'(.v,)] [A' ( / , ) -  Xss]

-  E [ - '  (/ . K ^ l / ;  | “  ( l ,  ) A V . ;  )  "  X (> , K ^ ( / ;  I  +  ^  ( a ,  1

“  V[U. ^ (', ^ 1 •?; )+ ^ * *2)

— o
Since Cfn>{s,l) = 0, there exist stochastic independence.

Exercise 1: For any real set of number C,,C,.... C,(and real values random variable

•j.V, J". show that ]T ]T (?,(?,£■(A', - / / J iA ' , -p )  is positive scmi-dcllnite for
,.i /-i

Hint for Solution: Let >'■ = A', - / / ,  then £ ()') = 0 and V u r \^ C iY, ] = Zij ^ C ,) '

i-i /  i- i #-ri
M

Example 2: Calculate the autocovariancc function of the Gauss-Markov Process

Hint for Solution: Assuming /T()7) = 0; 

! > ./) • -  A-[(c"A>:- )(e - Ye-'')]

,  )(«•*)]

Cf e:> for l > s
. <‘*'1 i' t* for l < s
* 1 for 1 = s

, i/- f l-s.f

Example 3:

242

Let ,Y,„bc a Wiener process (B.M.. then consider the B.M. process 

[0 , t  =  0

l /
Show that is a Brownian process.

Hint for Solution
Calculate !'(•. ) o/

Note that for a B.M. process // = 0

//)(); //)=£[();,,)(>;„))

. I i i •,= .v/»nn{ .-  
W s j

-- min (.v./)

Exercise 4:
1 cl A'Ufbc a Brownian motion process and let rr,,, -  A„, — / A*(ll; 

Find the or /',(.•>./)

Hint for Solution
Nolo that /:(-/*„,)- 0 nm/

0 < / < I

24?
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^ E [ ^ r s X j X {l)- t ( x J ]

= £[a'\t)X U) -  sX{t)X {,) -  X[t>f X [x) + tsX 

= P M - . sI'(1,0 - /P ( 1,j )+&K(U)
= Min( s j ) - S  min ( i t ) - t  min(l,.?) + / s min (l,$) 
= .v -  st -  is + st; for s < l

- t - t s - s t  + st; for t < s

= M in ( s j ) - s t ;  V-sJ

244
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C H A P T E R  14

IN T R O D U C T IO N  T O  S T O C H A S T IC  P R O C E S S E S

14.1 Basic Concepts

Researchers in science, engineering, computing, business studies and economics quite 
often need to model real-world situations using stochastic models in order to 
understand, analyze, and make inferences about real-world random phenomena. 
Finding a model usually begins with fitting some existing simple stochastic process to 
the observed data to see if this process is an adequate approximation to the real-world 
situation.

*> '• "• '■ i‘
Stochastic models are used in several fields of research. Some models used in the 
engineering sciences are models of traffic flow, queuing models, and reliability 
models, spatial and spatial-temporal models. In the computer sciences, the queuing 
theory issued in performance models to compare the performance of different 
computer systems.

Learning stochastic processes requires a good knowledge o f the probability theory, 
advanced calculus, matrix algebra and a general level o f mathematical maturity. 
Nowadays, however, less probability theory, calculus, matrix algebra and differential 
equations arc taught in the undergraduate courses. This makes it a little bit difficult to 
teach stochastic processes to undergraduate students.

The mathematical techniques and the numerical computation used in stochastic 
models are not very simple. In an introductory course, the hope is to teach students a 
small number of stochastic models effectively to enable them to start thinking about 
the applications of stochastic processes in their area of research. These small numbers 
of stochastic models are the core topics to be taught in an introductory course on 
stochastic processes directed to researchers in the physical sciences, engineering, 
operational research and computing science. These researchers have a stronger 
background in mathematics and probability than researchers in the biological
sciences.

Definition
A stochastic process is any process that evolves with time. A few examples are data 
on weather, stock market indices, air-pollution data, demographic data, and political 
tracking polls. These also have in common that successive observations are typically 
not independent, such collection of observations is called a stochastic process. 
Therefore, a stochastic process is a collection of random variables that take values in a 
set S, the state space. The collection is indexed by another setT, the index set.

The two most common index sets are the natural numbers T  = {0,1, 2,...}, and the 

nonnegative real numbers which usually represent discrete time and continuous time, 
respectively. The first index set thus gives a sequence of random variables 
(X0,XVX2, — )and the second, a collection of random variables {AT,,,, t > 0 j, one 

random variable for each time t. In general, the index set does not have to describe 
time but is also commonly used to describe spatial location.
The state space can be finite countable infinite, or uncountable, depending on the 

application.

14.1.1 Applications of Stochastic Processes
The followings are some areas of Stochastic Processes:
(i) Marketing: To study customers or consumer buying behaviour and forecast.
(ii) Finance: To study the customer’s account recordable behaviour and forecast.
(iii) Personnel: To study and determine the manpower requirement of an 

organization.
(iv) Production: To study and evaluate alternative maintenance policies, 

inventory, and so on, in industries.
(v) Transport: To effectively control flow and congestion in the transport 

industry.

14.2 Discrete-Time Markov Chains
You arc playing a lotto, in each round betting N13 on odd. You start with N30 and 
after each round record your new fortune. Suppose that the first five rounds give the
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sequence loss. loss, win, win, win, which gives the sequence of fortunes, 9, 8, 9. 10,
1 1, and that you wish to find the distribution of your fortune after the next round,

18
given this information. Your fortune will be 12 if you win which has probability —

20and 10 if you lose, with probability — . One thing we realize is that this depends
3 8

only on the fact that the current fortune is N il and not the values prior to that. In 
general, if your fortunes in the first of rounds are the random variables^, ...,Xn. the 
conditional distribution of ^n+l given Xv ...,Xn depends only on Xn. This is a 
fundamental property and we state the following general condition.

Definition
Let X0,X1,X2, ... be a sequence of discrete random variables, taking values in some set 

5 and that are such that
p(x„, .....X..,.-|.X„ =j\x„

For all i , j , i \ ..... t„_iand all n, the sequence jAj,} is then called a Markov chain. In

ucncral. the probability P(.Y„., /jA'„„) depends on i , j  andn. It is however, often

the case that there is no dependence on n. We call such chains time-homogeneous and 
restrict or attention to these claims. Since the conditional probability in the definition 

thus depends only t and j,  we use the notation Ph -  P(sY„_, — j \ X  „ = /) i, jeSand 

call these the transition probabilities of the Markov chain. This, if the chain is in state 
i, the probabilities p,^describe how the chain chooses which state to jump to next. 

Obviously, the transition probabilities have to satisfy the following two criteria:

(/) P„> 0 1/7) 1 ^ = 1 ,  for/;eS

for all ( e S

14.2.1 The Transition Matrix
In changing from one stale to another in any Markov system, a measure of probability 
is always attached. Ii is the collection of all such probabilistic measures which are 
arrange din rows and columns that ids called the transition matrix.

For a transformation matrix, a 2-level change of state will produce 2 by a matrix, a 3- 
lcvel change produces 3 by 3 matrix and so on

14.3 Classification of General Stochastic Processes

The main elements of distinguishing stochastic process are in the nature of the state
space, the index parameter T, and the dependence relations among the random 
variables XL.

14.3.1 State Space 5

This is the space in which the possible values of each <Ytlie. In the case that S = (0, 1,
2. ...). vve refer to the processes as integer valued, or alternatively as a discrete state
process.

If 5 the real line ( - 00, 00), then we call Xt a real-valued stochastic process. If  S is 
the each decision K space then X, is said to be a k vector process.

Remarks:

The choice of slate space is not uniquely specified by the physical situation being 
described, although usually one particular choice may sand out as most appreciate.

14.3.2 Index (Parameter) SetT

I IT = (0.1.... )lhen we state that Xt is a discrete lime stochastic process. Often when 

T is discrete we should write Xn instead of X,. If T  = [0, then X, is called a 
continuous lime process.

14.4 Classical Type of Stochastic Processes

We now describe (first brielly) then in details some of the classical types of stochastic 
processes characterized by different dependence relationships among At . Unless 
random .staled, we lake T -  [(), -x-] and assume the random variables A", are real
valued
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14.4.1 Process with Stationary Independent Increment
If the random variables X l2>- X,,. X ,j-X l2,...,Xtn — X ln_{ are independent for all 

choices of £1( t2, .... ^satisfying £, < /, < ...< /„  then we say that Xt is a process with 

independent increments.

If the index set contains a smallest index t0, it is also assumed 

X c - X li,...,Xtn- X ln_l are independent. If the index set is divided, 

what is 7 = (0 ,1 ,...), then a process with independent were reduces to a sequence of 
independent random variables Z0 = Xq,Z{ =  X, -  X ^ . i  = 1,2,3, ...in the sense that 
knowing the individual probabilities/distributions of ZQ,ZV ... enable us to determine 
the joint distributions o f any finite set of Xt, in fact that of 

X, = Z„ + Z, + ... + Z,, 1 =0,1,2,...

Remarks'Definition
1. 1! the distribution of the increments X(t, + h ) -X ( t t) depends only on the 

length h of the interval and not on the time t, the process is said to have 
sia/iunun • increment.

2. For a process with stationary increments, the distribution of X(/2 + h ) - X ( t 2), 

no matter what the values of h, t2 and h.
3. We now state a theorem;

If a process {Xr  t eT}, whereT = [0, oo] or T = (0,1,2,...) has stationary 

independent increments and has a finite mean, then it true that:
£ (X ,)= M n + M, where M0 = £ ( x J  and M ,= £ (X ,) -M 0 
07 = 07 + 07 where

£7,; -  £  [(X„ - M„)] and <j'; = £  [(X, - M, f ]- ct;

(4) Both the Brownian motion process and the Poisson process have stationary 
independent increments.

(5) We now prove remark 3(a)

E(X,) = E(X„)+[E(X,}-E(X0)]

Lcl f(t) = E(X ,)-E(X „)
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Then for any t and s we have

/ ( /  + *) = £  [X ,„ -X „]

= £  [X,.s-A'.v + X5. -X „ ]

= £ [X ,.S- X ,]  + E[XJ.-X „] 

= £ [ X , - X „ ] + £ [ X , - X „ ]

Using the property of stationary increments

= / M - / W
The only solution to the functional equation / ( /  + s = / ( / )  + f ( s )  =  /( /) / .  

differentiating with respect to t and independently with respect to s we have 

f ( r  + s) = f ' ( r )  = f \ s ) .

Therefore for 5  = l, we find f ( t)  = constant = f(i) = c. Integrating this elementary

differential equation yields f [ t )  = cl + d.

But / ( 0 )  = 2, / ( 0 )  implies / ( 0 )  = 0 and therefore d = 0.

T. .  - / ( ' )  = / ( ! >  «sTherefore expression xr / f n %

=>E[X,] = M n +M, 1 as requires.

14.5 Markov Processes
A Markov process is a process with the property that, given the value ofXt , the values 
of Xs, S > t, do not depend on the value if X u < t; that is, the probability of any 

particular future behaviour of the process, when the present state is known exactly, is 
not altered by additional knowledge concerning the past behaviour, (provided our 

knowledge of the present state is precise).

Definition 1
In formal terms. a process is said to be Markov if 

Pr {a < X, <b\Xl) = X t, X l2 = X 2.....XIn = Xn }
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Whenever /, < < ...jn < t r\a < X, < h\XM = X „}

Definition 2

Let A he an interval of the real line. The function
/>|.v: s;«.A[ Pr {x, <r A|X5r.v} is called the transition probability function t > s and

is basic to the study of the structure of Markov process. We may express the condition 
( 1) as follows:

p r{« < x , ^  tyx ,i x,>Ks = x^ - x ,„ = "„) = H x„> tn, t A) where ) £ |a < £ <  b}

14.5.1 Martingales

Let (.V,) be a real-valued stochastic process with discrete or count parameter set. We 

say that (A',) is a Martingale if. for all t, and if for any

< /, e (X1i1.,|X 1I r/,.... Xln =o„) = c for all values of ai, a2, ... a„.

14.5.2 Renewal Process

A renewal process is a sequence Tk of independent and identically distributed (i . i .d ) 
positive random variables, repressing the lifetimes of some “units”. The first unit is 
placed at time zero; it falls at lime /', and is immediately replaced a new unit which 
then fails at time 7', + 7'2and so on. the motivating the name “renewal process”. The 

time of the nth renewal is S„ -  7] + 7', t-... + Tn.

A renewal counting process N, counts the number of renewals in the interval [o.tj. 

formally .V, = n for Sn < ( < Sn,t, n = 0 ,1.2 ....

Remarks: I lie Poisson process with parameter A is a renewal counting process for 

which the unit lifetimes have exponential distribution with common parameter A 
Other examples such as Poisson process, birth and death processes and Branching 
Process v\ ill he considered in small details.

Practice Questions
1. Define and explain the concept of Stochastic Processes, and give three areas of 

application.

2. Explain the concept of a simple Markov Chain.

3. Define the following:
(a) Slate Space (5)
(b) Index Set (7 )
(c) Renewal Process
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C H A P T E R  15

G E N E R A T IN G  FU N C TIO N S A N D  M A R K O V  C H A IN S

15.1 Introduction

Generating function is of central importance in the handling of stochastic processes 
involving integral-valued random variables not only in theoretical analysis that also in 
practical appreciations. Stochastic process involves all process dealing with 
individuals’ populations, which may be biological organisms, radioactive atoms, or 
telephone calls.

15.2 Basic Definitions and Tail Probabilities

Suppose we have a sequence of real numbers a 0, a a...... Involving the doming
variable x, we may define a formula

A (x ) = Go*0 +  a ^x1 + a2x 2 +  ••• = £?= Qaix i

If the series converges in some real inference - x 0 <  x < x0, then the function A (x) is 
known as the generating functions of the sequence { a j. We may also see this as a 
transformation that carries the sequence unit the function A(x). If the sequence {a,} is
bounded, then a comparison with the geometric series shows that A(x) converge at 
least for f x f x j .

