OPTIMUM DEHYDRATION AND DRYING KINETICS OF THREE SELECTED VARIETIES OF TOMATO (Lycopersicum species) FROM SOUTHWESTERN NIGERIA.

BY

JAIYEOBA, KEHINDE FOLAKEMI

B.Eng. (FUTA), M.Sc. Agric. Eng. (Ibadan), MNIAE, MNSE

A Thesis in the Department of Agricultural and Environmental

Engineering, submitted to the Faculty of Technology

in partial fulfillment of the requirements for the Degree of

DOCTOR OF PHILOSOPHY

of the

UNIVERSITY OF IBADAN

OCTOBER, 2012

DEDICATION

This research work is dedicated to

"THE STRENGTH OF ISREAL"

And

To the sweet memories of my father in the Lord Pastor (DR) Micheal

Adebola JEGEDE

ACKNOWLEDGEMENT

I acknowledge the enabling grace of the God of heaven, the only wise God unto whom all glory and honour is due. I thank him for the grace with which he has seen me through. Honestly, I've come to realize that indeed I am not sufficient of myself to think of anything but indeed my sufficient is of God and only his word/promises saw me through.

Secondly, my deep appreciation goes to my supervisor and mentor, Engr. (Dr) Abdulganiy O. Raji for his utmost patience while putting me through If I have to talk about you, an ignorant being might see it as been flattery. You are an agent of change and I wish to say that I've seen qualities that are worthy of emulation in you. You patiently led me through despite my inconsistencies. The very many times, I've thought of quitting the program, your patience brought me back on track. Sir, my heart blesses you with the blessings of heaven. You will get to the peak of your carrier in life.

I must also at this junction appreciate my lovely husband Mr. Babafemi 'Timi Jaiyeoba for his love and unspeakable support in my live. Many times I have given it a thought that what could I have really done without him. You are indeed God's gift for my life. You showered me with love, care and encouragements all through. Sir, you are an icon in this success story. All through my period of discouragements, your words were strength unto my heart and bones, I wish to say that the "HEART DOES NOT FORGET".

To my beloved parents, Chief and Chief (Mrs) A.A. Folayan and all my siblings I owe a lot of thanks. I am sure they never knew the impact of the very many persistent questions of when are you going to finish? The calls per kilometer on each trip made to Ibadan and the readiness to even assist financially (if necessary). You are parents in a million, I am very grateful.

I also wish to express my profound gratitude to my father in the Lord and his amiable wife, Late Pastor (Dr) and Deac. M.A. Jegede, not only for the spiritual concern but for the different ways they were involved. Each time I remember your thoughtfulness, I thank God for meeting you. You are indeed God sent to me and my home.

I sincerely wish to appreciate the different people who have contributed in one way or the other to this success story. Mrs. Alade (Mummy Ibala) my dear friend and brothers, Dr. J.A.V. Famurewa and Dr. Babatunde Ogunsina, my senior brother and friend, Mr. Ademola Adeleke (Agric. Eng. Lab.), Mr. Kay (MCRL, U.I. Ibadan), Mr. Bakare (Biology Lab OSSCE), Mr. O. Awolaju (Biology Dept OSSCE), Miss. Cecilia John, Mr. Ope Awoyode, Mr. Fajojuto (Chemistry Dept. OSSCE), Mr. Gbadebo and others too numerous to mention.

My lovely children, master Babafemi O. (the beginning of my strength), Babafikejinmi A. and Babafikayomi, O. and my little damsel, Babafoyinsola Aanuoluwapo, I owe a lot of thanks for their understanding and encouragements. All through, it was always, "Mummy should we bring your laptop? Are you not going to Ibadan again? Have you finished your assignment etc.?" You showed understanding when your meals were late and sometimes when you even wake up to discover she has traveled. I derived inspiration in the cooperation given all through. You will all fulfill destinies in Jesus name.

I must not fail to acknowledge the role played by my big uncle and his lovely wife, Elders and Deaconess (Mrs) Olusola Adigun Ogundipe, the immediate past Controller General of Prisons. Heavens will reward you abundantly.

The entire staff members of the Department of Agricultural and Environmental Engineering are also acknowledged in this work. My lecturers from whom I have drawn inspirations, the HOD., Dr. Y. Mijinyawa, Dr. I.A. Bamgboye, Prof. E.A. Ajav, Prof. E.B. Lucas, Prof. J.C. Igbeka, Prof. Sangodoyin, Prof. A.O. Olorunnisola, Prof. M.A. Onilude, Dr. N.A. Adewole, Dr. O. Owofadeju, Dr. Ogedengbe, Dr. T.A. Ewemoje etc.

