
THROUGH
mm

ADVANCING
INDUSTRIAL ENGINEERING

IN NIGERIA

TEA CH IN G , R ESEA
A N D INNOVATIO

A BOOK OF READING

Edited By
Ayodeji E. Oluleye
Victor O. Oladokun
Olusegun G. Akanbi

WR: jGpHSW

K&J CamScanner

IB
ADAN U

NIV
ERSITY

 LI
BRARY

ADVANCING
INDUSTRIAL ENGINEERING

IN NIGERIA
THROUGH

TEACHING, RESEARCH AND INNOVATION

Edited By
Ayodeji E. Oiuleye
Victor O. Oladokun
Oiusegun G. Akanbi

IB
ADAN U

NIV
ERSITY

 LI
BRARY

ADVANCING
INDUSTRIAL ENGINEERING

IN NIGERIA
THROUGH

TEACHING, RESEARCH AND INNOVATION
(A Festchrift in honour of Professor 0 . E Charles-Owaba)

Professor O. E. C harles-O w aba

if

CamScanner

IB
ADAN U

NIV
ERSITY

 LI
BRARY

Advancing Industrial Engineering in Nigeria
through Teaching, Research and Innovation.

Copyright © 2020 Department of Industrial and
Production Engineering, University of Ibadan.

ISBN : 978-078-515-9

All rights reserved.

No part of this book may be used or reproduced in
any form or by any means or stored in a data base or
retrieval system without prior written permission of
the publisher except in the case of brief quotations
embodied in critical articles and review.

Published by

Department of Industrial and Production
Engineering
University of Ibadan.

Printed by:
Leading Edge Printers & Publisher
Ibadan

iii

IB
ADAN U

NIV
ERSITY

 LI
BRARY

FOREWORD

It gives me great pleasure writing the foreword to this book. The book was

written in recognition o f the immense contributions of one of Nigeria's

foremost industrial engineers, respected teacher, mentor, and lover o f youth —

Professor OI iver Charles-Owaba.

His commitment to the teaching and learning process, passionate pursuit o f

research and demonstration o f excellence has prompted his colleagues and

mentees to write this book titled - Advancing Industrial Engineering in

Nigeria through Teaching, Research and Innovation (A Festschrift in honour

o f Professor O. E Charles-Owaba) as a mark of honour, respect and

recognition for his personality and achievements.

Professor Charles-Owaba has written scores of articles and books while a lso

consulting for a medley o f organisations. He has served as external exam iner

to various programmes in the tertiary educational system. The topics

presented in the book cover the areas of Production/Manufacturing

Engineering, Ergonom ics/Hum an Factors Engineering, S ystem s

Engineering, Engineering Management, Operations Research and Policy.

They present the review o f the literature, extension of theories and real-life

applications. These should find good use in the drive for national

development.

Based on the above, and the collection of expertise in the various fields, the

book is a fitting contribution to the corpus of knowledge in industria

engineering. It is indeed a befitting gift in honour of erudite Professoi

Charles-Owaba.

I strongly recommend this book to everyone who is interested in how w ork

systems can be made more productive and profitable. It represents a

resourceful compilation to honour a man who has spent the last forty years

building up several generations of industrial engineers who are part o f the

process to put Nigeria in the rightful seat in the comity o f nations.

Congratulations to Professor Charles-Owaba, his colleagues and mentees for
this festschrift.

ProfessorGodwin Ovuworie

Department of Production Engineering
University of Benin

iv

CamScanner

IB
ADAN U

NIV
ERSITY

 LI
BRARY

TABLE OF CONTENTS Page

CHAPTER 1

Quantitative Approach to Organisational Design in Project

Management Office 1

By B. O. Odedairo and I. O. Raji

CHAPTER 2

Options for the Nigeria Electricity Tariff Review: Cost or

Service Reflective Tariff? 18

By Akinlabi, K.A., Oladokun, V.O. and Alexander A.O

CHAPTER 3

Development o f an Artificial Neural Network-Fuzzy Markov Model for

Industrial Accidents Forecasting 38

By I. E. Edem and O. A. Adebimpe

CHAPTER 4

Ergonomics/Human factors training and research in Nigeria:

Early years and current efforts 71

By Olanrewaju O. Okunribido

CHAPTER 5

Some Developments in Scheduling Algorithms 92

By Ayodeji E. Oluleye, Elkanah O. Oyetunji and Saheed Akande

CHAPTER 6

An Integer Linear Programming Model o f a University Soccer

Timetabling Problem]23
By Okunade Oladunni S.and Ogueji Kelechi J.

CHAPTER 7

The Role o f Renewable Energy in Nigeria's Energy Transformation 171

By MojisolaA. Bolarinwa

CHAPTER 8

Application of Deep Learning in Disease Prediction 195
By S. C. Nwaneri and C. O. Anyaeche

CamScanner

IB
ADAN U

NIV
ERSITY

 LI
BRARY

C H A PT E R 9

N ew Normal: Ergonomic Awareness for Telecommuters in Nigeria 220

By Ezekiel Olatunji and Ebenezer Olowolaju

CHAPTER 10

Model-Based Systems Engineering: Relevance and Applications in

Contemporary Systems Design 247

By Ebenezer Olowolaju and Ezekiel Olatunji

CHAPTER 11

The Impact o f Covid-19 Pandemic on Sustainable Supplier

Selection Process 254

By Chukwuebuka ,M. U-Dominic

CHAPTER 12

The Traveling Salesman Problem: Algorithms, Sub-tours and Applications in

Combinatorial Optimization 287

By V.O. Oladokun, B.O. Odedairo and O.S. Atitebi

CHAPTER 13

On Safety, Health, Productivity and National Development 305

By A Kolawole and A A Opaleye

CHAPTER 14

Garment Sizing System: A Critical Review of the Past, Present and Future 321

By Adepeju A. Opaleye and A Kolawole

CHAPTER 15

Comparison o f Compromise Constraint Bi-objective LP Method and Three

Traditional Weighted Criteria Methods 342

By Adeyeye, A. D., Arise, O. T. and Charles-Chvaba, O. E.