II the following restriction is introduced
n

t'=0

Then the corresponding function A(x) is viewed as a probability-generating function. 
Specifically, consider the probability distribution given by 
H x  = i) = Pi

Where X is an integral valued random variable assuming the values 0,1,2 .... 
Consequently, we define the tail probabilities as 
P{x > i} = q,

Bui the usual distribution function is
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P {x < i)  = 1 - q ,
So that the probability generating function follows 

p(x) = Zi=oPi * ' = I: (X1)

Also for the joint probability, we have the generating function as

Q CO =  £«=0 Qi

We can see that (?(*) is not the same as P(x)

Q(x) do not in general constitute probability distribution despite the fact the 

coefficients are probabilities.
Note that

sothatP(i) = 1,

and /P (x ) /<  ^T /p .xV

< ^  Pj. if / x / <  1

< 1
This means that P(x) is absolutely convergent at least for /x /<  1. But for Q(x), all 
coefficients are less than unity, this making Q(x) to converge absolutely at least in the

open interval / x /<  1 .
Converting P(x) andQ(x), we have

( l-x )Q O O  = l - P O )

which is easily seen when the coefficient of both sides are compared, 

for the mean and variance of p,-. we have

U = /•(*) = £  ip, =p<( 1)
i = 0

= q‘ =<?(D
i = 0

then E\x (x -  1)] = £  t(t -  l)p< = p " (l)  =  2 Q \l)
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So that (T2 =  var(x ) = p"( 1) + p '( l)  -  (F 1 ( l ))2

= 2g '( i)  + q ( i ) -  (<?(D)2
In the same vein rth  factorial moment n[r) about the origin to be

fcWx-DO- 2) .... (x - r  + 1)] = £  (i - lXi -  2).... (i - r + l)Pi
=  p « (  1) =

From these result, several other generating function could be obtain such as the 
moment generating function, characteristics function, cumulative generating function.

15.3 Moment-Generating Function
This is define as 
A1x(t) = E(eCx)
for X discrete witth probability p,-, we have

Mx(t) = 'Yj e tipi =  P (e f)

for X continues with frequency function f ( u ) ,  we havea>
Mx(t) = J  f{u )d u  

— 00

obtaining the Taylor series expansion of My(t) 
we have

M(t) = 1 + Zr=i V } tv
r!

where is the rth moment assume the original.

Because of the limitation of the moment generation function ( in that it does not 
always exist) the characteristics function become appropriate which is define by

0 (t)  = E{eitx)
flic Taylor expansion is similar
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the characteristics 
function.

, . V N u*(it)r!
0 (0  =  l  +  )  —

*->r=i r!
function exist always both for discrete function and continues

0 ,( 0  =  £ > * / ■ «
t=i

and
30

<t>x =  j  e ltx f ( x )d x
—  0 3

where the Fourier transform o f / (x )  is
30

/ m = T  j W o d w
- 0 0

A range simpler generating function is that of the cumulants. When the natural 
logarithm of either the mgf or the c f  is generated, it results into the cumulant- 
generating function, which is simpler to handle than the former two.

This is given by
Kx(t) = logMx(t)

r!
whore /fr is the rth  cumulant.
In handling discrete variables, the functional moment generating-function is also 

useful, which is defined as

Q(a) =  P ( l + y )  =  e[Cl +  y)i]

= 1 ! Ir=lU(r)yr r!
where uir) is the rth factorial moment about the origin.
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15.4 Convolutions
Let there be two non-negative independent integral-valued random variables X, Ywith

p d f
P(x  = 0  = a, 
and
P(y = /)  = bj the probability of the joint event (x =  y, -  j ) is given as aibj.

Let there be a new random variable S = x  4- y  the event (s = k) is made up of the 
mutually exclusive events (X  = 0, Y = k), ( X  = 1 ,Y  = k -  1 ) ,. . , (X  = k,Y  =  0)

Given the distribution of 5  as
Pis =  k )  =  ck

then it can be shown that
Ck = a0bk + a-i bk. 1 +  — +  arb0

When two sequence of numbers which may not be probabilities are compounded, then 
it is called a convolution which can be represented generally as{Ck} = {ak} * [bk]
Given the following general functions

> » (* ) -2 5 o « i* <’|

C(x) = l i .o Q x 'J
we can then write

C(x) = A (x)B(x)
this is because, multiplying the two series A{x) and 5(x), and given the coefficients 

ol'x* as ck.
When considering probability distribution functions, the probability-function of the 
sum.5, of two independent non-negative integrated-valued random variable X and Kis 
simply the product of the letters probability-generating functions.

258

Jusl as the case of two sequences, several sequences can also be combining together. 
The generating function of the convolution is simply the product of the individual 
generating functions. That is. if we have the sequence {a;) * {£, ) * {c,} * {d,) * .... the

generating function becomes /l(x) B(x) C(x) D (x )....
Given the sum of several independent random variables,

Syi =  Xj + X i  + x ?  + ••• + X n

Where Xk have a common probability distribution given by p,-, with pgfP(x), then the 
pg/ol'5,, is {(P(x)}71. Further, the distribution of 5„ is given by a sequence of 
probabilities which is the n-fold convolution of {p*} with if its written as 

{pi) * (p.) • ......*{p.) = ipi) r
15.5 Compound Distributions
Suppose the number of random variables contributing to the sum is itself a random 

variable. Thai is
SN = + x2 + — + *n

where
P{xk = i} = f i ' 

p{N = n} = g lx 

P{Sn = /) =  /i,.
and the corresponding p d f  be given as

F W  -  £ f i * ‘ ^

Q ( * ) = l 9 n * "

n (x )  = Z /ijX '.
Simple probability consideration show that we can write the probability distribution

ol'S„ as
^  = p{s„ = /}=  £ p {/ V  = r,}P(Sn = l/N  = n)
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9nP{sn = l/N = n )
>1 = 0

Tor llxcd n. the distribution of Sn is the n-fold convolution of {F,} with itself, that is 
(/•;}." Thus

E<-uF{5(I = l /N  = njx* = {F(x)}n

Thus the probability generating function//(x) can be expressed as

1 =  0

*' ^  gnp{Sn = l /N =  n)
n= 0

S n ^ p t f n  = l /N  = n}*'
n=0 i=0

= y  s „ { f ^ ) } nn =0
= G ( /M )

Thus gives a functionally simple form for thepg/'of the compound distribution {A;} of 
the sum SN

15.6 Markov Chain

It would be o f interest to define the joint probability o f the entire experiment. This 
will be a very complicated or intricate problem.Early in the 20lh century, a Russian 
Mathematician A.A Markov, provide a simplification of the problem by making the 
assumption that the outcome of a trial XL depends on the outcome of the immediate 
proceeding trial Xt_, (and on if only) and effects Xc+1 (next trial) only. The resulting 
process is known as Markov Chain.
15.6.1 Transition Problem

If a,- denote the state of the process X, and a,, i not equal to j  denotes the state of the 
process X, f ,. then there is a problem of going from a, to a, denoted by pi;- define as, 
Pn ~ W o ,  = ci, / X ( =  a,)
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Set L = 0, (i, =  i. and <iy -  /

Pij = ! \X \  - j / X o  = 0
The above is known as transition problem. The entire process is defined by [pf/).

15.6.2 Transition Diagram
A transition diagram is a graphical representation o f the process with arrows from 
each stale to indicate the possible direction of movement together with the 

corresponding transition probabilities against the arrow s.

Kxample 15.1
Consider a process w ith three possible slates av  a 2, cmcla2. I .el p,,-: i = 1, 2,3, j  =- 

1 , 2 , 3 , denote the transition from one state to the other.

The corresponding transition diagram is as follows:
I h i  =  ' A >

The diagram above represents a square matrix 

P = (p „) i =  1 .2 .--------n, j =  1.2.----------

15.6.3 Transition M atrix
To even transition diagram, there exist a transition matrix and vice versa. F or the 

example 16.1. the transition matrix is as given below :

Pn Pl2 P13'
p = P21 P22 P-a

.P31 P32 P n

2 0 1
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This is a one-step transition matrix for every given i.{p,y} indicate the branch problem 

in a tree diagram. In general.
rPu P12 ...... -  Pin
P21 P22 .....

IPnl Pn 2 .....

and.

□  « / = i
y=i

For any given t. p,y is the probability of transition to a. given that the process was in 

slate a,-.

In this section, we consider a stochastic process {Xn n=  0,1,2,...} that takes in a

finite or countable number of possible values unless otherwise mentioned, his set of 
possible values of the process will be tested by the set of non-negative integers (0, I,
2. If X„ = 1. the process is said to be in state / at time n. We suppose that 
whenever the process is in state /, there is a fixed probability piy-that it will set be in 

state j. That is we suppose that
=- ]\XU -■ ..... X, = l,,X„ = /„ }= P„ or all statesi„, il t ..., in- j .

i./and Vn > 0. Such a stochastic process is known as a Markov chain. The value p,y 

represents the probability that process will, when in state i, next make a transition into 
stale j. Since probabilities arc non-negative and since the process must make a

transition into some state, we have that Ptj > 0, i, j > 0 ; P0 = 1, i = 0 ,1,...
h-o

P denote the matrix of one-step transition probabilities p,y. so that

Pou PU, Poi
Pn, P>. Pn.

" 
^ Pn

Example 15.2 (Forecasting the Weather)
Suppose that the chance of rain tomorrow depends on the previous weather conditions 
only through whether or not it is raining today and not on past weather conditions. 
Suppose also that if it rains today, then it will rain tomorrow with probability o ; and 

if it docs not rain today, then it will rain tomorrow with probability /?.

II we say that the process is in state 0 when it rains and state 1 when it does not rain, 
then the preceding is a two state Markov chain whose transition probabilities are 
given by

a l-c r „  ( a 1 - o '
fi l - /? j { P | - / ? J

Example 15.3
Suppose that company XYZ has three departments a}, a2 and a3. The employees lean 
to be transferred to another department at the end of the year as follows:
i) A man who is in a: . must be transferred only to a2
ii) A man who is in a2 cannot be transferred to a lt but can be transferred to a2 or a3 
with equal probability.
iii) A man who is in a 3 cannot be transferred to a2 but can be transferred either to a3 

with probability “/g  or a I with probability Draw a one state transition diagram, 

and matrix.
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First problem: Suppose the process state in other 1, what is the probability that after 
n-steps it will be in state j? Consider a process with only three states al, a2 and a3. 
What is the probability that after two steps the process will be in state j . f o r  j  = 1,2,3 
given that the initial state of the process is i . fo r  i = 1,2,3.
By assuring that i =  1, we obtain a probability tree for the process as follows:

264

P{X2 =  a J X ,  = fl,J =  PU .PU = PPu m  

P{X2 = a2\X0 =  a ,) = P12.P2, =  P2, m P»m  

P[X2 = a 3|X, = a,) = P.j .Pj, = P3iw P»m
PllPll + P12P21 + P l3P3lP llP l2 + Pl2P22 +  Pl3P32PllPl3 + P12P23 + P13P33 
P2lPl l +■ P22P21 + P23P3lP2lPl2 +  P22P22 +  P23P32P2lPl3 +  P22P23 +  P23P33 

P3lPll + P32P21 + P33P3lP3lP l2 + P32P22 +  P33P32P3lPl3 + P32P23 + P33P33

Assume tliai i = 2. then

P{-f:; — “ l /  — a2) ~  P21 ■ Pi 2 — P2I
. , . , (2)

/  *0 -  a 2) ~  P22 P22 ~  P22

/■'{a'x = a< /  = a2} = P23 P32 = P^J P23
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Assume that i = 3, then

P { x  2 =  a \ / x 0  =  a 3 )  =  p 3 i . P i 3  =  P 31
P { X 2 =  a 2 / X 0  =  a 3 )  =  P32-P23 =  P 32

P { x 2 =  a 2 / x 0  =  a 3}  =  P 3 3 . P 33 =  V r s

It could be seen that p (n  ̂ = p"

Example 15.4
Use a probability tree to fmdp(3) in example 16.3

{x3 = a 2 / x a =  aj) =  1. V 2. V 2 = V 4 

^ { * 3 =  a j / X o  =  a j }  =  1 - 1 / 2  a / 2  =  V 4  

P[x3 =  a, / x„ = a,) = 1. V 2 • V 3 = V 6 P{*3 = a2/ x 0 =  a,} = 1-a/ 2 2/3  = V 3

Pl3<3)=

266

In the same vein

P r/3) =  V 4 

Pn(3) = V 6

P{x3 = a 2 /  x0 = a2} = X/ 2 l f 2 . V 2 =  V s

P{*3 = as / xn =  a2} = V 2  • V 2  • V2 =  V s  

P{^3 = a l /  xo = a 2) = V 2 ' V 2 • V 3 = V l2

P{x3 =  a 3 / x 0 =  a2} =  V 2 • V 2 ■ 2/3 =  * 4  

P{x3 = a 2 / x 0 = a2} = 1/ 2 . 1/ 3 l  = V 6 

P{*3 = az /  *0 = ai) = V 2  • V2 • V2 = V 6 

P{^3 = /  *0 = Qz) = V 2 • 7  3 • V 3 = V 9

p{x3 = a3/x0 = a2) = V2 • 2/ 3 • 2/3 = 2/g
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^ ] l !' — V 12 + V9 -  7/36

- % + v6 = 7/24
^23" '  = V i 3 + V6 + %  = 3?/  72

=  a , / x0 =  a,} =  V 3 • 1. V 2 =  V 6

l>{xi =  a3 / x„ =  a3) =  V 3 • 1. V 2 =  V 6

P{x3 = a 2 /  *„ = a ,j  = 2/ 3 V 3 • 1 = 2/ g

' ( * 3  =  « . / ^  = «3} = 2/ 3.2/ 3 1/3 =  4/ 27
^  * 3  = * 3  / Vo =• a3} 2/ 3.2/3.2/3 =  fl/2?

*1* « 4/27

=• V 6 + %  =  ?/18
n,J, = l /  + 8/  _ 2 5 /Pn  /6  + /27 -  /54

2<»K

Therefore.

r-(3)
Pu Pu pS [V s  v 4 7/ l 2

,j(3) ...
P21 P22 P23 = 36 7h.A 37/ 72

*3^ P S P23

a

-J ^v
j 

i-i
 "

CO 2S/S4

at n = 1 , pll) 
at 11 = 2, p(2) 
at n = 3, p(:̂

This implies that

_ V  „(»- ’ ’
Pij ~ / _ P  Ik Pkj

k
Definition
Let {9fn , n = 0,1, 2 ....} denote a square of real valued variable index by n. The value 
of x  for given n is the state of the process at the n  th step.
P{xn = j  /  *„_•! =  i} is a one-step transition probability matrix. The index n denote 
something close to time and therefore depend on xn. x, xn_2 *0 anc* not on

-V7l + l'*71 + 2>
The Markov assumption is that

P^xv ~ in /xv- l — jn-l> xn-2 ~ jn-2>—->x 0 = jo) = P{xn = j r / xn- 1  = /n + l<) 
The conditional distribution of xn given the whole past history of the process must 
equal to the conditional distribution of xn given x ,,^  .

Note that = p (” l5p = p (0)p"

= p “»p
=  pCilp =  pC0)p 2 

= pt'z)p = pWp*

Example 15.5: (A Communication System)
Consider a communications system which transmits in digits 0 and I. Each digit 
transmitted must pass through several stages, at each of which more is a probability p
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that the digit entered will be unchanged when it leaves. Letting d'ndenote the digit 

entering the nth stage, then {Af„,n = 0,l...} is a two-state Markov chain having a 

transition probability matrix.