Finally, I wish to acknowledge the cooperation I enjoyed from my employer, Osun State College of Education, Ilesa, the entire staff and student of Agricultural Science Department. God bless you all real good.

Finally having gone through this, I can proudly say:

Through it all, I've learnt to trust in Jesus

To the king eternal, immortal, invisible the only God, be honour and glory forever.

CERTIFICATION

I certify that this work was carried out by **JAIYEOBA**, Kehinde Folake in the Department of Agricultural and Environmental Engineering, Faculty of Technology, University of Ibadan, Ibadan, Nigeria.

Supervisor

Engr. Dr. A. O. RAJI

Department of Agricultural and Environmental Engineering

Faculty of Technology,

University of Ibadan, Ibadan.

ABSTRACT

Tomato (*Lycoperscium spp.*) is an important component of daily dietary intake with seasonal and geographical variation in its production. They are usually in short supply in the dry season and effective storage in the fresh state still poses a challenge. Pre-treatment methods have been reported to improve drying characteristics of fruits and vegetables but there is dearth of information on drying of indigenous variety of tomato despite its high nutritional value. Pre-treatment methods for three varieties of tomato from southwestern Nigeria and drying conditions with mass transfer kinetics for the optimally pre-treated variety were investigated.

Roma-VF (*Lycopersicum esculentum* Mill), Koledowo (*Lycopersicum pimpinellifolium Mill*) and Ibadan-Local (*Lycopersicum esculentum* CV) were used in this study. Samples were pre-treated in binary osmotic solutions (sugar and salt) at different concentrations (40/20, 45/15, 50/10°Brix/%), temperature (30, 40, 50°C) and time (30, 60, 90, 120, 180min) using fruit to solution ratio 1:10. Moisture Content (MC) was determined using the AOAC standard. Models for water loss (W_L), solid gain (S_G) and weight reduction (W_R) were developed and optimal response (highest W_L, W_R, least S_G and MC) was obtained and data were analyzed using ANOVA at p=0.05 within and across varieties. Mechanism of mass transfer phenomena was studied by drying at 40, 50 and 60°C. Five thin layer drying models (Exponential, Henderson and Pabis, Page, Modified Page and Logarithmic) were compared and fitted into the experimental moisture ratio. Adequacy of fit was based on highest R^2 , χ^2 and least RMSE. Diffusion coefficient and activation energy were determined using Arrhenius equation.

Water loss increased with increasing solution temperature and sugar/salt concentration. Ibadan-Local and Roma varieties had their highest W_L (0.30) at 45/15 sugar/salt concentration, while Koledowo had its highest W_L (0.26) at 40/20 sugar/salt concentration all at 50°C solution and 50°C drying temperatures which could possibly be due to its thicker outer skin impeding moisture migration. Water loss and S_G were significantly different among the varieties. As temperature increased from 40-50°C, drying time reduced from 26-18.5 h (treated) and 35-25.5 h (untreated) respectively in Ibadan-Local variety. Drying occurred in falling rate period with better curves in preosmosized tomato. Exponential model fitted at 40°C with R², χ^2 and RMSE ranges of

0.83-0.90, 199.37-380.02 and 0.0797-0.1009, at 45°C 0.94-0.98, 735.49-2706.82 and 0.0464-0.3640 and at 50°C, Henderson and Pabis fitted at 0.85-0.90, 187.87-380.02 and 0.0798-0.0966 respectively for treated tomato. For untreated tomato at 40°C, Page model fitted with R^2 , χ^2 and RMSE ranges of 0.95-0.98, 881.61-2938.62 and 0.0301-0.0538, Page and Modified Page at 45°C with 0.92-0.08, 246.71-607.28 and 0.0798-0.0966 and Modified Page fitted at 50°C with 0.83-0.92, 246.99-607.24 and 0.0778-0.1008 respectively. Moisture diffusivity was higher in pre-treated in Ibadan-Local samples ranging from $1.17-3.51 \times 10^{-8}$ compared to untreated with $1.25-3.13 \times 10^{-8}$ while the activation energies were respectively 46.81 kJ/mol and 52.61 kJ/mol implying faster drying with lower energy requirement in osmosized sample.

Optimum pre-treatment conditions have been established for the three varieties of tomato. Effective moisture diffusivity and activation energy of pre-treated Ibadan-Local were within the range for most agricultural materials. Faster drying and lower energy requirement make osmosized pre-treatment a promising approach for drying of Ibadan-Local variety.