CHAPTER 16

Preventive Maintenance Interval Prediction: Application o f a Cost-Based

Approach with Lost Earnings Consideration in a Manufacturing Firm 360
By O.A. Adebimpe and O.E. Charles-Chvaba

vi

CamScanner

IB
ADAN U

NIV
ERSITY

 LI
BRARY

CHAPTER 17

Supply Chain Modelling: A Discrete lAenl Approach
By Ajisegiri G,0, Ajisegiri, A. //. and Akande S.

386

CHAPTER 18

Evaluation of Mechanical Strain Resulting from Working with two Locally

Fabricated Engine Powered Stationary Grain Threshers 405

By O.G. Akanbi' and B.O. Afolabi

CHAPTER 19

Team-based Material Selection for a DC Machine Armature Design Using

Compromise Programming Optimization 421

By Odu, O. Godwin

CHAPTER 20

A review of the effect o f Industry 4.0 on Supply Chain Systems 463

By Modestus Okwu, C.M. U-Dominic, Ifeyinwa J. Orji,

Victor Mbachu, and Ayomoh Michael

CHAPTER 21

Computer Aided Design (CAD) of a Vertical Transportation System in High-

rise Building: Case o f Ivory Tower, University of Ibadan Ibadan 493

By Odunfa, K.m, Taiwo, O, I, Odunfa VO., Abu, R

CHAPTER 22

A Synopsis of Major Classical Inventory Management Models 510

0. Ibidapo-Obe, F\0. Ogunwolu and O. F. Odeyinka

CHAPTER 23

Redesign o f Organisational Structure o f a Manufacturing Firm 549

By Anyaeche C. O, \md Akindele J. O.

CHAPTER 24

Anthropometric Evaluation o f Bus Drivers and their Workstations 590

By S. O. Ismaila, S.A Odmlami, S.I Kuye, A. /. Musa, T. M. A. Olayanju, A. P.

Azodo and 0. A. Adeaga vjj

CamScanner

IB
ADAN U

NIV
ERSITY

 LI
BRARY

92

CHAPTER 5

Some Developments In Scheduling Algorithms

*Ayodeji E. Oluleye1, Elkanah O. Oyetunji2 and Saheed Akande3

1. Department of Industrial and Production Engineering, University of

Ibadan, Oyo State

2. Department of Mechanical Engineering, Lagos State University,

Lagos State

2. Department of Mechanical and Mechatronics Engineering, Afe

Babalola University, Ado Ekiti

* Corresponding author: ayodeji.oluleye@ui.edu.ng

1.0 Introduction

It is widely acknowledged that time is a resource. Particularly in today’s

world, it is a critical metric of competitiveness. For designers of products

and services the first to the market is key. When establishing production

plans; the first to deliver is also key. The sequence of tasks is important

in optimizing time metrics. Also, for effective deployment of resources,

the start and finish times of the tasks in sequence aid in determining the

schedules. In many respects, sequencing and scheduling are sometimes

used interchangeably. While sequence represents the ordering of tasks,

timetabling the sequence results in schedules. The use of time as a

surrogate cost factor is due to the varied nature. Costs influencers are

many but time is considered at the top of the leader board.

Work systems are replete with sequencing and scheduling examples.

They are encountered in transport, computer, manufacturing, aviation,

and banking systems among others. Even individual tasks and chores

require that forethought be given to effective time management.

Deciding sequences and schedules to adopt can be confounding given the

many combinations possible. The challenge of scheduling is how to sift

through the many feasible schedules and make good choices in good time

since time is a resource and metric of competitiveness.

IB
ADAN U

NIV
ERSITY

 LI
BRARY

93

Determining optimal sequences and hence schedules have preoccupied

many researchers for decades. The challenge is in the manner in which

real-life problems present. The problems may be encountered in varied

settings such as :

a. Optimising single criterion

b. Optimising multiple criteria

c. Flow operations structures

d. Job shop operational structures

e. Single-channel inputs

f. Multi-channel inputs

These represent just a few of the settings, which sometimes could be

a combination (hybrid).

With the COVID-19 pandemic and subsequent disruptions to supply

chains, scheduling systems need re-examination to enable a

reconfiguration for organisations to remain going concerns. This

work is an attempt at reviewing the evolution of some scheduling

solution approaches.

1.1 Exact and enumerative algorithms

Generally, solution methods for scheduling problems may be classified

into two: Exact methods and approximation methods. In this section,

the exact methods are discussed.

Exact methods are solution methods that can find an optimal solution to

an optimization problem (of which scheduling problem is one). Exact

methods have been found to always solve an optimization problem to

optimality. The following solution methods may be classified under the

exact methods:

1.1.1 Enumeration methods: Enumeration methods involve the

complete listing of all the items in a collection. Also, it involves the

listing of all of the elements of a given set. Enumeration methods are

often used to solve combinatorial optimization problems such as

scheduling of machines in production planning, aircraft rotation/crew

IB
ADAN U

NIV
ERSITY

 LI
BRARY

94

scheduling in airlines as well as transport routing/scheduling in logistics.

Enumeration methods lead to lots of possible solutions with the difficulty

of selecting and finding optimal solutions. The number of outputs of an

enumeration method may be exponential in the size of the input.

Generally, enumeration methods may be classified into two: complete

enumeration methods and incomplete enumeration methods.

1.1.1.1 Complete enumeration methods: Complete enumeration

methods systematically consider all possible solutions. They are also

called total or explicit enumeration methods. This method involves

enumeration of all possible alternatives and a comparison of all of them

to pick the best solution. Complete enumeration methods can be very

expensive or even impossible for more complicated problems.

1.1.1.2 Incomplete enumeration methods: This can also be called an

implicit or partial enumeration method. This method involves excluding

parts of the solution space that are known to be sub-optimal.The method

also involves the selection of alternatives by only considering parts of the

solution space.This leads to a reduction in computation efforts because

only the most promising solutions are often considered. Methods such as

Branch & Bound (BB), and Dynamic Programming (DP) can be

classified under implicit/incomplete enumeration methods.

1.1.2.2 Dynamic Programming method

Dynamic programming (DP) is a mathematical optimization method

which breaks problems into smaller parts. It uses recursion to break and

assemble them. The focus is mainly on simplification to enable traction.