P =
P
1 - P

1 - P  
P

P = (P l - P }  
1 - P  P

Example 15.6
On any given day Gary is either cheerful (C), so-so (5), or glum (G). If he is cheerful 
today, then he will be C, S, or G tomorrow with respective probabilities 0.5, 0.4, 0.1. 
If he is feeling so-so today, then he will be C, S, or G tomorrow with probabilities 0.3, 
0.4, 0.3. If he is glum today, then he will be C, S, G tomorrow with probabilities 0.2, 
0.3. 05.

Letting Xn denote Gary's mood on the nth day. then {Xn, n > 0} is a three states

Markov chain (State 0 = C. state 1 = 5., State 2 = G) with transition probability 
matrix.

0.5 0.4 0.1
0.3 0.4 0.3
0.2 0.3 0.5

Example 15.7: (Transforming a process into a Markov chain)
Suppose that whether or not it rains today depends on previous weather conditions 
through the last two days. Specifically, suppose that if it has rained for the past two 
days. Even it will rain tomorrow with probability 0.7. if it rained today but. not 
yesterday, then it will rain tomorrow with probability 0.5; if it rained yesterday but 
not today, then it will rain tomorrow with probability 0.4; if it has not rained in the 
past two days, then it will rain tomorrow with probability 0.2 .
II wo lei lhi.> state at time n depend only on whether or not it is raining at time n. then 
>he preceding mode! is not a Maikov chain (why not?). However, we can transform 
ilus model into a Markov chain by saying that the state at any time is determined by 
the weather conditions during both that day and the previous day.

. In order words, we can-say. that the.proccss is in 
State 0 if it rained both today and yesterday;
State 1 if it rained today but not yesterday;
State 2 if it rained yesterday but not today;
State 3 if it did not rain either yesterday or today.

The preceding would then represent a fair-state Markov chain having a transition on 

probability matrix.
0.7 0 0.3 0

0.5 0 0.5 0

0 0.4 0 0.6

0 0.2 0 0.8

You should carefully check the matrix P, and make sure you understand how it was 

obtained.

15.7 Stationarity Assumption
A Markov chain is stationary if for m =£ n

P[xn = j n / xn-\ = jn - 1>} = P{xm = jm /xm-l ~ jm- 3'}

or simply.
P{xn = j / x r - 1 = i.) = P {X m = j/xm- 1 = 0

In this case the one-step transition probability does not depend on the step number. It 

is therefore sufficient
For us to state only the one-step transition probabilities.
We therefore set n = 1 and obtain

pjy° = ^ {* 1 = j / x  o =  0
P,("J = P{.xn =  j/x o =

For, n =  0, this leads to 

p!j) = 1 for j  =  i
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P (i i ' =  0 for J f t

Pi"1 = P{xn = j / x o = 0 by definition 

= Y,kP{xn =  j , x n.  i  = k / x 0 = i} marginal from joint

= k ,x0 = i}P{xn.  j = /c/x0 = i)

= Y j v* ~ ' )pKik

^ P A n  =7 An -1 = W A n - l = kAo = 0
k ,

15.8 Absorbing Markov Chain
A stale in a Markov chain is absorbing if it is impossible to move out of that state. 
That is, the process stays there. A Markov chain is absorbing if it can’t least one 
absorbing state. That is,

Pjj = 1.0

A state in a Markov chain is transient or non-absorbing if it is possible to get out of 
that stale. That is

Pjj =£ 1.0 for  state j.

15.8.1 Probability of a Markov Process ending in a Given Absorbing State
This depend on the given in that state. Let atj denote the probability that an absorbing 

chain will be absorbed in state if it states in the non-absorbing state a,.

Method 1

There arc two possibilities, either the first transition is to state ay (in which case the 

chain is immediately absorbed) or the first transition is to some transient or non­
absorbing state ak ,k  *  j, and then the process immediately enters states a, f r o m a k. 
These arc two mutual exclusive events.
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P i j  is the probability of the first event, and that of the second is

T,kPikakj

Consider a process with the following three states; a1( a2 a3l where afis an absorbing 

state, and others are transient.

— P22a2l

— P 23a 3 l

Then

a U =  p i x < =  a/Ao = )
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Bv substitution

a2t ~  P21 +  P2 2 a2 i + P23O31

ciij is a one-linear equation in several unknowns. Construct a corresponding linear 

equation by using each o f  the other transit state as initial state.

In the given example, a2l is a linear equation in two unknowns. Note that Ptj is 

obtained from the given one step transition matrix. The onlyunknown are akJ-, all k =£
j
The corresponding a21is given by l

~ P?.2a21

~  P33°31

l hen Naive all values of’equation ii for all ^ j  t sue ii as a2 1 and u?1) simullnneouslv
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As an example consider the following transition matrix lor absorbing Markov chain 
with four states. Note that an absorbing state is indicated by probability l

v 4 v 4 V 2 0
p = V 3 v 3 0 v 3

0 0 1 0
0 0 0 1

Note that the absorbing state are a3 and a4.
Suppose that we want a13, that is the probability starting from a. will get absorbed in 

slate a3 . In other word, we want the probability that the chain will enter a3 from a1. 
Then aiywill give us

a33 = Pl.3 + P n a13 + Pl2a23 

a23 = P23 + P23a13 + P22a23
Substitute forpiy. noting that akj is unknown. 

ars = V 2 + V 4 a i3 + V 4 fl23

a23 — 0 + 1/g «13 + V 3 a23

Solving the simultaneous equation, we obtain 

« i3 =  4/ 5 and a23 = 2/ 5

The matrix becomes

| fl13 a l4|
I °23

Alternatively.

! :>> rr Vi, +  2.H Piltakj
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Wo can write this matrix form. Let A denotes the matrix of aiy R denotes the matrix

oI'Pij. Q denotes

The matrix o f pik. That is

A =  (af/) =  ia kj} -s x r
R = (Pa)  s x r

0  =  i P i k )   S X 5

Then aijcan be written as

A = R + QA
Where

r = number o f  absorbing states 
s = number o f  transit states

Step I: Arrange the rows and columns of the one-step transition matrix in which a 
way that the absorbing states appear first in the rows and first in the columns.
Step 2: partition the new one-step transition matrix as follows

r

absorbing states

transient states 5 ■<

-  r

R

~ \
0

J
hrx r )>  0 ( rx s )>  N(sxr)> Q (sxs )

Step 3: Solve for A. the matrix of the unknown, as follow

(/ -Q )A  = R 
A = ( / -< ? ) - '/*
Since (l-Q) is  non-singular and so has an inverse. (/ -  (?)_1 is known as the 
fundamental matrix.

l or example, the above 4 x 4  matrix incan be rearranged as follows:

«3

r
1 0 0

fl4 0 1 0

v 2 0 V *

0

V

v 3 V s

Step 4: Find I-Q and hence ( / - ( ? )  1

( / -< ? )  =
3/ 4 " 'A

- v 3 2/3

u -  «?i =  (3A ) (2/ 3) -  (V 4) (V 3) =  ( 5/ i 2) 

[2/ 3 V 3C0f(/- c ) = k  3/ J
cofT(/ -  Q) -  Adj(l -  (?) =

, Ad](I -  Q)
since V - Q r  = Je t( , _  Q)

2/3 v 3

V3 3A

2/ 3 v 4

V3 V4
12A

fl2
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r8/ s 3/ s i

i 4/s 9/5j
Therefore /! =  ( / -  Q)_1R =

%  V 5

LD
coL̂T)
<» i----
or—i

L4/s  9/ 5J °  V 3.

7s 3/sJ

15.8.2 The Expected Number of Times a Markov Process will be in each Possible 
Starting Transient (Absorbing) State

Lei N = (liij) where Uij is the number of times the chain is in transient state a;- 
given the initial state is at.
Lot n,7 denote the mean number of time that the chain is in transient state a, .

Let N denote the matrix of n (y, which is a square matrix since i and j  range over the 
transient stateds.
Consider a chain with the three states in (a), a a, a2, a3 where aj is the absorbing 
state. Assume that the initial state process is a2.
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Consider the state at time 1. That is, the first time interval is spent in state a, (a( is 
transient state). If i =£ j  and the transition probability pik given the probability that the 

process will be in aK from at . Then 

nij = T.kPiknkj

nii = Piknki = 1 

=  dii +  'LkPiknki

Which is combined into

n i i  =  d U  + Y j  P ikU ki ' =  l> f° r ‘ “  j
l<

= 0, for i j
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In matrix form this can be written as

d 1

r
d2 • dn

" N
d, 1 0 0
d2 0 1 0

dn 0 0 1

J

15.8.3 The Length of Time (Expected Number of Steps) Required before 
Absorbtion Occurs

For any given initial transient state a, the expected number of step required before 
absorption is given by the elements of the rector

t = Z ” "
i

Let c be a column rector with the same number of elements as the columns of N and 
every element of C is unity.
Then

t  = NC

By using the above

where c =
T
1
1 .

fundamental matrix we find

15.8.4 The Number of Transitions that will occur before a particular Absorbing 
State is reached

Letm,y. denote the number of transition that will occur before a particular absorbing 
state j  is entered given the initial state t.

2 8 0

Recall
djj = Vij + I,kPikakj

dx d2 . dn

r ^ \
dx i 0 0

d2 0 1 0

dn 0 0 1

J
{p*} = Q

M  = N
N = 1 + QN
n  = (/ -  o r 1 1 =  (/ -  <?)'
Thus the element of the fundamental matrix give the expected number of times the 
process will spend in given transient states for any given initial transient state.

\ - i

n = (/ -  Q r l = a2
8/s  3/s
4 / c  9 /c

= rl.6 0.61
l0.8 1 .8J

Interpretation:
Starting in state au  the expected number of times in state al before absorption occurs 
is 1.6. Similarly, starting from aa the expected number of times in state a2 before 

absorption is 1 .8.
The expected number of transition before absorption is 

aij™ij =  Pijmij +  Sfc Pikakj mij 
summing over/

M = Y j a <im ij
k

Multiply both side of bymiy- 

aijmij = Pijmij +  ^  Pikakj mij
k

2 8 1
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=  a ij  +  T,k P i k a k j  m k j

Note that mi; = 1 and m y =£ 1

In the four state process or chain given earlier, suppose we want to compute m13 
Thus, 0-ijm.ij becomes.

a 13m 13 =  a l3  +  P l l a 137 n 13 +  P l 2 a 23m 23

Constructing another equation by using the other initial transient slate,

a 23m 23 =  a 23 +  P 2 1 a l 3 77713 +  P 2 2 a 23m 23

this is because k = 1,2 and j  = 3
Substitute for the known values, that is thea’s andp’s.

Note: The p ’s are from the given one-step transition matrix and a's  are earlier 
solutions.
ThereforeV 5  m i3 =  V 5  +  V 4 V 5  m t3 +  V j* -  V 5  m 23 V 5 m 23 =  +  V 3 ' 4/ 5 7Tl13 +  V 3 • V 5 m 23
This result in 

6»l 13 _  ^23 = 8

4m! 3 4-77123 = 6

Thus,77T-J3 =  1.9 andm23 = 3.4 
So that we have

a 3

O] r  1 0 ^ "1.9 "

a2 0 1 3.4
J
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The transition matrix P of a Markov chain is

1 2 3 4 5

1 1/2 1/4 1/4 0
2 1/2 0 1/4 1/4 0
3 0 0 0 1 0
4 0 0 2/5 1/10 1/2
5 0 0 1/2 0 1/2

V J
(The University of Sydney, 2009)

Practice Questions
1. Define a generating function. A(x).
2. Define the following-

(a) moment generating function
(b) characteristic function
(c) cumulant generating function

3. Given two random variables X and Y. with probabilities P(x = i) = a,- and 
P{y — j) = hj. Write an expression for their convolution ck where

(i = 0,1,,..., r) and
0  = 0.1..... k )

4. Given the sum of random variables SN, show that the probability generating 
function H(x) is given as G(F(x)}.

5. On any given day Bruce is either cheerful (C), or so-so (5), or glum (G). If 
he is cheerful today, then he will be C or S tomorrow with respective 
probabilities 0.5, 0.4. If he is feeling so-so today, he will be C or 5 tomorrow 
with probabilities 0.3, 0.4. If he is glum today, he will be 5 or G tomorrow 

with probabilities 0.3, 0.5.
(a) Write down the transition matrix P which describes Bruce’s mood oscillations 

over time.
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(b) Bruce is currently in a cheerful mood. What is the probability that he is not in 
a glum mood on any of the following two days?

(c) Obtain Pn,n  — 3,4,5. (The University o f  Sydney, 2011)
6. Suppose that whether or not it rains today depends on weather conditions of

the last three days. If it has rained in the past three days then it will rain today 
with probability 0.8; if it did not rain for any of the past three days, then it will 
rain today with probability 0.2; and in any other case the weather today will, 
with probability 0.6, be the same as the weather yesterday. Denote the states 
by triples of the kind RRR, RRF, etc., and write down the transition matrix P 
of this Markov chain. Obtain Pn,n  = 3,4,5. (The University of
Sydney. 20/1)

7. Define a Markov Chain and state its assumptions.

8. (i) State the stationarity assumption, (ii) Show that p •" * =  £/< p •

9. (a) What is the absorbing state?
(b) Assuming the process starts from states {1,2), what is
(i ) the probability that a Markov process will end up in the given absorbing state.
(ii) the expected number of times a Markov process will be in each transient state 

lor each possible transient state.
(iii) the length of time that it will take for a Markov process to be absorbed. That 

is the number of steps required to reach an absorbing state for the first time.
(iv) the number of transition that will occur before the absorbing state is reached.
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C H A P T E R  16

ST E A D Y  S T A T E  AND PA SSA G E T IM E  P R O B A B IL IT IE S

16.1 Introduction
This chapter introduces the student to the process of determining the equilibrium state 
of a Markov chain. That is, after a long process, the probability of a process being in 

a steady situation.

Consider the formula for the rector, P(7l) ,of state probabilities for the time n given by
p ( n )  _  p ( 0 ) p ( n \

Where P(0) is a vector of initial slate probabilities and P(7l) is the n-step transition 
matrix. The interest is to find out what happen to a Markov chain with Pas n becomes 

large.
We will approach this problem by considering the following example.

Example 16.1
An Engineering company has three departments. Engineering (a-j), production (a2\  
and sales (as).A man in the Engineering dept, cannot be assigned to sales but may be 
transferred to production or Engineering with equal probability. A man in the 
production dept, cannot be transferred to engineering but can be transferred to 
production or sales with equal probability.A man in sale can be transferred to 
Engineering or production and his probability of going to Engineering is 3-times that 

of going to production.
The associated P is as follows:

0.5 0.5 0
p = 0 0.5 0.5

.0.75 0.25 0 .