Keywords Tomato, Osmotic dehydration, Drying kinetics, Effective moisture diffusivity, Activation energy

Word count 489

TABLE OF CONTENTS

		PAGE
Title P	Page	i
Dedica	ation	ii
Ackno	owledgement	iii
Certifi	cation	v
Abstra	nct	vi
Table	of Contents	viii
List of	Figures	xi
List of	Tables	xiv
List of	E Plates	XV
List of	Appendices	xvi
CHAP	PTER ONE ODUCTION	
1.1	Background Information	1
1.2	Perishability and Produce Losses	3
	1.2.1 Post harvest problems associated with tomato preservation	3
	1.2.2 Principal causes of losses	4
	1.2.3 Physiological deterioration	4
1.3	Preservation of Tomato	5
	1.3.1 Prevention of losses through drying	5
1.4	Statement of Research Problem	7
1.5	Research Objectives	7
1.6	Justification of the Study	8
1.7	Scope of Work	9

CHAPTER TWO

LITEI	RATUF	RE REVIEW	11
2.1	Signifi	cance of drying	11
2.2	Drying Methods		
	2.2.1	Sun drying	12
	2.2.2	Solar drying	13
	2.2.3	Oven drying	13
2.3	Drying	characteristics of Fruits and Vegetables	14
2.4	Skin P	retreatment	15
2.5	Drying	g of Fruits/Vegetables	17
2.6	Osmot	ic Dehydration Process	18
2.7	Main I	Process Variable	22
2.8	Factor	s Affecting Osmotic Dehydration	25
	2.8.1	Solution to sample ratio	26
	2.8.2	Raw material characteristics	27
	2.8.3	Rate of agitation	28
	2.8.4	Type and concentration of osmotic dehydration solution	29
	2.8.5	Processing temperature	34
	2.8.6	Geometry of the sample	40
	2.8.7	Immersion time	42
2.9	Mass 7	Fransfer during Osmotic Dehydration	43
2.10	Advan	tages of Osmotic Dehydration	45
2.11	The Pr	ocess Variables	47
2.12	Natura	l Tissue Properties	50
2.13	Operat	ing Variables	51
2.14	Shelf I	Life of Tomato	54
2.15	Mathe	matical Modeling of the Drying Processing	55
2.16	Detern	nination of Effective Diffusivity Coefficients	56

CHAPTER THREE

3.0	Research Methodology	57	
3.1	Material collection		
3.2	Experimental Procedure/Methodology	59	
	3.2.1 Osmotic dehydration of samples	60	
	3.2.2 Oven drying	62	
	3.2.3 Data analysis	62	
	3.2.4 Drying kinetics of the Ibadan-Local variety	69	
3.3	Mathematical Modeling of the Drying Process	70	
3.4	Effective Coefficient of Moisture Diffusivity	73	
3.5	Energy of Activation	74	
СНА	PTER FOUR		
4.0	Results and Discussion	77	
4.1 Pl	hysicochemical Properties of Tomato Varieties	77	
4.2	Qualities of Osmotic Dehydration Process	77	
	4.2.1 Effect of variety on water loss and solid gain	77	
	4.2.2 Effect of solution temperature on water loss and solid gain	86	
	4.2.3 Effect of solution concentration of water loss and solid gain	87	
4.3	Drying of Osmosized Tomato Samples	93	
4.4	Drying Kinetics of Ibadan-Local Variety	97	
4.5	Mathematical Modeling of Ibadan-Local Variety	100	
CHA	PTER FIVE		
5.0	Conclusion and Recommendation	123	
5.1	Conclusion		
5.2	Recommendations	125	

REFERENCES

LIST OF FIGURES

Figure		Page
2.1	Schematic drawing of mass transfer in soaking processes	48
2.2	Relationship between water and solid gain during soaking	
	treatment of apples.	49
4.1a	Water Loss as affected by temperature at solution	
	concentration (40/20)	81
4.1b	Water Loss as affected by temperature at solution	
	concentration (45/15)	81
4.1c	Water Loss as affected by temperature at solution	
	concentration (50/10)	81
4.2a	Solid gain as affected by temperature at solution	
	concentration (40/20)	82
4.2b	Solid gain as affected by temperature at solution	
	concentration (50/10)	82
4.2c	Solid gain as affected by temperature at solution	
	concentration (45/15)	82
4.3a	Water loss as affected by conc. and varying temp.in Ibadan-Local	84
4.3b	Water loss as affected by conc. and varying temp. in Roma variety	84
4.3c	Water loss as affected by conc. and varying temp.in	
	Koledowo variety	84
4.4a	Solid gain as affected by conc. and varying temp.	
	in Ibadan-Local variety	85