The method was developed by Bellman Richard around the 1950s.

Although similar to divide and conquer in terms of the breakdown of the

problem into smaller sub-problems; however in the DP method, the

resulting sub-problems are not solved independently. The DP method

remembers the results of the smaller sub-problems and then used the

same for similar sub-problems. The dynamic programming approach is

IB
ADAN U

NIV
ERSITY

 LI
BRARY

95

used to solve problems that can easily be divided into similar sub-

problemsto re-usethe results obtained from these sub-problems.

In the dynamic programming method, referring to the output of the

previous solution is cheaper (concerning CPU cycles) than re-computing

it.The DPmethod avoids repeated work by remembering previous partial

results.The DP approach trades space for time. This means that instead

of calculating all the states thereby taking a lot of time but no space, space

is taken up to store the results of all the sub-problems to save time later.

1.1.2.3 Branch and Bounds method

The branch and bound (BB) method is an enumeration technique in

which schedules are discarded because they are worse off than

established lower bounds. These could be single schedules or set of

schedules. There are two important elements in the use of the branch and

bound procedure. These are the search (branching) procedure and the

bounding at nodes. The BB procedure, if well implemented, assures

optimality (Oyetunji and Oluleye, 2008).

i. Search Procedures

There are two types of search procedures. These are depth-first and

frontier search methods (French, 1982). The depth-first search procedure

starts at the root node and explores the branches as far down as possible.

They backtrack when better schedules are not feasible down the line.

Essentially, it traverses the depths of the branch and uses a stack to

determine the next vertex to begin a search, when improvements are

infeasible (Fig. 1).

IB
ADAN U

NIV
ERSITY

 LI
BRARY

96

Fig. 1. Hypothetical search tree

On the other hand, the frontier search procedure is a novel approach

applicable to wide classes of trade-offs between runtime and program

size. Frontier search reduces the memory requirement by storing only the

Open nodes while deleting closed nodes once they are expanded.

The depth-first procedure has the advantage of working with fewer

variables at each node and thus requiring less storage while the frontier

search procedure requires less calculations thereby obtaining solution

quickly.

ii. Bounding

At every node, lower bounds must be computed for the objective

function. The way the lower bound is obtained determines the efficiency

of the branch and bound procedure. The lower bound gives an idea of

what the value of the objective function is likely to be at the node. The

typical way to develop a bound is to relax the original problem to an

easily solvable problem. The relaxed problem solution bounds the

original problem (Ólafsson, 2002). The lowestbound nodedetermines

branches to be explored. When all the jobs have been assigned, the

solution is the node with the lowest value.

IB
ADAN U

NIV
ERSITY

 LI
BRARY

97

1.1.3 Johnsons’ 2-machines algorithm

Johnson's 2-machines algorithm is a method of scheduling jobs in two

work stations or machines. Johnson’s 2-machines algorithm seeks to find

an optimal sequence of jobs to minimize makespan (the completion time

of the last scheduled job). The rule also reduces the amount of idletime

between two workstations. To apply Johnson’s rule, the following

conditions must be met:

i. Processing time ofeach job must be constant.

ii. Processing times of jobs must be mutually exclusive of the

job sequence.

iii. All the jobs must be processed through the first work station before

going through the second work station.

iv. All the jobs have the same priority.

Johnson's rule for the 2-machine problem can be described as follows:

Step 1: List all the jobs and their processing times on each

machine.

Step 2: Select the job having the shortest processing time. If that

processing time is on for the first machine, then schedule

the job first. If that processing time is on the second

machine then schedule the job last. Break the

ties arbitrarily.

Step 3: Remove the scheduled job from the list of unscheduled

jobs.

Step 4: Repeat steps 2 & 3until all the jobs have been

scheduled.Johnson (1954)

Illustrating Johnson’s 2-machine algorithm

Suppose we have a five-jobs two machines scheduling problem as

shown in Table 1. Each of the five jobs needs to go through machine 1

and 2. We are required to find the optimum schedule of the jobs using

Johnson's rule for a 2-machine problem.

IB
ADAN U

NIV
ERSITY

 LI
BRARY

98

Job Processing times (mins)

Job Machine 1 Machine 2

1 3.20 4.20

2 4.70 1.50

3 2.20 5.00

4 5.80 4.00

5 3.10 2.80

Solution

1. Since Job 2 has the smallest processing time (1.5 mins) and it is

on machine 2, schedule job2 last.Remove Job 2 from the set of

unscheduled jobs.

 X X X X 2

2. Job 3 has the next smallest processing time (2.20mins) and it is

on machine 1, therefore schedule job 3 first.Remove Job 3 from

the set of unscheduled jobs.

3 X X X 2

3. Job 5 has the next smallest processing time (2.80mins) and it is

on machine 2, schedule job 5 last.Remove Job 5 from the set of

unscheduled jobs.

3 X X 5 2

4. Job 1 has the next smallest processing time (3.20 mins) and it is

on machine 1, schedule job 1 first. Remove Job 1 from the set

of unscheduled jobs.

3 1 X 5 2

IB
ADAN U

NIV
ERSITY

 LI
BRARY

99

5. Schedule the only remaining job (4) to the only available space.

3 1 4 5 2

So, the jobs must be processed in the order 3 → 1 → 4 → 5 → 2 and

must be processed in the same order on the two machines.

1.1.4 Johnson’s 3-machine algorithm

Johnson’s 3-machine algorithm is similar to his 2-machine algorithm.

Johnson extended his algorithm for the 2-machine problem to solve a

variant of the 3-machine problem. Johnson (1954) considered a special

structure case (i.e. problems in which the minimum processing time on the

first or third machines is greater than or equal to the maximum processing

time on the second machine).

Mathematically,

• The smallest processing time on machine 1 is greater than or

equal to the largest processing time on machine 2, i.e.,

Min Pi1 ≥ Max Pj2, i, j,

• The smallest processing time on machine 3 is greater than or

equal to the largest processing time on machine 2, i.e.,

Max Pj2≤ Min Pk3, j, k

At least one of the above two conditions must be met.