The following transition probabilities can be deduced from P
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p (2 )  _  p2
0.250 0.500 0.250
0.375 0.375 0.250
0.375 0.500 0.125

p (3 ) =  p  3
0.3125 0.4375 0.2500'
0.3750 0.4375 0.1875

.0.28125 0.46875 0.2500.

p ( 4) =  p 4  _
0.34375

0.328125
0.328125

0.4375
0.453125

0.4375

0.21875 ' 
0.21875 

0.234375.

p (S ) _  p 5
0.3359375 0.4453125
0.328125 0.4453125

0.33984375 0.44140625

0.21875 
0.2265625 

0.21875 .

We can go on and on, until the n-step is reached. It should be noted that as the steps 
increase, the
Probabilities tend to be steady. This can readily be seen in the following graph.

16.2 Graph of Marginal Distribution of P ^
For fixed fair (t,/) we can draw the graph of for various values of n as follows.

Marginal Distribution of P(n)31
0.75

0.8 0.6 
pNj! 0.4 0.2 

0
1 2 3 4 5 6

Thr function P|nl31

2S6

Marginal Distribution of P{n)n

p<nlZ1

0.5

0.4

0.30.2
0.1

0

Marginal Distribution of P(n)21
0.375 0.375 0.328125 0.328125 0.328125

-----------  --------- - -------« s

0

i " V  3 < s 6
Thr function P,n,M

Summary of Solution to Problem
1. The function gives the probability of getting to dept. a : , from dept, a,- in

step n, n =  0, 1 , 2......
2. When n = 0, P ^ ] = 0, since the person will certainly not be transferred.

3. As n — co, P̂ te n d s  to converge at interpretation of i. similarly, P -^  -»

0.44 or irrespective of i , and P ^  -* 0.22 or 2/9 irrespective o ft.
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•4. All the rows of the matrix P(n) are identical but the columns are not as
n —  g o .

5. The state probabilities that satisfy the above criterion are called steady-state 
probabilities or equilibrium probabilities, or limit value, or stationary 
distribution.

6. A Markov chain is said to approach equilibrium as n tens to infinity if its 
transition probabilities approach limit values.

16.3 Stationary Distribution
The steady-state distribution is define as the set (i/f) where 

Pj — littiji—oo Pij — limT1_ co P[Xn = j) 

and is independent of i. Furthermore,//, > 0.

ZjP j

Pk =  I ,  PiPuc

A probability distribution which satisfies pk is called invariant or stationary 

distribution (lor a given Markov Chain). In this case row ofP(n) is the probability 
vector// = (/tl t //2, •••)• Hence, given

pin) _ p ln-l/p

lim P(n) = Um P^ -^ Pn — on 71 —• co
P\Pi PlP2
PlP2 — Pi Pi \P]

This can be written as

P =  pP
or
p T = Pr pT

2X8

This represents a dependent set of equation (since each row elements must sum up to 
unity). One of the infinite numbers of solutions can be found to represent a 
probability solution by imposing the condition

This is known as a normalizing equation. 
Example 16.1:
From example 15.1 , find lim„-or) P(1XJ 
Solution

\P\P2P1 1 = [P\PiPl\
0.5
0.0

.0.75

0.5 0.0’
0.5 0.5
0.25 0.0.

or
Pi 0.5 0.0 0.75 P i
Pi = 0.5 0.5 0.25 Pi
Pi. 0.0 0.5 0.0. Pi.

=  0.5//! +  0.75//3

//2 = 0.5//, + 0.5//2 + 0.25//3 

Pi =  0 .5 //2

Thus

Pi ~  -SP\ 

and

P2 = 2a<3
Substituting we have 

4
Pi = 3^1

IJv imposing the normalizing condition on the sum ut we obtain

P, + P2 ■+ "  1
4 2

Pi "F - « i  + r/Mj j
I lien:Ibr.:

2 6 9
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1

This means therefore that
4 2

Pi = and n3 =  -

Thus n = (jiiPiPz) = (V 3 4/ g 2/ 9)

This gives a sample method of obtainingP(7l) than raising Pto power n.

Interpretation:
can be interpreted as follows:

1. Probability of a distant state: if a point in time Is fixed in the distant future , //y 
is the probability that the process will be as state j.

2. As a time average: if the process is operated for a long time, /iy is the fraction 
of time that the process we be at state j.

3. As a fraction of process: if many identical processes are operated 
simultaneously, /iy is a fraction of the process that can be found in state j  after 
a long time.

4. Reciprocal of mean number of transition: iij is the reciprocal of the mean 

number of transition between recurrence of the state, that is, average 
number of transition before a
man inay will come back to a*.

Example 16.2

An individual of unknown genetic character is crossed with a hybrid. The offspring is 
again crossed with a hybrid, and so on. The states are dominant(D), hybrid (H) and 
recessive (/?). The transition probabilities are

290

D H R

P =

D S 2 v 2 0

H v 4 v 2 V

R 0 v 2 V
V J

Findlimn_co P(n) and give all possible interpretation of the result.

16.4 First-Passage and First-Return Probabilities
We shall approach this topic by way o f asking certain questions.
Q l : What is the probability that in a process stating from a(. the first entry to a; 

occurs at the nthstep?
Q2: What is the number of stepsn, required to reach state ay for the first time?

For Ql. consider the function/?^ which is the probability that the process will enter 

slate j  at the nth step given that it is in state i of the initial step. That is,

P p> = P[Xn-‘ j\Xo = i)
(a) In this case, the process would enter state ay, after onlyk, 1 <  k < n — 1 , 

steps.
(b) After that is called either stay three is ay or change to another state and then 

return to ay. For Q2, the probability/^ that the process will reach state ay 

for the first time at the nth step given that it stated from a, is called first- 
passage probability and is define as

fij * = P{Xn = j-X71—1 ^  J'Xn-2 *  j > —>X\ *  j\Xo — 0

Definition: First-Passage Probability
This is the probability that the process is in state ay at time nand not before, given that 

it was in state a, at time 0.
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Tlu> implies that the probability that n steps are required to reach state aj for the first 
time given that the process siartsfroin slate a,.
Clearly

-  0. the process is still at a,- 

/jy11 = Pi,, the one-step transition probability, t =£ j

A Iso.

Then,
n

v <n) = V #•(*)„(»-*)PU lij Pji
k=1

n- 1
_  . V *  A k ) (n-k)
- h i  v ij +  Z hi Pa

k = l

-  f (n) -I c(k) An-k)
/  ,>ij P>i 
/<=1 

or.
/•<») _  _ !» ' v » ~ l  rO f)A n -k i'll Pij “ 2-ik=\lij Pjj
N/B '/j ' " - = joint probability of reaching stale a; in 1 <  Ic < n -  lsteps only, 
given that it started from a,.

lij".  can he obtained iteratively if (/>;"’} ore known.

Kxample 16.2

Consider (lie problem of departmental transfer in chapter 17.

0.5 0.25 0
r  .. 0 0.5 0 .

0.75 0.25 0

p ! ? *

0.5 0
0 0.5
0 0

0
0
0

0.5 0.25 0 0.5 0 O' 0.25 0.25 O'
0 0.5 0.5 0 0.5 0 = 0 0.25 0

0.75 0.25 0 . 0 0 0. .0.375 0.125 0.

P ? JpW =
0.250
0.375
.0.375

0.500
0.375
0.500

0.250'
0.250
0.125.

0.250 0.500 0.250' 0.25 0.25 O'
0.375 0.375 0.250 - 0 0.25 0
0.375 0.500 0.125. 0.375 0.125 0

0 0.25 0.25
= 0.375 0.125 0.25

0 0.375 0.125

F{3) -  Pij - t c p i r
_-  Pij >u H)i - h i  I' ll

_ JJ) r<U (2)
= Pij - J i j  P„ -  f U)v U)Jii Pi

16.5 Distribution of Number of Steps for First Passage

(i) For any fixed lair the set n  =  1, 2,... jgives the distribution of the

number of steps to get from i to /(the first passage). That is, the number of steps 

required to reach a ;- for the first time.

(ii) The number of steps required to get from i to j  is therefore a random

variableA/,,. with

/>{*.) =  "} = / «

2 9 3
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16.6 First Return (Recurrence)

( i) If; = t, f£ n) gives the probability of the first return to state a f. For example, 

the probability that the person transferred from department a £ will return to a, for 
the first time at time n.

Corresponding to

fii  ̂ = P[Xn = ^  2 it —,Xi ^tlA'o = i)

( iii) The equation relating / J n) to would also be the same.
But

t i n) =  n * i  = zi*0 = 0  =  1
(ii) Then Nu is a random variable whose value is the recurrence of state a£.

(iii) Since {/it(n)} for fixed i , j  gives the distribution of fyy. the mean first passage 

time from a,- to ay denoted by m,yis given by
oo

m a =  E(Nu )  = Y j n^ /n>
n = ]

(iv) where t =  mu is the mean first recurrence time.

16.6.1 Calculation ofm iy-

( I ) The formula in (6.6) for would required the complete first passage time 
distribution for solution to be obtained.

( 2) A simplification of the problem is obtained by conditioning the formula for 
m(; on the state at step 1. That is. on one value of i at a time.

(3) Given that the process is in state at at time 0, either the next state is a; in

which case /V(/ = 1 , or it is in some other state ak afier which it enter state 

ar  in which case the passage time will be m kj = 1 + NkJ, the passage time 
from ak to fly.

(i) Thus

2 9 4

m i l  =  X p t j + ^ ( 1  +  m k j ) p lk 

k * j

=  Pi j  +  ^  Pik  +  P i k ™k j
k * j  k * j

=  ^  Pik  +  ^  Pi k™k j
all k  k * j

=  1 +  Y j VikTrLki
k*J

since £ kpik = 1, This expressesm^- as a linear function of m kj as the unknowns.

(ii) By using the same relation for other m £y’s a complete set of linear equation 

(equation to the number of unknowns) can be expressed.
(iii) A solution of the linear equation gives the mean first passage time from any 

state into state j .
(iv) Mean first recurrence times are obtained in the same way.

Example 16.3
Consider the three-department job assignment. How many assignments will occur, in 
the average, before a man who is first assignment to ax (engineering) will be assigned 

to a 3 (sales)? That is, what is m13?

Solution to Example 16.3
Using the formula for m,y 

7 n 13 =  1 +  P n  m 13 +- p 12m 23

There are two unknowns. Hence we form a similar equation for m23 as follows.

m23 = 1 + Pzim l3 +  P22m 23 
Now. recall that

0.5 0.5 0 '
p = 0 0.5 0.5

.0.75 0.25 0 .
By substitution we obtain 
m13 = 1 + 0.5m)3 +  0.5m23

2 9 5
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m23 = 1 + 0.5m23
Solving the simultaneous equation, we found that

mi3 = 4- and m 23 = 2

Practice Questions
1. Define the term, steady state probability
2. Write an expression for a limiting distribution.
3. Solve completely the problem in example 5.1, and draw all the graphs.
4. Use matrix multiplication and limiting probabilities to solve Problem 5.2.
5. In the post test in lecture four, obtain the stationary probabilities.
6. Define and write an expression for

(a) First-passage probability.
(b) First-return probability.

7. Using the post test of lecture four, find the mean first passage time from state
5 to state 4 by making state 4 absorbing. (This has nothing to do with states 
{1,2}.) (The University o f  Sydney, 2009)

8. The transition matrix P of a Markov chain X = (Xn: n  > 0) is

. 1 2 3 4. 5 •

r
I •. o 0 0 0: 1 1
2 . 0 ■ 0 1/3 1/2 0
3 0 0 1 " 0 0
4 .: 0 1/3 0 1/6 1 /2
5 1 /2 0 ■ .0 0 1 / 2 .

V  ■ ■
(a) Specify the classes of this chain and determine vyhether they are transient, null 

recurrent or positive recurrent.
(b) Find all stationary distributions for this chain.
(c) Find the mean recurrence time m.jj for all positive recurrent states.

(The University o f  Sydney. 20 JO)
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C H A P T E R  19

CH APM AN-K O LM O G O R O V EQUATIONS AND 

C LASSIFIC ATIO N OF STATES

17.1 Introduction
The n,h-step transition probabilities P" is the probability that a process in state / will 

be in state j  after n additional transitions that is,
/7= H * ,,-„ -^ |X „= ;} ,n 20 ,i ,j ;> 0 .

The Chapman-Kolmogorov equations provide a method for computing these n-step 
transition probabilities. These equations are:

p;p?kp;' for all n, m > 0, all i, j

and are established by observing that

fT "  = |x.. = 'l

= Z ^ f r — “ -/ .X. = K |X ,= /}
K

- 1  p \x - .  - J - !x - -  *• x » = ' M x „ = * 1* .  = -IK-1'

- i c c(.=ii
If wc let P"” denote the matrix of n-step transition probabilities, P”, then it can be 

asserted that
p i n —m) __ p i n I p ir n I

where the dot represents matrix multiplication.
Hence,

p m )  _  p  p i i i - i ) _  p  p  p i " - - i  _  _  p "

and thus P,nl- may be calculated by multiplying the matrix P by itself n times. 

pniis said to be Accessible from slate / if for some P  >0. Two states / and j

accessible to each other is said to communicate and wc write / j.
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Let denotes the one-step transition probabilities, and />! = Pt

Observe that P"k P" represents the probability that starting in / the process will go to

stated in n + ^transitions through a path which takes it into K at the nth transition.

17.1.1 Proof of C -  K Equations
Using remark (3) above, summing over all intermediate states /(yields the probability 
that the process will be in state j  after n + m transitions. We have

r r  = e k «  = j \x ,  =;}

T " = L k . . , = ^ x . = * k = ' ' }

= 5> k,., = V ,K .t .X 0 = /}p {x „ = K\X„ = l} 
*«0

p;
*=0

Matrix ofn-slep transition probabilities: P(nl

Let Plnl denote the matrix of n -step transition probabilities P'j then the C-K Equation 

asserts that
pin-rm) _  p lm ) p(m)

By induction
p\.»\ _  p i" - \* k )  _  p i i-l p‘ _  p n

That is the n -step transition matrix may be obtained by multiplying the matrix P by 
itself n times.

Example 17.1
Consider example in which the weather is considered as a two-state Markov chain. If 
a  = 0.7 and p = 0.4, the calculate the probability that it will rain four days from today 

given that it is raining today.

298

Solution:
The one-slep transition on probability matrix is given by

Hence. Pm = P:

'0.7 0.3'|
p  =

.0.4 0.6 J

07
°-3)

fo.i 0.3
0.4 0.6 1,0.4 0.5

0.61 0.39'
v 0.52 0.48,

f  0.61 0.39'j 0.61 0.39'j
0.52 0.48 J ,0-52 0.48 J

f 0.579 0.4251 \
[ 0.5668 0.4332 J

Hence, the required probability P*n equal 0.5749.

Example 17.2
Consider Example 2.4. Given that it rained on Monday and Tuesday, what is the 
probability that it will rain on Thursday?