4.4b	Solid gain as affected by conc. and varying temp.	
	in Roma variety	85
4.4c	Solid gain as affected by conc. and varying temp. in	
	Koledowo variety	85
4.5	Mean weight reduction in Ibadan-Local, Roma and Koledowo	88
4.5a	Weight reduction as affected by conc. and varying temp.in	
	Ibadan-Local variety	88
4.5b	Weight reduction as affected by conc. and varying temp.in	
	Roma variety	88
4.5c	Weight reduction as affected by conc. and varying temp.	
	in Koledowo variety	88
4.6	Water Loss as affected by temperature at varying	
	solution concentration	94
4.7	Solid gain as affected by temperature at varying	
	solution concentration	94
4.8	Weight reduction as affected by temperature at varying	
	solution concentration	94
4.9a	Moisture content as affected by concentrations and varying	
	temperature in Ibadan-Local	95
4.9b	Moisture content as affected by concentrations and varying	
	temperature in Roma variety	95
4.9c	Moisture content as affected by concentrations and varying	
	temperature in Koledowo variety	95
4.10a	Drying Rate as affected by Time for Untreated Tomato	96
4.10b	Drying Rate as affected by Time for Treated Tomato	96
4.11	Experimental and Predicted MR for Treated Tomato	
	at 45/15/50 dried at 40°C	103
4.12	Experimental and Predicted MR for Treated Tomato	
	at 45/15/50 dried at 45°C	105
4.13	Experimental and Predicted MR for Treated Tomato at	
Z	45/15/50 dried at 50°C	107

4.14	Experimental and Predicted MR for untreated tomato dried at 40°C	109
4.15	Experimental and Predicted MR for untreated tomato dried at 45°C	111
4.16	Experimental and predicted MR for Untreated Tomato	
	Dried at 50°C	113
4.17a	Drying time as affected by the drying temperature	
	for osmosized tomato	118
4.17b	Drying time as affected by the drying temperature	
	for untreated tomato	118
4.18a	Variation in MR with time in untreated tomato	119
4.18b	Variation in MR with time in treated tomato	119
4.19	Relationship between ln D_{eff} and $1/Rg$ (T +273.15)	
	for treated Tomato	121
4.20	Relationship between ln D _{eff} and 1/Rg (T +273.15)	
	for untreated Tomato	122

LIST OF TABLES

TABLE		
1.1	Table showing the top producers of tomatoes (in tones)	2
1.2	The physico-chemical characteristic of tomato	10
3.1	Mathematical models used for drying characteristics	72
4.1	Physicochemical properties of tomato varieties	78
4.2	Summary of the effects of osmotic concentration, temperature	
	on water loss, solid gain weight reduction, m.c. and r.w	79
4.3	Level of significance of qualities of osmosized tomato	91
4.4	Comparison between the drying temperature and the	
	drying rates of treated and untreated tomato	98
4.5	Results of the fitting statistics of various thin layer	
	models at 40°C drying temperature	102
4.6	Results of the fitting statistics of various thin layer	
	models at 45°C drying temperature	104
4.7	Results of the fitting statistics of various thin layer models at 50° C	
	drying temperature	106
4.8	Results of the fitting statistics of various thin layer models at 40° C	
	drying temperature of untreated local tomato	108
4.9	Results of the fitting statistics of various thin layer models at	
	45°C drying temperature of untreated local tomato	110
4.10	Results of the fitting statistics of various thin layer models at	
	50°C drying temperature of untreated local tomato	112
4.11	Estimated effective moisture diffusivity at different temperature	
	of drying for osmotically pre-treated tomato	114
4.12	Estimated activation energy and moisture diffusivity constant	116
4.13	Relationship between $\ln D_{eff}$ and $1/Rg (T + 273.15)$ for treated tomato	121
4.14	Relationship between $\ln D_{eff}$ and $1/Rg$ (T +273.15) for untreated tomat	o 122

Plate		Page
3.1	The heat- stirrer (Stuart model U.K)	64
3.2	The water bath (Medline BS-21 model, Germany)	65
3.3	Tomato samples subjected to sun drying	66
3.4	Tomato samples in the oven	67
3.5	Fresh (un-osmosed) Tomato samples in the oven	68
4.1a	Oven dried pretreated Ibadan-Local tomato	99
4.1b	Oven dried untreated/fresh Ibadan-Local tomato	99

LIST OF APPENDICES

Appendix		Page
A1	Consumer's attitude to the consumption of local,	
	koledowo and Roma varieties of tomato	149
A2	Retailers preference of local, koledowo and roma	
	varieties of tomato	150
В	Statistical analysis of the mean values of osmozised samples	151
С	Means plots of residual water for the 3 varieties	156
D	Linearization of the models	157
E1	Summary of the effect of variety on water loss	158
E2	Summary of the effect of variety on solid gain	158
E3	Summary of the effect of variety on weight reduction	158
E4	Summary of the effect of variety on m.c	158
E5	Summary of the effect of variety on residual water	159
F1	Relationship between In MR and time for treated tomato	160
F2	Relationship between In MR and time for treated tomato	160