Where Ptm= processing time of tth job on mth machine.

IB
ADAN U

NIV
ERSITY

 LI
BRARY

100

When the above conditions hold, Johnson (1954) forms an artificial

(machines a and b) 2-machine problem by letting

Pia = Pi1 + Pi2

Pib = Pi2 + Pi3

The artificial (2-machine) is solved by applying Johnson’s 2-

machinealgorithm.

1.2 Approximation algorithms

These are efficient algorithms that yield effective solutions to problems

with provable guarantees on its closeness to the optimal one. The concept

of complexity gives perspective on solution techniques concerning the

computation requirements (Baker and Tritsch, 2013). The order-of-

magnitude notation is used to measure the computational effort required

by a solution method. For example, a scheduling problem of size m

(mrepresents a quantum of information needed to specify the problem),

the number of computations required by the algorithm is bounded by a

function of m. For example, if the function has an order of magnitude m2,

represented by O(m2), then the algorithm is polynomial. However, if the

function is O(2m), the algorithm is nonpolynomial. For a function of the

form,O(2m), it is called an exponential algorithm. Polynomial-time

algorithms are more efficient than exponential-time algorithms given that

the execution times grow rapidly with problem size.

Numerous scheduling problems in practice belong to a class of

optimization problems called Non deterministic Polynomial time-

complete (NP-complete) problems. For these classes of problems, no

efficient solution has been established (Weisstein, 2015). A problem is

NP if its solution can be estimatedand verified in polynomial time.

Nondeterministic implies that no specific rule is adoptedfor the

estimation. If two or more problems of the same class are NP and are

polynomial-time reducible to each other, such problems are called NP-

IB
ADAN U

NIV
ERSITY

 LI
BRARY

101

complete problems. Therefore, finding an efficient algorithm for a given

NP-complete problem implies that an efficient algorithm can also be

found for all other problems belonging to the same class since the

problem can be restructured or modified to yield one another. However,

many years of research in optimization has not yielded a single

polynomial-time algorithm for problems in this class, and the surmise is

that no such algorithm exists. This class of problem is thus called NP-

hard (Non-deterministic Polynomial-time hardness) problems.

Therefore, it is unlikely to obtain optimal solutions to NP-hard problems

efficiently, i.e. by polynomial-time algorithms. An optimal solution can

be found for an NP-hard problem either by complete enumeration or

implicit enumeration techniques. In both cases, for real-life problems of

practical interest, only small-sized problems can be solved due to the time

complexity (exponential increased) involved. However, in real-life like

industrial setting, production workshop, hospital, school among others

where scheduling problems is a challenge, there is always the need to

solve large problem-sized NP-hard problems. This practical importance

necessitates relaxations to achieve tractability. A very fruitful approach

has been to relax the notion of optimality and settle for an efficient and

effective (or near-optimal) solution. It is desired that solutions be within

a small multiplicative factor of the optimal value (approximation ratio).

Approximation algorithms provide a provably good approximation

ratioto the optimal. While there are numerous (good) approximation

algorithms for several NP-Hard problems in the literature, scheduling

problems of certain classes remain indistinguishablein the theory of NP-

Completeness. They behave very differently when subjected to

approximation algorithms (Brucker, 2007).

Furthermore, there exist numerous NP-hard scheduling problems

thatrequire lesser time to execute the work in the workshop using

approximation algorithms than to solve the problem optimally using the

fastest available computing machine. Therefore, the reliance on

approximation algorithms is often the rule in practice.Furthermore, the

closeness of the generated solution (approximation ratio) of an

approximation algorithm to the optimum is usually established

analytically either in the worst-case or on the average (Akande, 2017).

IB
ADAN U

NIV
ERSITY

 LI
BRARY

102

Experimental analyses of heuristicsare usually through several runs (via

simulation) against benchmarks.

Examples of approximation algorithms are dispatching rules, heuristics,

and metaheuristics or evolution Algorithms.

Heuristics are constructive approximation algorithms that start with no

jobs scheduled and gradually construct schedules by adding

jobssystematically.Over the last four decades, sequencing and scheduling

problems have been solved using heuristics in the form of dispatching or

priority rules. The priority or position of a job in the schedule is

determined by the job or machine parameter as well as the shop

characteristics. Al- Harkan (2013) classified scheduling dispatching rules

into local rules, global rules, static rules, dynamic rules among others.

Several Dispatching rules have been developed, investigated, and

implemented by researchers and practitioners. These include; The

Shortest Processing Time (SPT) rule (Smith, 1956; Bansal and Kulkarni,

2015).Modified Due Date (MDD) rule (Baker and Bertrand, 1982;

Naidu, 2002), HR9 and HR10 (Oyetunji and Oluleye, 2010), Heuristic

AA (Akande, 2018) among others. Special structure problems have also

been explored with the aim of using the features to converge to good

solutions (Oluleye and Charles-Owaba (1999), Oluleye and Jolayemi,

(2000)).

Furthermore, approximation algorithms that are initialized with a

complete schedule with the exploration of systematic

improvementsachieved by manipulating the current schedule are called

metaheuristics or evolution algorithms. Some authors use heuristics and

metaheuristics interchangeably.

1.3 Evolutionary Algorithms

Evolutionary Algorithms are based on computational intelligence. They

are also called metaheuristics. Metaheuristics are designed to provide

good solutions to optimization problems with limited computation

capacity (Bianchi, et al., 2009). Methods explorean existing schedule

IB
ADAN U

NIV
ERSITY

 LI
BRARY

103

making improvements through manipulations of the optimization

problem being solved (Blum and Roli, 2003). Much like heuristics,

metaheuristics do not guarantee optimality though they yield better

solutions over and above the initially selected schedule (seed).