Solution
The two-step transition matrix is given by
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p{2) = p'- =

0.7 0 0.3 0 '0.7 0 0.3 0
0.5 0 0.5 0 0.5 0 0.5 0
0 0.4 0 0.6 0 0.4 0 0.6
0 0.2 0 © oo 0.2 0 ->

ooo

'0.49 0.12 0.21 0.1 8n

0.35 0.20 0.15 0.30
0.20 0.12 0.20 0.48

, 0.10 0.16 0.10 0.64,

Since rain on Thursday is equivalent to the process being in either state 0 or state 1 on 
Thursday, the required probability is given by />2„ + = 0.49 + 0.12 = 0.61

17.2 Classification of States

In order to analyze precisely the asymptotic behaviour of the Markov chain process, 
we need to introduce some principles of classifying state of a Markov chain.
Properties to be classified include: Accessible, Communicate, A periodic. Recurrent, 
Transient, and Irreducible. Definitions of these properties now follow:

17.2.1 Irreducible Property

We say that the Markov chain is irreducible if there is only one class- i.e. if all states 
communicate with each other.

Proposition

Communication is a exultance relation. That is 
(/') /' <-» /';
(/'/) / / i <-* j, then j <-> i;
(iii) If  i j, then j <-» i; then i k.

300

Proof: the Is' two parts follow trivially from the definition of communication. To 
prove (iii) suppose that /<-> /., and j  k then there exists m,- n such that

P"' > 0, P" > 0. Hence,

P',r = t P"' P* - K  p"k > 0
/•=U

Similarly, we may show there exists an S for which Pks. > 0 . Two states that 

communicate are said to be in the same class and by the proposition any two classes 
.arc either disjoint or identical. We say that the Markov chain is Irreducible. If there is 
oniy one class- that is, if all states communicate with each other.
Stale is said to have period d i f P ” = 0, whenever n is not divisible by d and d is the 

greatest integer with this property. (If P* = 0, for all n > 0; then define the period of i 

to be infinite). A state with period 1 is said to be A periodic. Let d (i) denote the 
period of/, we can show that periodicity is a class property.

I7.2.2Recurrcnt (or Persistent) State

A state f e  S is said to be Recurrent if Pr(7] <oo)= 1 where T; is the number of steps 

it takes for the chain to finally visit /.

17.2.3Transient State
A state I'e S is said to be transient if Pr(/, <co)< 1 where T  is the number o f stops it 

lakes for the chain to finally visit i.

Example 17.3
Suppose that the weather on any day depends on the weather condition for the 
previous two days. To be exact, suppose that if it was sunny today and yesterday, then 
it will be sunny tomorrow with probability 0.8; if it was sunny today but cloudy 
yesterday, then it will be sunny tomorrow with probability 0.6; if it was cloudy today 
but sunny yesterday, then it will be sunny tomorrow with probability 4; if it was 
cloudy for the last two days, then it will be sunny tomorrow with probability 1 . '
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Definitely, the model above is not a Markov chain. However, such a model can be 
transformed into a Markov chain.
(a) Transform this into a Markov chain
(b) Obtain the transition probability matrix
(e) Find the stationary distribution of this Markov chain.

Solution

(a) Suppose we say that the state at any time is determined by the weather 
conditions during both that day and the previous day. We say the process is in:
State (S. S) if it was sunny both today and yesterday;
State (S. C) if it was sunny both yesterday but cloudy today;
Slate (C, S) if it was cloudy yesterday but sunny today;
State (C, C) if it was cloudy both today and yesterday

(b) The transition probability matrix is 
Today’s state

Yesterday's staie(S, S) 
(S,C) 
(C,S) 
(C,C)

(S. S) (S, C) (C,S) (C,C)
.8 .2 0 0
0 0 .4 .6
.6 .4 0 0
0 0 .1 .9

2. An airline reservation system has two computers only one of which is in 
operation at any given time. A computer may brake down on any given day which 
probability p. there is a single repair facility which takes at least 2 days to restore a 
computer to normal. The facilities are such that only one computer and a time can be 
dealt with.

(a) Fonn a Markov chain by taking as states the pairs (x, y) where x is the number 
of machines in operating condition at the end of a day and y is 1 if a day’s labour has 
been expended on a machine not yet repaired and 0 otherwise.
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(b) Obtain the transition matrix
(c) Find the stationary distribution in terms of p and q where p + q = 1

Solution
The state are (2, 0), (1,0), (1, 1), (0, 1). 
The transition matrix is

From state 
P = (2,0) 

(1 . 0 ) 

0.0  
(o.i)

To state-* (2,0) (l,0) (l,l) (O.l)

9 P 0 . 0

0 0 <7 p

<? P 0 0

0 I 0 0

17.3 Discrete Time Process
1. Consider a series of events E resulting from the repetition of the same 

experiment and occurring consecutively. The common examples are telephone 
calls, average customers at a service point, chromosomes breakages and 

radiation, and so on
2. The occurrence are assumed to be of the same kind y.The number n of events 

in a given interval t is a random variable.
3. Letz ( t )  denote the total number o f occurrences within an arbitrary time

interval t.
4 I t lP .U)  = P(*tO  = n).

Assumptions
i. Pn(t) depends only on the time interval of duration t, and does not depend on 

the initial instant.
ii. The probability that E will occur more than once is the time interval that is 

infinitesimally small (that is, negligible).
iii. The probability that E occur once in the interval dt is proportionaly to that 

interval and is written
As Xdt.
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Assumptions on z ( t )
i. the initial z ( t)  is 0.
ii. z(t)) increases by I when E occurs.
iii. z(t) remains constant when E does not occur.

iv. z(t) =  0, 1 , 2,..., n , ... .At random instants ty, t2, ..., t*, ...it jump abruptly from 
0 to 1 , 1 to 2, and 2 to 3, ... . The increment of z(t) at time interval t  is equal to the 
number n of events that have occurred.
v. If we know the value of z (t0)att0(the initial instant) we can find the value at 
t = t„ + At.
z(t) = z(t0 +  At)

= z (t0) + z(At)
= z(t0) + *

The increment z(At) = n is characterized by the properties of the probability of 
occurrence in the time interval if
i. its probability is Pn(At)
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ii. it is independent of the values of z(t)prior to t0.
Thus if z ( t0) is known, the value z(t) (which is determined by the probability of 
occurrence in the interval z) depends solely on the law of probability that governs the 

increment nafter t„.

The random variablez(t) follows a defined poisson process and constitute an example 
of a Markov chain. Jt is defined completely by the probability

Pn(0 =
(Z7t Y e - O '

n!
n = 0,1...

17.4 The Poisson Process
Under the assumption of the continuity of time we can expand py (At) in Maclaurin 

series

Pi At =  P i(0) +  pi(0)A t +  ^pi'(0)(A t)2 +  -  

= Pi(0) + p i(0 )A t +  o(At)2

But pjCO) =  0

The probability that Ecan occur 0 time or once is

p{z(At) = 0 orz(At) = 1} = p0At + pyAt 
Now consider pnAt 

p0At +  pi At +  ••• = 1

which is necessary.

p0At = 1 -  px At -  p2At -  •••
= l - p ,A t
This is so because of the assumption 1 -  py At -  o(At)2. But our only interest is in 

Pn(t)-
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Event E can occur precisely n times during the interval t  + At if the following 
mutually exclusive events are time.
i. E occurs n times in the interval t, 0 times in the interval At.
ii. E occurs n -  1 times in interval t, once in the interval At.
iii. E occurs n -  2 times in the interval £, twice in the interval At.
And so on.

These lead to the following:
pn(t + At) =  pn(t)p 0At +  pn_1(t)PiAt +  pn_2(t)p2At +  -  

Pi At =  1 — p[ (0)At — o(At)2

sincepi(O) =  0
Letp] (0) =  A, then

Po At = 1 -  AAt -  o(At)2

PiAt can be written as 
P i  At = AAt +  0(At)2

So that
pn(t +  At) =  pn(t) [ l  -  AAt] +  Prj-i(£)AAt +  o(At)2 

=  Pn(0  -  P„(OAAt +  p„_i(t)AAt +  o(At)2 

Pn(t + At) -  pn(t) =  [pn_t ( 0  -  p„(t)]AAt + o(At)2

Divide both side by 
p„(t + A t ) - p n(Q 

At
As At -> 0

^ P n ( t)  =  pn'( t )  =

At

=  ^ b n - l ( 0 - P n ( 0 ]  + 0(At) 2 

APn-l(0  “ Apn(t), 71 = 0, 1,2,...

3 0 6

This equation does not hold for n =  0. We can use the forward chapman-kolmogorov 

equation.
p0( t+  At) =  Po(t)p0( At)

=  p0(t)[l-A A t]

p0( t +  A t)-p o ( t)  n ^
---------- Tt---------- —

In the limit asAt -» 0

Po(0 = -^Po(t)

At the beginning of the interval t, we have 

po(0) = 1 andp^CO) = 0 , 7i *  0 

Divide the limit result by p0(t), we have 

£o(£) _
Po(0 Po(0PO

d
or— l° 9ePo^  = _A

J^ lO g e P o ( t)  = ~ x j  dt

logep0(O= - X t  

PoCO =

307

UNIV
ERSITY

 O
F I

BADAN LI
BRARY



^p„(t) can still be written as

0pn(O = *P n-l(0  “  Apn(0  » n > 0

Atn = 1

0Pi(O = *Po(O -A pi(0 

At n = 2
Dp2(t) = Apj(t) -  Ap2(t)

Atn = 3

Z)p3(t) =  Ap2(t) -A p 3(t) 

Dpx(t) can be rewritten as

(D +A)p1(t) =  Ap0(t)

So that we have 

(D + A)Pl(t) =  Xe-Xt

Divide through by (£) +  A)

Pi (0  =
Xe~xt 
D + A

Xe~Xct r 
( r +  1 ) ! 1 !

This is a general solution.

Xe~Xlt r
Noticetliat c T T i j r n

may also be written as
\ e~ Xtt r 

r! 1 !
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Ane -Xt A nt j e~Xttr

N o w p M  = T 7 T  = 1 F ^ W ’ i ~ 0,1,2'

so that
Ae ' Xl \ t Je~Xtt r _

P , ( 0 ~Z) + A _  ( r + ; ) ! ! !

putr =  1 , j  =  0 

A t° e -xtt1
Pi ( 0  = (1 + 0) ! 1 !

=  Xte~Xt =  (At)e_Xt

Then

(D + A )p 2( t ) =  X2te~xt

p2( 0  =
A2 te-Xc _  X2t j e~xit r 
D + A “  (r + / ) ! ! !

put r =  1 , j  =  1 

X2t2e~xi
P2( 0  = 2 !

(*Q 'e
2 !

2^-Xt

Consequently
^  _ X3te~xt X3t j e~Xct r

= D + A = (r + » ! ! !

put r = 1 , j  =  2

^3j3g-At
p3( 0  = 3!

_ O T _ f ‘
3!
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,n  = 0, 1 , 2,

In general,

Pn C O  = (At)ne~Xt
n\

If we fix t, At is a fixed parameter for the distribution and the set P i(t),p2(t).... then 
gives a probability distribution of the process at the fixed time interval which is a 
Poisson distribution. In terms of a counts of events the above results shows that the 
member of events occurring in a fixed time interval t is distributed as a Poisson with 
parameter At.
Also since the mean of the Poisson distribution is equal to the parameter At, At can be 
interpreted as the expected number of events that can occur in time t. the quantityA is 
the average or mean rate of occurrence of E.

17.5 Continuous Time Process
A continuous-time Markov chain is a stochastic process having the Markovian 
property that the conditional distribution of the future state at timet +  s, given the 
present state at t and all past states depends only on the present state and is 
independent of the past. Thus, this lecture establishes the fact that a continuous time 
process is also distributed as an exponential probability

17.5.1 Definition and Properties
Consider a continuous-time stochastic process [x{l), t > o} taking on values in the set 

of non-negative integers. In analogy with the definition of a discrete-time Markov 
chain, given earlier, we say that the process [x{l), t > o} is a continuous-time Markov 

chain if for all s , t  > 0 and non-negative integers i , j , X 0 <  u < s,

If, in addition P^\X(,t i )= j |.Y(j) = l} is independent of s, then the continuous-time

Markov chain is said to have stationary or homogeneous transition probabilities. All 
Markov chains we consider will be assumed to have stationary transition probabilities.
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Suppose that a continuous-lime Markov chain enters state / at some time, say time 0, 
and suppose that the process does not leave state / (that is, a transition does not occur) 
during the next s time units. What is the probability that the process will not have 
state / during the following t time units?
To answer this, note that as the process is in state /' at time s, it follows, by the 
Markovian property, that the probability it remains in that state during the interval 
[s,s + t] is just the (unconditional) probability that it stays in state i for at least t time 
units. That is, if we test t; denote the amount of time that the process stays in state i 
before making a transition into a different state, then 

P = {ri > 5’ + r|7j > 5 }= /3{7; > t)

for all s ,t  > 0. Hence, the random variable 7) is memoryless and must thus be 
exponentially distributed.
The above gives us a way of construction a continuous-time Markov chain, namely, it 
is a stochastic process having the properties that each time it enters state /:
(i) the amount of time it spends in that state before making a transition into a 
different state is exponentially distributed with rate say vL \ and
(ii) when the process leaves state /'. it will next enter state j  with same 
probability, call it p,-y, where * i  pfj = 1.

A state i lor which u,- = 00 is called an instantaneous state since when entered it is 
instantaneously left. Whereas such states are theoretically possible, we shall; assume 

throughout that 0 < v>. < co for all /. (If v, = 0, then state /' is called absorbing since 

once entered it is never life).
Hence, lor our purposes or continuous-time Markov chain is a stochastic process that 
moves from state to slate in accordance with a (discrete-time) Markov chain, but is 
such that the amount of time it spends in each state, before proceeding to the next 
stale is exponentially distributed. In addition, the amount of time one process spends 
in slate t and the next state visited, must be independent random variables. For if the 
next slate visited were dependent on 7). then information as to how long the process
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has already been in state i would be relevant to the prediction of the next state-and 
this would contradict the Markovian assumption. .
A continuous-time Markov chain is said to be regular if, with probability 1, the 
number of transitions in any finite length of time is finite. An example of a non- 
regular Markov chain is the one having.

Pi, i+  1 =  1, Vi = i2

It can be shown that this Markov chain-which always goes from state i to i +  1, 
spending an exponentially distributed amount of time with mean ' /2 in state i -  will, 
with positive probability, make an infinite number of transitions in any time interval 
of length t ,t  > 0. We shall assume from now on that all Markov chains considered 
are regular.

Let qtj be defined by

Qij = VtPij, V i *  j

Since v, is the rate at which the process leaves state i and p,y is the probability that it 

then goes to j , it follows that qtj is the rate when in state i that the process makes a 

transition into state j \  and in fact we call qtj  the transition rate from / to j.

Let us denote by Pij(t) the probability that a Markov chain, presently in state i, will be 
in state j  after an additional time t

P j M = = M m  = '}

17.6 The Exponential Process
Let us consider a finite state but continuous time process. Let X (t) denote a random 
variable. The value of X (t) at fixed t is the state of the process at time t.
A time dependent process is the set (/(t)fo r given t > 0. X fo)depends on ^  > t0, 
and not on t2* ><£2- The process is continuos if t can take value on the t-axis. 
Definition
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A continuous time stochastic process is said to have Markov property and is called a 
continuous time Markov process if for all t* > >  -- .ty  > t0 satisfying the
condition tn > tn > t0.

1. P(X(tn) = jn/X (tn- i )  = jn-l>X(tn- 2) ~  jn-Z' •••••»^(^o) = jo)

= P( X(tn) = jn/X ( tn_i) =  j n- i)

This is the independent probability and it state that all that is needed to predict the 
state of the process at time n is the state of the process at the immediately preceding 
time.
2. A Markov process is said to be time-homogeneous or stationary if

P{X(t2) = y /^ ( t1) = i) = P iX iti -h )  = j /X ( 0) =  i)V i and j, tj < t 2

In words, the process is stationary or time homogeneous if the conditional probability 
in (2) depends only on the time interval between the events considered, rather on the 
absolute time. Note that ‘time-homogeneous’ and ‘stationary’ denote sameness in 
lime. We can also know that a stationary Markov process is defined completely by the 
transitional probability function which we defined as

PijCO = p M O  = ;'/* ( 0) =  i }
The fundamental equation for stationary Markov process is Chapman-Kolmogorov 
equation for p,y(t + r). By definition,

fjtl(l + r) = P[XU + t) = j/X (0 )  =  0  

= ^  P[X(t + r) = j ,X ( t)  = k /X {0) =  0  Marginal from joint
k

Using Markov assumption

-  ^  P{X(l + t) = j /X { t)  = l(,X(0) = i) P{X(t) = k,X (0) = 0
k
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But P{X{t) =  k ,X(  0) = /} = P{X(t) = k / X (0 )  = flP fvff)) = i}

Therefore,

Pij(t + r) = P{X(t + t )  = j /X( t )  = k,X(  0) =  0  W O  =  k / X  (0) =  i}
k

This is because PfA'(0) = t} = 1 
Thus

^  P « t  +  r) =  j /X ( t )  =  =  k /X  (0) =  /)
k

By the stationary assumption in (2)

Plj(t +  r) =  £  P{X(t) =  y/X(0) = 4} P{X(t) = k/XQS) =  £}
k

= Pkj(j)Ptktf) (By definition) •
k

This is the general form of Chapman-Kolmogorov equation. 
A specified form of this is:

P i j ( t  +  A t )  =  Y  P i k ( t ) p k j ( A t )  
k

The above is forward Chapman-Kolmogrov equation.

The forward Chapman-Kolmogrov equation is given as

Pij(At + t) =  ]T p ijt(d t)p k;(t) 
k

We expect the following to hold
i )  0  <  P i j ( t )  <  1 f o r  a l l  t

ii) Pij{ 0) = W (  0) = j/X {  0) =  t) = l  , i = j
= 0 , i * j

And for any given i

iii) PikCO = I ,  W O  =  j / X (0) = 0  =  1
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Under the assumption that py(t) is a continuous function oft, we can express 

Py(At)by the use ofMaclaurin series.

P u m  = p u ( o ) + + i p ^ ' t o x ^ o 3 + -

=  PiyCO) +  Pi'yC0)^t +  OĈ Jt)2 

LetpijiP)  =  Ay

Py(At) =  Pi/ (o) +  Ay At -I- o(At)2 for i *  j  

Py(At) =  Ay A t +  o(At)2 for i =  ;

Also, let p'y(0) =  Xjj

Py(At) =  1 +  Py y At + o(At)2

= 1 + Xjj At + o(At)2

Sincep-y(O) = 0 /o r  i *  j  is a minimum, Ay is positive. Also, since Py(0) 

For i = j  is a maximum, Ay is non-positive.
We can unite the forward Chapman-Kolmogorov.

Py(t + At) = ^ P i k  (t)pky(4t) 
k

= Py (t)pyy(At) +  ^  p ifc (t)pky(At) 
k * j
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Winch wo can write as

P ,-/(t +  A t) =  PiyCOfl +  V c +  uC4t)2] +  ^  pik ( 0 [ 4 ; 4 t  +  0(At)2]

k * j

= Pij(t) + Vij^jjAt + py (t)0 (d t)2 + Y j [ P i M l kjA t +  Pik(t)OOdt)2]
k*i

Pij(.t +  At) -  Pij(t)
At

v -1

+

Pij(t)Xjj +  2 ^  Pik ( 0 Xkj
k*j

M £C ft) I t « jP a (t)O(^Q2
4 t d t

k
'I'he limit as d t -» 0

dt

dPi/(0 V
~ ~ d t~  = Z j Pikk
In matrix form.

(a= diagonal element)

d m
dt

dp a it)
dt A= f t ; )

P M  = (pyM )

B u t ,^ p „ ( t )  =  1

d
dt ^  P./(0 = 0

dpjj(t)
dt

i

£ p « (0 )  = °
i

Z f t = °
j

X A«v =  xn  + 2 a ‘7 =  0
y y**

Thus since every of A (diagonal element) is non-negative, the diagonal element Ay 

must be equal in magnitude and opposite in signal to the sum of the other element in 
the same row. Ay is called the transition rate from i to j  for iit j .  Ay can be 

interpreted as the parameter of negative exponential distribution. For each Ay, the 

exponential distribution gives the distribution of time spent in a state i, given that j  is 
the next step. Thus if Ty is the random variable with Ay

i’(Ty) =  f
'HJ

So that Ay can be estimated as the inverse of a sample mean.

/ (* )  = <* c.-te
or f ( t )  = Ay-c " V .  x >  0 

with mean
CO CO

E(Ty)= J  t / ( ( ) d t  =  J  a ljer x‘l‘ dt  
0 0
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= j - [

=-j—sinccr(2) = 1
A ij  A ij

Suppose thill we have the likelihood 
n

«=1

-n lo g X tj- 'Y ^ X ij t

dlogL _  n s r 1
a i <

-  = - =  t

0

This implies that,

C  = Vf

Practice Questions
I. Considered a two-state process such as the operation of a loom for weaving 
cloth. The two-state for the looms are 0, the loom is shut off and the operator is 
repairing it. And 1, the loom is operating and the operator is idle. Consider the 
operating and repair time as continuous. Assume that the constant proportionality is 3 
lor repair transition and 2 for breakdown transition. Find the probability distribution 
of the repair and the operation time.

Obtain the general form of the Chapman-Kolmogorov (C — K) equation.

3. Show that Aiy transition from i to j ,  V i & j .  is 1/p
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C H A P T E R  20

IN T R O D U C T IO N  T O  T H E  T H E O R Y  O F  G A M E S  AND O U E U IN G

M O D E L S

1 Games Tkeary
(mines theory is a branch of Stochastic Processes that can be applied to a situation 
such as business, stock trading, politics, and so on. where the person involved can be 
referred to as a player ox simply a gambler

18.2 Gambler’s Ruin
Consider a gambler who plays a game of chance against an adversary. Suppose that at 
the start of the game, the gambler deposits an amount in nairaZ. The adversary deposit 
N ■ /. in naira where N is the cumulated initial capital.
1. 'The role of the game is that if the gambler wins a game he takes N1 from 
the adversary and loses same to the adversary otherwise.
2. The game terminates. If dither player loses all his deposits. When the 
gambler loses all his deposit, he is said to be ruined:
3. No game is jumped.
We cun pul the money on a number scale.

I 2 .......... Z ............................................N

1 lie uaiii in loss is represented by movement along the scale. Gambler’s gain is 
represented by movement to the right observed and its loss represented by movement 
m the lelty observed.
No point .ii. tin. scale is jumped. Movement in either direction on the scale is by pure 
chance. The movement along the scale can be seen as that of a particle that moves at
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random forward and backward. Because of that the process is. known as random 
tvalk. The points on the scale represent the state of the process.
Movement- to a point on the scale depends on the point the gambler (or adversary) is 
at currently. It is therefore a Markov Chain.

We shall approach this problem by attempting the following questions:
Q1 - What is the probability that a gambler with the initial capital Z will be ruined?
Q2 What is the expected gain of the gambler?
Q3 - What is the expected duration of the game?

18.2.1 Probability of Gambler’s Ruin
Let p denote the probability that the gambler will move to the right of Z. That is, the 
probability of winning a game.
Let q = 1 -  p, the probability of moving to the left of Z, that is losing a game (by the 
gambler). Let the points on the scale be denoted by Z0lZv  ...,ZN and qZj, the 

probability of ruin given the initial capital Z,.

for simplicity, let N = 5 (live naira). Assume that the initial capital by the gambler is

*2

i----------------1--------------- 1--------------- r ------------------- l,
z 0 z, z 2 z ZN

The probability that the gambler will be ruined if his initial capital isZ2is 

f>{R\Z2) = P{Zi,R} + P{Zl,R)

=  P(R\Z,)P{Z.3) +  P{R\7.JP{Z,)

We can write this as

q/2 = pqx3 + </<?*,, i < z, < n  - i

320

Since P{R\Zj] — qZj, P[Zk) =  p and P{Z,} = q

Generally (10.1) can be written as

q-/, = VQxk + qq/(. 1<Z<N-1

Systems like these are known as difference equation. We can write the unit factor on 
the left asp + q = 1. Thai is.

(p + q)qz2 = pq%3 +
pq-/2 + qq*2= pq/3 + qqXy 
q(qy.> -q/2) = q(q/2-qz3)

This implies that

</z, ~ qz2 = r (.qz2 “  ?z3). where r  = p/ q

Thus we can have the following system of equation. 

q?.n -  qx, = r{q7) -  q/2)

</*, -  q-/.2 = r(q*7 -  q/J

qZ2 -  qz, = r(qz3 -  <?zJ

-  q/< = r(q/A - q*s)

To unify these equations we define

q-,N=q^= o
These arc boundary conditions on qy . This becomes

q-/3 - q/., = Tq/.,
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This extends to other equation in the system

~ <1*, = r ^ z ,

-  </z2 = r 3g*4

<7z0 ~ <?z, =  r 49z4

<?*« = A * ,

Adding the equations, the result is gotten 
<?z0 “  £/z4(r°  + r  +  r 2 +  r 3 + r 4)

This implies that

‘?2, = ’-fe .0 + l + r  +  r 2 + r 3)

= <7z4( r4 + r 3 + r 2 + r  + 1)

If we sum up the identity we have

l - r 5 = ( l 4 M r 3+ r 3 + r ‘ ) ( l - r )
Thus

I + /• + r  + r 3 + r* - l - / - 5
1 - r

Meaning that

By addition 

Qxy = 0  + r )<7z4

322

1 -  r ‘
9z4

=  + r >̂

1 - r  
1 - r

Thus, we have

<?*, = ( l + r  +  r 2)qz<

Now,
(1 +  r  +  r 2) ( l  -  r )  = 1 -  r 3

1 -  r ‘
~ 7 * ) qto

1 - r l
1 -  r 5

So that.

(1 + r  -I- r 2) =
1 -  r 3 
1 - r

Substituting for cfc4. the result follows, 

1 - r 3
(,Zl ' “ T*

And also,
</z, = 0  + r  + r 2 + r 3.)£/,„

Solving in the same manna we did tor qXj. we see that 

1 -  r 4( 1 1 /  r /•" 1  H )  =  | _  -
Sueh that.

1 — r 1
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I his is ihe probability that the gambler will be rained, given his initial capilalZ.

Method of Difference ICquntion

H‘ W/.> i +/*/*•-■

I his is the same as

I Tie particular solution o f 10.1 1 can be written as

I his becomes 

. V 1 ' \c /X '

I )i vide by XY‘

- I  ± (l -4 p q )l/? 
- I p

So that 10.15 can be solved by

To simplify, we multiply the solutions

-1  + (l -4 p q ) !- - 1  + (l - 4pq) '- _  q
• 2p - 2p p

X  = j  i f  P *  q 

= 1 i f  p*q
Then by substitution, equation 10.12 becomes

The general solution can be written as

The boundary conditions 

q0 = 1 and q N = 0 

That is, when Z= 0, qz — 1 

and when Z= /V, qz — 0

This implies that 
A + B = 1, Z = 0

/4 + 5( % )  = °’ Z = yV
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Solving the system of equations, we obtain

Substitute for A and B, we have

18.2.2 Gambler’s Expected Gain(G)
Possible Values

Gain N -Z  with probability l - q z
Loss Z with probability q 7

The expected gain is

£■((7) = [Combined Capital) (Probability of gain) - (initial papital)
= N ( \ - q , ) - Z

That is

C(C/)= M (l-q z )-  Z

If /;=</= -  ()r q + p * 0

We can write qz as a function of Z 

<//., = /* //,: + </q, = f(% )  a constant

Then the solution from the result of differential equation with constant coefficient is

(b. = Z

32C,

In general1' ’ 

qz = A + BZ

Under the boundary conditions

q0 = I,- qN ==0 . at Z  = 0 and N respectively.

Thus,
>4 = 1 at Z -  0

and
A +  B N =  0 '  at Z  =  N

Thus,

Substitute for A and B

q2 = \ - — Z
N

Substituting for qz

e ( G ) = 4 - ( i - Z / n I - z

= n {z/ n ) - z

= 0

18.2,3 Expected Duration of the Game
Assume that the expected duration of the game has a known value Dz . If the first trial 

results in a success, the game continues as if the initial position wasZ +  1 .

Now, the initial position is Z, so that 

Dz = PDZ+, + q D 7,

Under the condition that the first trial in a success 

D z = P D ^ + q D z_i +  \
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With boundary conditions

A ,= *  D* = 0

But (10.28) is the same as

= P^Z+2+ ^D2+1

The complete solution is

DZ = V Z +YZ

Where Uz is the general; solution and Vzis the particular solution.