Evolutionary Algorithms explore local search procedures. The desire is

to find a better schedule in the neighborhood.. Two schedules are

neighbours, if one can be obtained by modifying the other. The method

is performed through iteration. Many neighborhood solutions are

generated by modification of the current solution by iteration. The

method of modifying the current solutions to form a new neighbor, the

acceptance-rejection criterion as well as the termination of the iterations

are the basis for the classification of metaheuristics. Examples of

metaheuristics include Tabu Search (TS), Simulated Annealing (SA),

Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Water

Waves Optimization (WWO), League Championship Algorithm (LCA),

and Variable Neighborhood Search (VNS) among others. (Interested

readers can read more about different heuristics and metaheuristics

approaches from the literature)

1.4 Some illustrative examples

Some selected algorithms are to be applied to some real-life/random

problems

In this section, two scheduling problems; Single Machine Total

Tardiness Problem (SMTTP) with zero release date and the Single

Machine Total Flowtime Problem (SMTFP) with non-zero release date

are considered. Some existing problems and the corresponding

proposed heuristics found in the literature were explored.

1. Single Machine Total Flowtime Problem (SMTFP) with a non-zero

release date

Problem Definition: Given a single machine scheduling problem with a

set of n jobs with minimize of the total flowtime as a performance

measure. It is assumed that the problem is deterministic and only one job

can be processed at a time.For every job Ji, parameters like therelease

IB
ADAN U

NIV
ERSITY

 LI
BRARY

104

time, 𝑟𝑖 the processing time 𝑝𝑖 are known. Also,the start time denoted as

𝑆𝑖is given by:

𝑆𝑖 ≥ 𝑟𝑖

 (1)

Also, the completion time of each job (𝐶𝑖) is defined as:

𝐶𝑖= 𝑆𝑖 + 𝑝𝑖

 (2)

The flow time of each job defined as the time the job spent in the shop

is given as the difference between the completion time and the release

date:

𝐹𝑖= 𝐶𝑖 − 𝑟𝑖

 (3)

Oyetunji (2009) defined the total flow time (𝐹𝑡𝑜𝑡) as

𝐹𝑡𝑜𝑡 = ∑ 𝐹𝐼
𝑛
𝑖=1 = 𝐹1 + 𝐹2 + 𝐹3 + . . . + 𝐹𝑛

 (4)

For the problem of minimizing the sum of flowtime on a single machine

with releasedatesOyetunjiet al, (2012), proposed the KSA 1 heuristic.

The steps are as follows:

KSA1 Algorithm Steps

STEP 1: Initialization

Job_Set_A = [𝐽1𝐽2𝐽3 . . . 𝐽𝑛], set of given jobs

Job_Set_B = [0], set of schedules job

Job_Set_C = [𝐽′1𝐽′2𝐽′3 . . . 𝐽′𝑛], set of unscheduled jobs,𝐽′𝑖 = 𝐽𝑖

n = number of jobs

STEP 2: Find index = 𝑝𝑖 + 𝑟𝑖 for all jobs in Job_Set_A, i = 1, .., n

STEP 3: List jobs in the Job_Set_A in increasing index order and put

the jobs in Job_Set_C. To break ties, select first the job with the lowest

ri, else break tie arbitrarily.STEP 4: Add the first job in Job_Set_A, to

Job_Set_B and

remove it from Job_Set_C.

STEP 5: Compute the Completion time, (𝐶𝑖) of the job scheduled in

step 4

STEP 6: Compute 𝛥𝑊𝑗 = |𝑅𝑗– 𝐶𝑗 | for all the remaining jobs in the

IB
ADAN U

NIV
ERSITY

 LI
BRARY

105

Job_Set_D. Where 𝑅𝑗is the

release date of each of the remaining jobs in Job_Set_D and (𝐶𝑗 is the

completion time of jobs scheduled prior to the next target position (i-1)

in Job_Set_D, j= 2, 3, … n-1, I = 1, 2, 3, …, n.

STEP 7: Re-arrange the remaining jobs in Job_Set_D in the order of

their increasing 𝛥𝑊𝑗computed in Step 6 and schedule the job with the

lowest 𝛥𝑊𝑗 in the next unscheduled position

STEP 8: Repeat step 6and 7 until all the jobs have been scheduled

STEP 9: Append Job_Set_D to Job_Set_B

STEP 10: Stop

Application

Consider a 4 x1 scheduling problem with the problem parameter in

Table 1. Determine the total flowtime using the KSA 2 algorithm.

Compare the results to the optimal value.

 Table 1: A 4x1 Scheduling Problem

Solution.

Optimal value can be obtained by complete enumeration or implicit

enumeration. In this case, we want to explore complete enumeration.

Number of Feasible Schedule = 4! = 4 × 3 × 2 = 24

The 24 schedule will be analyzed using the Gantt chart.

[1 2 3 4]

 S/N R p

1 15 10

2 30 4

3 4 12

4 20 30

15 25 30 34 46

76

10 4 12 30

IB
ADAN U

NIV
ERSITY

 LI
BRARY

106

The Sum of flow time = 10 + 4 + 42 + 56 = 112

(NOTE:𝐹𝑖= 𝐶𝑖 − 𝑟𝑖)

 [1 2 43]

The Sum of flow time = 10 + 4 + 44 + 76 = 134

 [1 4 2 3]

 The Sum of flow time = 10 + 35 + 29 + 67 = 141

 [1 4 3 2]

The Sum of flow time = 10 + 35 + 63 + 41 = 149

[1 3 4 2]

 The Sum of flow time = 10 + 33 + 47 + 41 = 131

[1 3 2 4]

15 25 30 34 64

80

1 4 3 1

15 25 55 59

71

10 4 30 12

15 25 55 67

71

10 30 12 4

15 25 37 67

71

10 30 12 4

10 30

15 25 37 41 71

12 4

IB
ADAN U

NIV
ERSITY

 LI
BRARY

107

The Sum of flow time = 10 + 33 + 11 + 51 = 105

[2 1 3 4]

 The Sum of flow time = 4 + 29 + 52 + 66 = 151

[2 1 4 3]

The Sum of flow time = 4 + 29 + 54 + 82 = 169

[2 4 1 3]

The Sum of flow time = 4 + 44 + 69 + 82 = 199

 [2 4 3 1]

10 4 12

 30 34 44 56 86

30

 30 34 44 74 86

10 4 12 30

10 4 12

 30 34 64 74 86

30

10 4 12 30

IB
ADAN U

NIV
ERSITY

 LI
BRARY

108

 30 34 6 4 76
86

The Sum of flow time = 4 + 44 + 72 + 71 = 191

 [2 3 4 1]

 The Sum of flow time = 4 + 42 + 56 + 71 = 173

[2 3 1 4]

 The Sum of flow time = 4 + 42 + 41 + 66 = 153

3 1 2 4]

 The Sum of flow time = 12 + 11 + 4 + 44 = 71

 [3 1 4 2]

3

0

1

2
 4 16 26 30 34

64

10 4

 30 34 46 56

86

1

0

4 1

2

30

3

0

1

2

4

 4 16 26 56 60

10

 30 34 46 76

86

10 4 12 30

IB
ADAN U

NIV
ERSITY

 LI
BRARY

109

The Sum of flow time = 12 + 11 + 36 + 30 = 89

[3 2 4 1]

 The Sum of flow time = 12 + 4 + 44 + 59 = 119

The Sum of flow time = 12 + 4 + 44 + 59 = 119

[3 2 1 4]

 The Sum of flow time = 12 + 4 + 29 + 54 = 101

[3 4 1 2]

 The Sum of flow time = 12 + 30 + 45 + 34 = 131

[3 4 2 1]

1

0

1

2

4

 4 16 30 34 44

74 64

30

 4 16 20 50 60 64 64

11 4 30

 4 16 30 34 64 74 64

30 12 4 10

 4 16 20 50 54 64

1

0

1

2

4 30

IB
ADAN U

NIV
ERSITY

 LI
BRARY

110

The Sum of flow time = 12 + 30 + 24 + 49 = 111

[4 1 2 3]

 The Sum of flow time = 30 + 45 + 34 + 72 = 181

[4 1 3 2]

 The Sum of flow time = 30 + 45 + 68 + 46 = 189

 [4 2 1 3]

The Sum of flow time = 30 + 24 +49 + 72 = 175

[4 2 3 1]

12 30 4 10

 20 50 60 64 76

12 4 10 30

20 50 60 72 76

4 30 12 10

20 50 54 64 76

12 30 10 4

IB
ADAN U

NIV
ERSITY

 LI
BRARY

111

 The Sum of flow time = 30 + 24+60 + 61 = 175

 [4 3 2 1]

The Sum of flow time = 30 + 58 + 36 + 61 = 185

 [4 3 1 2]

The Sum of flow time = 30 + 58 + 51 + 46= 185

From the complete enumeration, the optimal schedule is [3 1 2 4] with

the optimal value (total flowtime) of 71

The Proposed Approximation Algorithm: K.S.A1 ALGORITHM

STEP 1: Initialization

Job_Set_A = [1 2 3 4], set of given jobs

Job_Set_B = [0], set of schedules job

Job_Set_C = [1 2 3 4], set of unscheduled jobs,𝐽′𝑖 = 𝐽𝑖

n = 4

STEP 2: Compute the index = 𝑝𝑖 + 𝑟𝑖 for each of the jobs in Job_Set_A,

i = 1, .., n

 20 50 54 64 76

 20 50 62 66

76

10 30 4 12

 20 50 62

66 76

10 30 4 12

IB
ADAN U

NIV
ERSITY

 LI
BRARY

112

 S/N R P P+r

1 15 10 25

2 30 4 34

3 4 12 16

4 20 30 50

STEP 3: Job_Set_C = [3 2 1 4]

STEP 4: Job_Set_C = [2 1 4]

 Job_Set_B = [3− − −]

STEP 5: Completion time of job 3, (𝐶𝑖) = (4+12) = 16

STEP 6 : (Job_Set_C = [2 1 4] explore)

: For job 2, ΔW j = | 16–30| = 14

For Job 1 , ΔWi = | 16–15| = 1------------Minimum

(Selected)

i+3 = Job 4, ΔW j = | 16–20| = 4

Then;

 Job_Set_C = [2 4]

 Job_Set_B = [3 1 − −]

Completion time of job 1, (𝐶𝑖)= (16 + 10) = 26

STEP 6: (Job_Set_C = [2 4] explore)

: For job 2, ΔW j = | 26–30| = 4 ------------Minimum (Selected)

For Job 4, ΔW j = | 26–20| = 6

Job_Set_C = [4]

 Job_Set_B = [3 1 2 4]

KSA 1 gives = [3 1 2 4] the optimal schedule.

IB
ADAN U

NIV
ERSITY

 LI
BRARY

113

1. Single Machine Total Tardiness Problem (SMTTP) with

zero release date

Problem Definition: Given a single processor scheduling problem,

where a set of n jobs have to be sequenced on a processor to minimise

the total tardiness. Taking into consideration the following assumption;

i. only one job can be processed at a time

ii. the problem is deterministic that is the processing time (𝑝𝑖)

and the due dates (𝑑𝑖)

iii. the release dates (𝑟𝑖) is zero

A job is said to be late or tardy if it is completed after its due date.

The tardiness of jobi is given by: 𝑇𝑖 = max (0, 𝐶𝐼 − 𝐷𝑖)

The total tardiness is 𝑇𝑡𝑜𝑡 = ∑ 𝑇𝑖
𝑛
𝑖=1

The SMTTP has been established to be NP-hard. One of the most tested

effective and efficient heuristics for the problem is the Modified Due

Date (MDD) algorithm.

Consider the five-job problem of minimizing total tardiness. Use the

MDD solution method and compare the result to the optimal. (Source:

Baker and Trietch, 2013)

Job i 1 2 3 4 5

Pi 4 3 7 2 2

Di 5 6 8 8 17

SOLUTION

In this case, the number of feasible schedules is = 5! = 5 × 4 × 3 × 2 =

120

IB
ADAN U

NIV
ERSITY

 LI
BRARY

114

This will take a prohibitive computation time using the complete

enumeration. Thus, Branch and Bound implicit enumeration

Techniques will be employed to find the optimal.The branching tree is

as in Figure 2

Fig. 2: The branching Tree

Analysis of the branching tree

At the step 1, the tree consists of P(0), with no job schedule.

At the step 2, the problem p(0) was partitioned into n subproblems, p(1),

p(2), . p(3), p(4), p(5), by assigning the last position in the sequence to

IB
ADAN U

NIV
ERSITY

 LI
BRARY

115

each of the nodes in the first level of the branching tree. For the

subproblems, put each associated job in the last position sequentially.