General Solution

Any difference Uz between any two solutions can be written as

U z -p U iM + q U ^
This is the same as

U z . i = P u i . i + < l u z

Let U2 = j r 2 

So that we have

X M =pXM +qXz
Dividing through X z 

X  = pX 2 + q

This becomes a quadratic equation, which can be written as 

- p X 7+ X - q  = 0  

v  , -l±> /r-4pq
- 2p

Multiplying the solutions results in

x = l
P

328

Uz is given as 

UZ =A + BXZ

So that,

Particular Solution
Let the particular solution be 

Vz = aZ

This means that we can write 

a(Z + 1) = pa(Z + 2 )+ qaZ  +1 

So that
___________ 1_________

Z + 1 -  pZ -  2p — qZ 
The denominator becomes 

1 -2 p  = q - p  (Since p + q = l) 

Therefore,

1
a = ------

q - p

Substituting for a

The complete solution is

Dz = UZ+ Vz
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The required boundary conditions are- - 
A + B — 0, Z = 0, Dy — 1

M S w %
= —— ; Z = N, D n =0 

q - p

For Z — 0, Dz — 0 

A + B  = 0

For Z =  N,D n = 0

q - p

So that

This results in

So that we have

^ r = 0

- o

Solving for A,

- N
q - p

330

So that

A = —

N

q-p

1
Substituting for A and B in (10.39) we have

J L  J L  (1 V
Q - P  . Q - P  \ p Jn _  Q-P , Q-P^P'

L>Z ~  7  ~ 7 7 T  +  7------------- ---- +  '

N
q - p  q - p

'W
' { %

183 Queuing Theory

The principal pioneer o f queuing system was A.R. Erlang, who began in 1908 to 
study problems of telephone congestion for the Copenhagen Telephone Company. He 
was concerned with problems such as the following: A manually operated telephone 
exchange has a limited number (one or more) of operations when a subscriber 
attempts to make a call, the subscriber must wait if all the operations are already busy 
making connections for other subscribers. It is of interest to study the waiting time of 
subscribers e.g. the average waiting time and the chance that a subscriber will obtain 
service immediately without waiting and to examine how much the waiting times will 
be affected if the number of operations is affected or conditions are changed in any 
other way. If there are more or if service can be speeded up, subscribers will be 
pleased because waiting will be reduced, but the improved facility will become 
expensive to maintain, therefore, a reasonable balance must be stntck.

183.1 Applications of Queuing Theory

When persons or things needing the services of a facility or persons arrive at a service 
channel or counter on the account that the facility or persons cannot serve all at a 
time, a queue or waiting line is formed. Examples of this include:
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(i) cars arriving at a fuel station waiting to be served.
(ii) persons waiting at a bus station waiting to be checked in.
(iii) books arriving at a librarians desk.
(iv) patients waiting to see a doctor or community health dispenser.
(v) customers arriving at a departmental store (supermarket).
(vi) clients waiting to see the Customer Service Executive or Officer.

Queuing theory is applied into every field of human endeavour. This is because there 
is no perfect service or treatment that can be meted out. Below are some of the fields 
of application:
(i) Business -  banks, supermarket, booking offices, and so on.
(ii) Industries -  servicing of automatic machines, production lines, storage, and so 

on.
(iii) Engineering -  telephony, communication networks, electronic computers, and 

so on.
(iv) Transportation -  airports, harbours, railways, traffic operations in cities, postal 

services, and so on.
(v) Others -  elevators, restaurants, barber shops, and so on.

18.3.2 Concept and Definition
Queuing theory is concerned with the design and planning of service facilities to meet 
a randomly fluctuating demand for service in order to minimize congestion and 
maintain economic balance between service cost and waiting cost. The cost here 

refers to time.
A queuing system is composed o f customers arriving at a service channel and is 
attended to by any one or more o f the service attendants. If a customer is not served 
immediately he may decide to wait. In the process, however, a few customers may 
leave the line if they cannot wait. At the end of the process, served customers leave 
the system.
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Arriving customers 
leaving

' 1
discouraged n
customers
leaving

Served customers

A QUEUING SYSTEM 
(OR by Swarup et al. 1978, p505)

18.3.3 Components of the Queue System 
A queue situation can be divided into five elements. These are:
(i) 'Arrival mode
(ii) Service mechanism
(iii) Service channels
(iv) System capacity
(v) Queue discipline

(i) Arrival Mode -  this refers to the rate at which customers arrive at a service 
centre and the statistical law which governs the pattern of arrival.
Certain definitions pertaining to the arrival of customers:

bulk or batch arrival: more than one arrival allowed to enter into the system
simultaneously.

balk: customers deciding not o enter a queue because it is long or lengthy. 
renege: customer leaving a queue due to impatience.
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jockey, customer jostling among parallel queues. 
stationary, arrival pattern which does-not change with time. 
transient: a time-dependent arrivalj>ro«ess.

The arrival mode is always denoted by M. .

• r  4

(ii) Service Mechanism -  this refers to the number o f  service points that are 
available and the duration o f service. When the service points or servers are infinite, 
the service will be instantaneous, which will result in no queue. In case of finite 
points, queue is inevitable. Customers can be served according to a specific order, 
which may be in batches o f fixed size or of variable size. This system is called bulk 
service system.

(iii) Service Channels -  where there are more than one channel of service, then 
arrangement of service may be in parallel or series, or a combination of both, 
depending on the system design.

(iv) System Capacity -  most queuing system are limited in such a way that 
waiting rooms are all accommodating. This gives limit to the number o f customers 
that can be accepted to the waiting line at any given time. Such situation gives rise to 

f in ite  source queues, and results in forced balk.

(v) Queue Discipline -  this is a method of customer selection for service when a 
queue has been formed. The different forms of discipline include:

(ai) First Come, First Served (FCFS), or 
(aii) First In, First-Out (FIFO)
(b) First In, LasvOut (FILO)
(c) Last In, First Out (LIFO)
(d) First in. First Out with Priority (FIFOP)

(e) Selection for Service In Random Order (SIRO)
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Symbols 
We shall 

n  =
A =

A

c = 
E ( n )  =

E (m ) = 
E (v) =

£ 0 ) = 

P n (  0 =

^n =

and Notations
employ the following symbols and notations this lecture:.

. number of customers in the system, both waiting and in service, 

average number o f customers arriving per unit o f time 
average number of customers being served per unit of time

traffic intensity

number o f parallel service channels (servers)
average number o f customers in the system, both waiting and in 

service
average number o f customers within in the queue
average waiting time of customers in the system, both waiting and in

service.
average waiting time of a customer in the queue
probability that there are n  customers in the system at any time t,

both waiting and in service.
time independent probability that there are n  customers in the system, 

both waiting and in service.

18.4 The Basic Queuing Process
The statistical pattern by which customers arrive over a period o f time must be 

specified.
It is usually assumed that they are generated according to a Poisson process that is, the 
number of customer who arrives until any specific time has a Poisson distribution. 
The Poisson distribution involves the probability of occurrence of an arrival and is 
independent o f what has occurred in the preceding observation. This Poisson 
assumption indicates the number of arrivals per unit time(A) (or mean arrival rate), 

while1/^  on the lengthy o f interval between two consecutive arrivals. This time 

between two consecutive arrivals is referred to as "inter-arrival time.”
The mean service rate /i is the number of customers served per unit time whole 

average service time (V jt) >s the l'me un‘ts Per customer service time delivered is
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given by an experiment distribution where the servicing of a customer takes place 
between the timet andt + At.

18.5 Poisson Process and Exponential Distribution
In queuing theory, the arrival rate and service rate follow a Poisson distribution. 
However, it should be noted that the number of occurrences in some time interval is a 
Poisson random variate, and the time between successive occurrences is an 

exponential distribution. Both are equivalent

18.5.1 Axioms of the Poisson Process
Given an arrival process [ N ( t ) , t> 0 ] ,  where N (t) denotes the total number of 
arrivals up to time t, N (0) =  0. an arrival characterized by the following assumptions 

(axioms) can be described as a Poisson process;

AXIOM 1 - the number of arrivals in non-overlapping intervals are statistically 
independent. This means there is independent increment in the process.

AXIOMS 2 - the probability of more than one arrival between time t and time
t + At is o(At); this means there is negligibility in the probability of two or more 

arrivals during the small time interval At. This implies that 

p0(AO +  p1 (At) +  o(At) =  1

AXIOMS 3 - the probability that an arrival occurs between time t and time t  + At

isAAt + o(At). This implies that 

Pi (At) =  A At + o(At)
Where A, a constant, is independent o f /V(t), At is an incremental element, and 

o(A t) represents the terms such that

°(At) nhm —-—  = 0 A t - 0  At
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18.6 Classification of Queuing System
Queuing systems, generally, may be completely specified in the following symbolic 

forms:
(a|Z>|c):(d|e)

Description
First symbol (a) 

Second symbol (b) 
Third symbol (c) 
Fourth symbol (d) 
Fifth symbol (e)

-  type of distribution of inter-arrival times
-  type of distribution of inter-service times

-  number o f servers
-  system capacity
-  queue discipline

For the first and second symbols, the following letters may be used:

M =  Poisson arrival or departure distributions
Ek = Erlangian or Gamma inter-arrival or service distribution

G1 =  General input distribution
G = General service time distribution

An example of a queue system is
(M\Ek\Cy.(N\SIRO)

Queuing system is classified into

(i) Poisson Queues
(ii) Non-Poisson Queues

Definitions
Transient State: When a queuing system ahs its operating characteristic (e.g. input, 
output, mean queue length, etc) dependent upon time, then it is said to be in transient

state.
Steady State: This is a queue system that is independent of time.
Assume Pn(t) to be the probability that there are n customers in the system at time i,

then the steady state use becomes
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Meaning that

lim Pn (/) = Pn (independent of t)|-n*
l i m -  Pn(/) = 0 
'-»« dt

18.7 Poisson Queues

18.7.1 The M\M\1  System

This deals with the process where arrivals and departures occur randomly over time 
generally known as birth-death process.

1. Model 1: (M |A f|l):(o o |FIFO)
In this model, we have Poisson input, exponential service, single channel, infinite 

system capacity and first in first out basis.

If P„(t), be the probability that there are ncustomers in the system at time t, then in 

order to write the difference equation for P„{t), we first consider how the system can

get to state En at time t + At. To be in state En of time / + A t , the system could have 
been in the state £nat time t and have no arrivals or service competitions in Ator be in 

state £n_i of time t  and have, during A,, one service completion and no arrivals. If

we assume that n > 1 (having arrivals and service independent of each other), it
can be easily seen that

Pn (t + At) = P„(t). P(no arrivals in At). P{no service completions in  At)

+Pn (0 - P{one arrival in  At).P (one service in  At)
T^n + l (t). P(one service com pleted in  At). P(_no arrivals in  At) 

+Pn-i( t) .P (o n e  arriva l in A t).P (no  service completions in  At) +  o(At) 
n >  1
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This can be re-written as

P.(i + A/) = PH( l \  1 -  AA/ + 0(At)][l - //At + 0(At]+ />„(r)[AA/][/zAt]+ P „ ^ h ^ x + °<At)] 
[l -  XAt + 0(A/)]+ P„_x(/)[AA/ + 0(A/][l - / jA\ + 0(At]+ o(A/) .

This leads to

p.(l) = P -. (0M + 0(A/) n > 1

Suppose n = 0, we have

P0{i + A/) = P0(t Jl -  XAt + o(At)]+ Px (rXl -  + °(A0]
[//A/ + o(A/)] + o[A/]

= P0(/J l-/lA /]+ P l(t)/^ r + o(A/)

We can record the difference equation

P„ (/ + At) -  P„(/) = - U  + p)A tPn (/) + /iA/ Pntl (/) + XAt Pn,  (/) +o(A/); 

and
P0 (/ + A/) •- P0 (l) = -  XAtP0 (t)+ (iAt P, (/) + o (At)

Then,

lira P|' ('  + ^ '  = - U  + m ) P J ' )  + 0 )  + V>,„(/) + o(At)
A t

a n d

limAi—*0 A/
- ^ , ( / ) + / iP ,( 0  + o( At)

n > 1

So that we have

- P j n = P ( t ) = A A + p ) P jn  + p P J l )  + J.P-i(t) n > I 
dt

and
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~ p„w  = K ( ' ) = - K ( ' ) + mP Mdt

The above are known as difference equations in n  and t. The steady-state solutions 
for Pn in the system at an arbitrary point of time is obtained by taking the limit as
/  —► oG..

If the steady-state exists (/l < /j, as t - » co), then

P„(t) —> P„ and Pn (/) —> 0 as t —»oo

I f  A = p  there exist no queue

I f  — > I we have an explosive state 
P ’

Using the condition of steady state,we have

0 = -(A + ^ + / / P „ , + ^ _ , ;

and

0 = -AP0 + fjPy

Using iterate procedure we have

p ^ p' i  ' ii
P

p2 = f x + » V - a k  =
' A >

p  J p

p ,= f - 1
p  ; p l / ' J

n > 1
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In general we have

P. = 1 - 1  P, 
P.

Vn

Proof
By mathematical condition, we have 

p  ~ - pr ,,*\ r n r n- \ »

P P
n >1

A + p '

P
- i

P \ P

X -'+ fiX 1 A"

= -  Pr

9 .

Using the boundary condition; Z ^ .  = 1. then 6.5 becomes

>=Z
n-o l/'J

= P.,

P* = ^ o Z

1 -
P

Sum o f  geometric series where — < 1
P

= />
V - p  J

This implies that 

1 - P

Resulting in the steady-state

P„ = p" (1 — p \  p  < 1 and n >0
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This is the probability distribution of queue length. 
Characteristics of Model 1
(i) Probability of queue size greater or equal to n.

/>(* „ ) = ! > , .  = z o - p ) p i
A' *n K =<i

= (1 - P ) P '± P 1-
t=n

= 0  - p ) p "  t p ‘ ~
K - i i =( i

= 0j ^ v = .
1-P

(ii) Average number of customers in the system

E ( n )  =  Y j n  PB = £ n (l-p )p "
n=0 <i=0

= 0 -  p )£ "  p„ = p O -  p )S «  p*’1
n=0 n*l

££de

= p ( i - p ) f S p - ,d e ^

= P ( ' - p )

P

LO-p)-J

Since /? < 1

1 - / 9  ^ - / l
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(jii) Average queue length

£ ( » . ) = I » p.;

where m = n -1  (that is number of customers in queue 
minus customer in service)

= i > - i ) P „ = i > r , , - l P ,
r

- 2 > p . -n-0

* 7 ^ — [ i - ( i - p ) ]
1- P

■ r b - ’

. P 2
1 - P

(iv) Average length of non-empty queue

E(m / m > 0) = ^ m-  ■
V '  P(m > 0

P ( P - * )
1 P

p - /1

This is because P (m > 0) = P(n > l) = ]jT P(1 -  /}, -  Px 
• L"»u

(v) The fluctuation (variance) of queue length

T ( * )  =  I« = o [ n - i r (n ) ] 2P„

= E^=on2P n - [ ^ ( n )]2 
By algebraic transformations,

P(n) = ( l - p ) £ £ - [ £ f
_  P 

( 1 -P )2
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=
(n-W

Example 18.1
A TV repairman finds that the time spent on his jobs has an exponential distribution 
with mean 30 minutes. If he repairs sets in the order in which they come in and if the 
arrival of sets is approximately Poisson with an average rate of 10 per day.
(i) What is the repairman’s expected idle time each day?
(ii) How many jobs are ahead o f the average set just brought in?