That is, for p(1), put job 1 last, for p(2) put job 2 last, etc. The tardiness

for each job at the last position is computed as follows:

For p [- - - - 1],: 𝑇𝑖 = max (0, 𝐶𝐼 − 𝐷𝑖) = max (0, 18 − 5) = 13

For p[- - - -2] : 𝑇𝑖 = max (0, 𝐶𝐼 − 𝐷𝑖) = max (0, 18 − 6) = 13

For p [- - - - 3],: 𝑇𝑖 = max (0, 𝐶𝐼 − 𝐷𝑖) = max (0, 18 − 8) = 10

For p[- - - - 4],: 𝑇𝑖 = max (0, 𝐶𝐼 − 𝐷𝑖) = max (0, 18 − 8) = 10

For p [- - - - 5],: 𝑇𝑖 = max (0, 𝐶𝐼 − 𝐷𝑖) = max (0, 18 − 17) = 1

NOTE (The completion time will be the summation of all the

processing time since the last position of the job is assigned)

To eliminate some redundant branches, only the branch with the

minimum tardiness value is explored further.At the next stage, the

remaining jobs (1, 2, 3, 4) are assigned the position,𝑛 − 1. The tardiness

of each of the sub-problem is computed as follows

For p[- - - 45],: 𝑇𝑖 = 1 + max (0, 𝐶𝐼 − 𝐷𝑖) = 1 + max (0, 16 − 8) =

9

For p[- - - 35],: 𝑇𝑖 = 1 + max (0, 𝐶𝐼 − 𝐷𝑖) = 1 + max (0, 16 − 8) =

9

For p[- - - 25],: 𝑇𝑖 = 1 + max (0, 𝐶𝐼 − 𝐷𝑖) = 1 + max (0, 16 − 6) =

11

For p[- - - 15],: 𝑇𝑖 = 1 + max (0, 𝐶𝐼 − 𝐷𝑖) = 1 + max (0, 16 − 5) =

12

Also, the p[- - - 45] and the p[- - - 35] are explored further. This process

continues until all the explored branches were explored as illustrated in

Fig. 1. The optimal solution from the Branch and Bound is 11 and the

schedule is (12435).

IB
ADAN U

NIV
ERSITY

 LI
BRARY

116

The Modified Due Date (MDD) heuristics for the Problem

The Modified Due Date (MDD) Rule: MDD schedules the next job from

unscheduled jobs set ‘U’ with the smallest priority index (i). The

priority index is given by:

Π𝑖 = {max{𝑡𝑖 + 𝑝𝑖 , 𝑑𝑖}}

where:

𝑡𝑖 is the starting time of the next unscheduled job i(iU) which can

either

be the completion time of the job in position i-1 or the release date of

job i,

𝑝𝑖is the processing time, and

𝑑𝑖 is the due date.

If two jobs j and k compete to be scheduled at time t, then, job j will

precede

job k if Π𝑗Π𝑘

However, the MDD rule does not consider two jobs at a time when

there are more than

two unscheduled jobs. It considers all the available jobs, computes their

priority indices

(Π𝑖) and chooses the job with the least priority index.

STEP 1: Initialization

Job_Set_A = [1 2 3 4], set of given jobs

Job_Set_B = [0], set of schedules job

Job_Set_C = [1 2 3 4], set of unscheduled jobs, 𝐽′𝑖 = 𝐽𝑖

n = 5

For i = 1, t = 0, JobSET B = {}

Job i 1 2 3 4 5

Pi 4 3 7 2 2

Di 5 6 8 8 17

IB
ADAN U

NIV
ERSITY

 LI
BRARY

117

𝑡𝑖 + 𝑝𝑖
4 3 7 2 2

Π𝑖 = {max{𝑡𝑖 + 𝑝𝑖 , 𝑑𝑖}} 5 6 8 8 17

The minimum Π𝑖 = 5, Thus, JobSET B = {1}

For i = 2, t = 5, JobSET B = {1}

Job i 2 3 4 5

Pi 3 7 2 2

Di 6 8 8 17

𝑡𝑖 + 𝑝𝑖 8 12 7 7

Π𝑖 = {max{𝑡𝑖 +
 𝑝𝑖 , 𝑑𝑖}}

8 12 8 17

The minimum Π𝑖 = 8, Thus, JobSET B = {1 2} or JobSET B = {1 4}

Though, the MDD does not specify how the tie should be broken. The

common approach is to break the tie with the due date (by assigning

jobs with lower date) as explored by Akande (2017).

Thus, job 2 is scheduled.

For i = 3, t = 8, JobSET B = {1 2}

Job i 3 4 5

Pi 7 2 2

Di 8 8 17

𝑡𝑖 + 𝑝𝑖 15 10 10

Π𝑖 = {max{𝑡𝑖 + 𝑝𝑖 , 𝑑𝑖}} 15 10 17

The minimum Π𝑖 = 15, Thus, JobSET B = {1 2 4}

IB
ADAN U

NIV
ERSITY

 LI
BRARY

118

For i = 4, t = 10, JobSET B = {1 2 4}

Job i 3 5

Pi 7 2

Di 8 17

𝑡𝑖 + 𝑝𝑖 17 12

Π𝑖 = {max{𝑡𝑖 + 𝑝𝑖 , 𝑑𝑖}} 17 17

The minimum Π𝑖= 17, (break the tie by assigned the job with the lower

due date) Thus, JobSET B = {1 2 4 3}

For i = 5, JobSETB = [1 2 4 35] MDD heuristic schedule is [1 2

4 35]

Job i 1 2 4 3 5

𝑃𝐼 4 3 2 7 2

𝐶𝐼 4 7 9 16 18

Di 5 6 8 8 17

𝑇𝑖 = max (0,

𝐶𝐼 − 𝐷𝑖)

0 1 1 8 1

𝑇𝑡𝑜𝑡 = ∑ max (0, 𝐶𝐼 − 𝐷𝑖)

𝑛

𝑖=1

= 11

1.5 Future directions

After about seven decades of active researches on scheduling which

have resulted in the development of many scheduling algorithms, the

followings are some of the areas where future research efforts are of

utmost importance.

IB
ADAN U

NIV
ERSITY

 LI
BRARY

119

i. Quality of solutions (Effectiveness): Owing to advancements in

the information communication technology over the years, there have

been tremendous improvements in the computing speed. Thus, it is of

utmost importance for researchers to concentrate more efforts on the

developments of algorithms that are capable of generating solutions that

are extremely close to (if not) the optimal. It is believed that we can

always leverage improvements in computing power/speed.

ii. Execution time of solutions (Efficiency): Even though there

have been improvements in the computing speed/power over the years,

there is a need for researchers to continue the search for faster/shorter

methods of solving combinatorial/optimization problems. The world

itself is not static, hence researchers should be encouraged to continue to

explore the development of fast (efficient) algorithms that can produce

results if possible at the speed of light.

iii. Multi-criteria/Multi-objective problems:Since most

combinatorial/scheduling problems are mostly multi-criteria in nature,

research efforts should be majorly focused on developments of

algorithms that can be applied to multi-criteria problems. Today, a

number of the algorithms purportedly developed for multi-criteria

scheduling problems reduce the original problems into single criterion

problems. There is the need to further develop algorithms that will

explore multi-criteria problems in a multi-criteria manner and not

pseudo-multi-criteria manner.

iv. Real-life scheduling problems: Although many researchers

have explored multi-criteria scheduling problems, some of these have

been limited to hypothetical problems, with only a few exploring real-

life problems. Since real-life scheduling problems have their own unique

characteristics, future research efforts should therefore be directed at

solving real-life problems that are of practical importance to the society

at large.

1.6 Conclusion

In this work, sequences and scheduling have been introduced with time

being used as an underlying surrogate measure for cost factors.

IB
ADAN U

NIV
ERSITY

 LI
BRARY

120

Algorithms that enable the solution of scheduling problems have been

classified andmethodologies espoused. Exact methods have been

distinguished from approximation methods. This enables a tradeoff

between accuracy and timeliness. Examples have been given to enable

readers to have traction with implementing some selected solution

methods. This should generate more interest in applying scheduling

approaches to improve the performance of individual and organisational

work systems.

References

1. Akande, S. (2018). New solution methods for single machine

bicriteria scheduling problems: Minimizing the total flowtime

and maximum tardiness with zero release dates.International

Journal of Engineering Research in Africa, 38, 144-153.

2. Akande, S. (2017). Development of heuristics for single

processor scheduling problems with tardiness-related

performance measures. Statistics, 1.
3. Al-harkan, I. Algorithms for Sequencing and Scheduling.

Available from:

faculty.ksu.edu.sablog(http://http://faculty.ksu.edu.sa/ialharkan/I

E428) retrieved 15 September, 2020.

4. Baker, K.R and Trietsch, D. (2013). Principles of sequencing and

scheduling.Canada: John Wiley & Sons

5. Bansal, N. and Kulkarni, J. (2015). Minimizing flow-time on

unrelated machines.

Proceedings of the Forty-Seventh Annual ACM on Symposium on

Theory of

Computing. Portland. 92-102.

6. Bellman, R, (1957). Dynamic Programming. Princeton :

University Press.

7. Bianchi, L., Marco, D., Luca, M.G., and Walter, J. G. (2009). A

survey on

metaheuristics for stochastic combinatorial optimization. Natural

Computing:

an International Journal, 8, 239–287.

IB
ADAN U

NIV
ERSITY

 LI
BRARY

121

8. Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial

optimization:

Overview and conceptual comparison. ACM Computing Surveys,

35, 268–308.

9. Brucker, P. (2007) . Scheduling Algorithms, 5th ed. Springer:

Heidelberg

Publisher.

10. French, S. (1982). Sequencing and Scheduling. United Kingdom

: Ellis Horwood Limited.

11. Johnson, S.M. (1954) . Optimal two- and three-stage production

schedules with setup times included. Naval Research Logistics, 1

: 61-68.

12. Naidu J.T. (2003). A Note on a Well-Known Dispatching Rule to

Minimise Total Tardiness. International Journal of Management

Science 31, 137–140.

13. Oluleye, A E and Charles-Owaba, O E, (1999). Optimality

Conditions for Some Special structure Scheduling Problems,

Proceedings of the International Conference on Production

Research (ICPR-15), Ireland, UK 333 - 336.

14. Oluleye, A E and Jolayemi J K, 2000, Performance Evaluation of

Some Index Based Flowshop Heuristics. Nigerian Journal of

Engineering Management 44 – 48.

15. Oyetunji, E. O., Oluleye, A. E. and Akande, S.A. (2012) .

Approximation

algorithms for minimizing sum of flow time on single machine

with release

dates. International Journal of Modern Engineering Research,2,

687-696.

16. Oyetunji, E.O., (2009) . Some common performance measures in

scheduling

problems. Research Journal of Applied Science, Engineering and

Technology,2, 6-9.

17. Oyetunji, E.O. and Oluleye, A.E. (2010). Hierarchical

minimization of total

IB
ADAN U

NIV
ERSITY

 LI
BRARY

122

completion time and number of tardy jobs criteria. Asian Journal

of Information Technology,74, 157-161

18. Oyetunji, E. O. and Oluleye, A.E. (2008) . Heuristics for

minimizing total completion time and number of tardy jobs

simultaneously on single machine with release time. Research

Journal of Applied Sciences, 3, 147-152.

19. Ólafsson, S. (2002), IE 514 Lecture notes, Industrial Engineering

Department, Iowa State University

http://www.public.iastate.edu/%7Eolafsson/ie514_2001.html

20. Smith, W. E., (1956). Various Optimisers for single-stage

production. Naval

Research Logistic Quarter,31, 59-66.

21. Weisstein, E W. Complexity Theory. A Wolfram Web Resource.

http://mathworld.wolfram.com/ComplexityTheory.html

[Accessed: June, 21st 2015].

IB
ADAN U

NIV
ERSITY

 LI
BRARY

http://www.public.iastate.edu/~olafsson/ie514_2001.html