Solution

2 = — = — . setsperhour 
8 ' 4

// = ^>V60 = 2 setsperfhour

(i) The probability o f no unit in the queue is

Po n 8 8
Hence the idle time for repairman in 8 hour days

(ii) E(n) =

= - , 0  = 3 hours
8

- V j o b s  
2 - V  3/  4

18.7.2 Waiting Time Distribution for Model 1
Waiting time is mostly a continuous random variable and there is a non-zero 

probability of delay being zero. Denote time spent in queue by w. Let (/„.(/) be the 

cumulative probability distribution so that from a complex randomness of the Poisson, 

we have
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V'.-(O) :P(w = 0)
= P (No customer on the systemn upon arrival)

To find y/uin for / > 0,' we suppose there be n customers in the system upon arrival, 

l or a customer to go into service at time between 0 mid t, it means all the customers 

must have been served at time t.

Therefore,

t//i (,)=: p [(n -1) customers are served at timet) P [one customer being served in timedt]

{idt

The waiting time w is therefore 

w < t]

asZ ^ J ^ - ( / ) + V'-C«)»t’i o

„ z l  ( « - i ;
i

= (l -  p ) p  - //t (l - /o)dt + (l - p)

-  \ -  pe
o

I> 0

The distribution of waiting time in queue is

I " P  

1 - / »^ {,) =

/ = 0

/ > o
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Characteristics of Waiting Time Distribution for Model 1
( i) Average waiting time of a customer (in the queue)

£ ( h -)  =

0
u>

= f  tpp{\ - p)
o

P _ A 
p ( l~ p )  p (p ~ X )

(ii) Average waiting time of an arrival that has to want 

E (w /w >  0)=
p[w>  0)

p ( p - * ) \ /  p  
1

P ~ X

We note that P(w  > 0) = 1 -  P(w  = 0)= 1 - (l - p ) = p

(iii) For the busy period distribution, suppose v  is the random variable denoting the 
total time that a customer had to spend in the system including service. This makes 

the cumulative density function to be

v{w /w >  0) = — U ; where ^(w ) = [ipw (/)] 
P[w > 0) at

A /
l  P ) / l / 'J

t .> 0
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(iv) Average waiting time that a customer spends in the system including service
X

E(v) = |  t.\//(wl w > 0)ir
o

0

I *
= -------[ x e's dx, for (// - X) = x

P - K
1

p - X

Relation between Average Queue Length and Average Waiting Time
(Little’s Formula)

E(w) = A

p(p ~ x)

E(m)
A2

p(p-x)
£ (v )= —!— 

P - X

It can be seen that E(n) = A E(v), E(n) = X E(w) and E(v) = E(w) + —
P

Example 18.2
Amvals at a telephone both are considered to be Poisson with an average time of 10 
minutes between one arrival and the next. The length of a phone call is assumed to be 
distributed exponentially with mean 3 minutes.
(i) What is the probability that a person arriving at the booth will have to wait?
(ii) The telephone department will initial a record booth when convinced that an 

• arrival would expect waiting far at least 3 minutes for phone. By how much
should the flow of arrivals increase in order to justify a record booth.
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Solution
We are given

^ = K) = 0, 1®Person Per minute 

and

p  = ̂  = 0.33 person per minute

(/) P(w > o ) = l - / >u = l -  f l -  —
l  P )

_ A _  0.01 

~ M ~  0.33 
= 0.33

(ii) The installation of record booth will be justified if the arrival rate is greater 
than the waiting time. Then the length of queue will go on increasing.

Now, E(w) = , ^— r = 3
MKM-A)

A1
0.33 (0.33-A1)

Where E(w) = 3 and A = A'(w) for record booth. On simplification this yields 

A1 = 0.16. hence the arrival rate should become 0.16 person per minute to justifies the 
record booth.

18.7.3 ModelII(Af |M |1): (oo|S //?0)

This model is similar to model 1. The only difference is in the service discipline. The 
first follow the FIFO rule, while this follows the SJRO rule. We recall that the 
derivation of Pn for model I does not depend on any specific queue discipline, it may 
then be concluded that for the SIRO rule case, we must have. 

p„ =( ] -  p)  p " , n >0
The average number of customer in the systemv£(n) remains the same irrespective of 

cases, FIFO or SIRO. Provided P„ remains unchanged, £ (n ) remain the same in all 
queue discipline, thus
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E(v) = \  E(n) = —
A u-A.

This result applies to the FIFO SIRO and LIFO cases. These three queue discipline 
sonly differ in the distribution of waiting time when the probabilities of along and 
short waiting times change depending upon the discipline used. When the waiting 
time distribution is not required, the symbol GD(general discipline) can be used to 

represents the three queue disciplines above.

18.7.4 Modellll (M |M |l):(A f|F /FO )
There is a deviation from the previous model 1 (especially 1) because the number of 
customers is now finite (W). As long as n < N, the difference equated o f model 

remains valid for this model. If the system is in state Ew, then the probability of an 

arrival into the system is zero.
Thus, the additional difference equation for n =  N becomes

p „ { t + a/ ) = p H ( i )  [i - M 'l+ ^ v - i ( 0 - M i  - H + < > (a 0

resulting in the differential-difference equation.

4 p n( / ) = - / / P n C 0 + ^ ^ - , « )at
and gives the resultant steady state difference equation 

0 = - / i Pn + A P n, ( O

Given the interval 1 < n < N  -1 , the complete set of steady-state difference equations 

for this model is as follows.

/^ ,= A P 0

pP.,.i = (A + ai)P, -  A P„ ,

P*3,. = A*\ ,
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\s in model I, by iterative procedure, the first two difference equations are 

P« = ( j j  P „ '.n < N -l

n (he same manner, the value of Pn holds for the last difference equation if  n = N. 
Thus, we have

= p"  P0; n < N

Using the boundary condition, we can obtain the value of P0.
N

Boundary condition is ^  P = P,
n=0

Thus

1 = ^. 2 > n

i - p >

{ i - p  
/> (N + j)

Thus,

P0
1 - p * «  

1
N  + \

Hence
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0 -/g )p "
1 „ N * I

N + 1 (p  = 0

P *  1

; 0 < n < N

Note that the steady-state solution exists even for p > 1. Intuitively, there is sense in 
this since the process is prevented from blowing up by the maximum limit.
Thus, given N ->■ co, the steady-state solution results in 

P„ = (l -  p)p" n< co

Which is the same as that in model 1.

Characteristics of Model III
(i) Average number of customers in the system is given by 

E(n) = Y inPil =P„YJnp"
n “II n “0

t!>dt dp

\ - p N+l

= P'>P T  i dp L *-P

( I - P ) :
p [l-(N  + l ) p N + N p H*'\

( M O V )
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(ii) Average queue length

£("0 = Z ( ” _1) Pn = E (n) ~ Y .P'
■ n=l d=I
= £ ( « ) - ( ! -P „ )

_ p 2f l - A T p " - , + ( A f - l ) /) K l

V p ) ( i > )

(iii) Average waiting time.
Using Little’s formula:

E{v) = ~ ^  where A1 is the mean rate of customers entering the system and is equal 
A

to a ( i -/> ,.)

Thus, E(w) = E(y) -  — =
P X

Example 18.3
At a railway station, only one train is handled at a time. The railway yard is sufficient 
only for two trains to wait while the other is given signal to leave the station. Trains 
arrive at the station at an average rate of 6 per hour and the railway station can handle 
them on an average of 12 per hours. Assuming Poisson arrivals and exponential 
service distribution,

(a) Find the steady-state probabilities for the various numbers of trains in the 
system.

(b) Also, find the average waiting time of a new train coming into the yard.

Solution

2 = 6 / /  = 12, p  = — = 0.5 
12

Probability of no train in the system (both waiting and in service is

P„. = ——-^-7  = — = 0.53 
I - / / *  1 -  (0.5)’*
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We know that Pn =  p(> e", thus 

(fl) P, =(0.53) (0.5) = 0.27

P2 = (0.53) (0:5)2 = 0.13

P3 = (0.53) (0.5)3 = 0.07
(b) E(n) = 1(0.27)+ 2(0.12)+ 3(0.07) = 0.74

Hence, the coverage number of trains in the queue is 0.74, and each train takes on an 
average 'A (0.085) hours for getting service. As the arrival of new train expects to 
find on average of 0.74 trains in the system before it.

E(w) = (0.74) (0.085) hours

= 0.0629 hours or 38 minutes

18.7.5 Model IV (Birth- Death Process)

Assume the system to be in date En, the probability of a birth occurring in a small 
time interval At  is considered as AnAt + o(At); and that of the death is considered as 
finAt  + o(At),n > 1. The system being in En at time t  means it will remain in En at 

timet -F At provided there is no birth and no death/on birth and one death, or the 
system might have been in E ^ a n d  had a birth, or in En+1and had a death. Thus, this 
result in

Pn (t +  At)  =  Pn (t) (1 -  AnA t -  o(At)){\  -  iinAt -  o(At) ) 4- Pn+1(t) (Mn+i^t 

+ o (A t) ) ( l  -  An+1At -  o{At)  + Pn- i ( t )  (An_aAt + o (A t))(l 

-  lin_xA t - o { A t )  + o(At),  n >  1

P0 (t +  At)  = P0( t ) ( l  — A0A t- o(At)  + P^O C /ijA t -H\o(At)) + o(At), 
n = 0 \

Dividing by At, and taking limit as At -*0, the diffential -  difference equations results

d
“JT^nCO — ~ (A n +  P)i)Pn(t)+  Pn + l ̂ >1+ 1 (0  T tl >  1
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and

d
d t P° ^  ~  ~*nPo(t) +

Since Pn (t)  is independent o f time, the steady-state solution 

^ P n (t) = 0  and the differential-difference equation reduce to

o =  -  (^n "h Pti ) Pn +  P ti+1 Pn+l +  ^ n - lP n -1* H >  1
and

0 =  -A 0P0 +  /ijPj

Consequently by interactive procedure as in model 1

p  - h p  
1 ~ p / °

-  A^O n 
P2P1 °

_ h ± P 2 n A1A =
.3

^2^ 1^0 
P3P2 Pi

Po

So that in general

n _  ^n-l^n -2  —^0 n'71 — ' 0
. PnPn- i ~Pi

= n,"=ro -7 -  7̂0 . » 2  1#*J+1
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By mathematical induction, one can prove that this formula is correct 

"h Pn n ^n -l
^n+1 — Pn+1

P n - Pn+1
' ^ 71-1

7 1 -1
=n-1 ipi+i1=0

Making use of the boundary condition, we obtain PQ

<r. w
'Y J Pn = 1 orpo +  Y p T , =  171 =  0 71 =  0
thus Po =  [ l  +  £ n = l  n w c ^ ) ]

- 1

If the R.H.S in a divergent series, p 0 =  0. If the R.H.S in a divergent series, p0 will 

have its value defining on Aj‘s and p ,’s.

Special case
I. WhenA,, =  X fo m  > 0. andpn =  p f o m  > 1 

then

=  l - p  
Thus
pn = pn(  1 -  p), fo r n  > 0

(same as model 1)

II. When Xn =  — fo r n  > 0 ,n n+l ’

Then

Po =

andpn = p fo rn  > 1

V  A" 
1 +  Z , n ! p n

n - 1

-1
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1  + p  +  | p 2 + j f />3 +  - ]
-1

= e~P
Thus

Pn = { ^ . pn) e ~P f o r n ^ °

Here we can see that pn follows the Poisson distribution where p = - .  But, p > 1 or 

p < 1 most be finite.

III. When An =  Afo rn  > 0 , andpn =  np_ fo rn  > 1 
Then

Po = 1 + Z Xn
n!

i-i

71 =  1

= e~p
Thus

p* m G s pn) e ~p f o r n  ~ 0
Here, service rate increase with increase in queue length. Hence it is known as the 
queuing problem with infinite number of channels= (M\M\co): (oo|F I F O )

Example 18.4

Problems arrive at a computing center in a Poisson fashion at an average rate of five 
per day. The rules of the computing center are that any man waiting to get his 
problem solved must aid the man whose problem is being solved. Tf the time to solve 
a problem with one man has an exponential distribution with mean time of 'A day, 
and if the average solving time is inversely proportional to the number people 
working on the problem, approximate the expected time in the center for a person 
entering the line.

Solution

A = 5 problem per day, p = 3 problems per day
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It is given that the service increases with increase in the number of persons. 
Thus, pn =  np. where there are n  persons.

X OP
£(7.) =  ^ n p „ = ^ n . ( - p " ) e -<’n = 0  n =0
e~p.p .e p = p

=  5/g persons

The average solving time is inversely proportional to the number of people solvingon

the problem is given by day problem.

Expected time for a person entering the line jV

^ E(?T) = l-  day or 8 hours.

Practice Questions
1. Derive, using both methods, the probability that a gambler will be ruined 

given that his initial capital is Z.
2. Show that gambler's expected gain is given asN (l — qz ) -  N.
3. Under what condition can the expected gain be zero?
4. Company A enters into a project deal with another company B. 4 's  initial 

deposit is /V577t, while f?’s initial deposit is NAm. For every success, A gains 
more naira from 6 , otherwise it loses same to B. If the probability of success 

is 0.7, what is the probability of losing the entire deal?
5. A gambler's initial fortune is t. On each play of the game the gambler wins 1 

with probability p, or loses 1 with probability 1 — p. He or she continues 
playing until he/she is n ahead (that is, the fortune is t +  ?t). or losing by m. 
Here 0 < i -  m  and i + n < N. What is the probability that the gambler-quits

as a winner?
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6 .

8.
(a)

(b)

9.

(a)
(b)

(c)
(d)
(e) 
10.

Given an initial capital, Z, show that expected duration of the game is

MN
q - p  q - p

1 -

Ml
Describe the model 1 of the M|Af llqueue discipline, and show that

(a) the average number of customers in the system is given as

^2
(b) the average queue length is given as —.

In the M |M |1 system of a queuing process, show that the

steady state probability of model 1 is Pn =  pn( l  - p ) ,  where p <  1 and n >
0.

the waiting distribution is given as

( 1  - p . t  =  o
m  =

[ l - p e - r t ' - P * ,  t >  0

SAO Super market has one cashier at its counter. The service discipline of the 
cashier is FIFO. It is observed that the supermarket has 18 arrivals on average 
of every 10 minutes while the cashier can serve 12 customers in 6 minutes. If 
the distributions of arrivals and service rates arc poisson and exponential 
respectively. Calculate.

The traffic intensity and interpret the figure obtained
The average number of customers in the system
The average queue length

The average time a customer spends in the system
The average time a customer waits before being served
Customers arrive at an ATM where there is room for three customers to wait

in line. Customers arrive alone with probability and in pairs with

probability ^  (but only one can be served at a time). If both cannot join, they 

both leaver call a completed services or an arrival an “event” and let the slate
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be the number of customer in the system (serviced and waiting) immediately 
after an event. Suppose that an event is equally likely to be an arrival or a 

completed service.
(a) State the transition graph and transition matrix and find the stationary 

distribution.
(b) If a customer arrivers. what is the probability that he finds the system empty? 

Full?
(c) If the system is empty, the time until it is empty again is called a “busy 

period". During a busy period, what is the expected number of times that the 

system is full?
(d) Show that a limit distribution is a stationary distribution.
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