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Abstract: Urbanization is one of the most evident human-induced global changes. Despite its
economic importance, urban growth has a considerable impact on the surrounding environment. The
most hazardous impacts caused by the informal and sometimes poorly planned developments are:  the
destruction of green spaces, increase in traffic, air pollution, congestion with crowding and lack of
significant contribution to national income. Remote sensing provides an excellent source of data, from
which updated land use/land cover information and changes can be extracted, analyzed, and simulated
efficiently. Recent advances in computer models, GIS and remote sensing tools enable researchers to
model and predict urban growth effectively. Cellular automata models have better performance in
simulating urban development than conventional mathematical models. Johannesburg is the economic
powerhouse of South Africa and it is the most populous metropolitan area. The city has experienced a
significant growth in informal settlements. This growth has led to the loss of vast expanses of land,
thus reducing the land available for other land uses, and contributing to a series of environmental
problems. This paper quantified, mapped, and analyzed, the urban growth of Johannesburg from 1995
to 2010 using Landsat TM & ETM+ data. Cellular automata techniques were implemented for modeling
the urban growth of the city of Johannesburg up to 2030. The model predicted future urban changes
within and at the periphery of the city. The forecasted urban land cover change would prove useful for
future urban planning and management of space in Johannesburg.

Introduction
The spatial dynamics of urban growth is an important area of analysis in urban
studies. Several studies have addressed issues of urban growth and dealt with a
diverse range of subjects, e.g. urban environment, urban development, urban
change detection, and management (Cihlar, 2000; Wang, et al., 2003; Páez and
Scott, 2004; Zhu, et al., 2006; Geymen and Baz, 2008; Hedblom and Soderstrom,
2008).
Urban areas are characterized by high levels of spatial dynamics where their sizes
are increasing dramatically. The expansion of a city beyond its periphery requires
population growth spatially distributed. Population growth contributes to urban
change by absolute growth, which increases urban areas, and changes the
dynamics of urban demography. This increases the number of people residing in
small cities at a high rate, and consequently decreases the household sizes and
increases the number of the housing units (Qiu, et al., 2003).
In South Africa urbanization levels approached 56% in 2001, resulting in a 4.3%
increase from 1996 to 2001 (Kok and Collinson, 2006). Urban growth is influenced
by a number of factors including geographic, demographic, economic, social,
environmental, and cultural ones. Hence, modeling such a dynamic system is an
analytical challenge (Kashem, 2008).
Remote sensing (RS) and Geographic Information Systems (GIS) techniques are
useful geospatial tools widely used to assess natural resources and monitor spatial
changes. Land Use/Land Cover (LULC) change dynamics can be analyzed using
time series remotely sensed data and linking it with socio-economic or biophysical

IB
ADAN U

NIV
ERSITY

 LI
BRARY



Proceedings of the IGU Urban Geography Commission, July 2013 65

data in a GIS (Moeller, 2004; Reveshty, 2011). The integration of RS and GIS
enables researchers to analyze environmental changes, this includes land cover
mapping and change detection, monitoring and identifying land use attributes, and
change hot spots. With the advancement in technology, reduction in data cost,
availability of historical spatial-temporal data and high resolution satellite images,
GIS and RS techniques are now useful research tools in spatial change and
modeling (Feng, 2009; Bayes and Raquib, 2012).
Advances in satellite-based land surface mapping are contributing to the creation of
considerably more detailed urban maps, offering planners a much better and deeper
understanding of urban growth dynamics, as well as associated matters relating to
territorial management (NASA, 2001). In terms of analyzing urban growth, (Batty and
Howes, 2001) reported that, remote sensing technology provides a unique
perspective on growth and land-use change processes. Data sets obtained through
remote sensing are consistent over great areas, time, and can provide information at
different geographic scales. Remote sensing-derived information is very useful in
describing and modeling the urban development process. This leads to better
understanding, management and planning (Banister, et al., 1997; Longley and
Mesev, 2000; Longley, et al., 2001; Yikalo and Cabral, 2010).
Remote sensing data helps to understand how an urban landscape is changing
through time. This understanding includes: (1) urban growth rate, (2) spatial pattern
of the growth, (3) difference between the observed and forecasted growth, (4) spatial
or temporal variance in growth, and (5) if growth is sprawling or not.
Urban growth modeling is getting more attention as an emerging research area. This
is due to the recent dramatic increase in urban populations that increase the
pressure on infrastructure services. Among all developed urban growth models,
cellular automata (CA) models have better performance in simulating urban
development than conventional mathematical models (Batty and Xie, 1994).
During the past 15-20 years a new generation models have been developed, based
on the assumption that an understanding of the details can explain the whole – i.e. a
bottom-up approach. One of these models is cellular automata (CA). CA has been
shown to be successful in capturing complexity with simple rules. One of the most
important parts in making CA more realistic is to find the transition rules which
represent the real pushing and pulling forces.
Cellular Automata is based on a defined neighborhood, where every entity (in two
dimensions represented by a cell) is interacting with the surrounding cells only. Thus,
CA has been considered most suitable for processes where the immediate
surroundings have an influence on the cell, such as diffusion processes. This
includes processes of ecological dynamics (Parker, et al., 2003).
The essential component of a CA is: a grid (raster) consisting of cells cell states (1
and 0), a neighborhood within which transition rules can apply, and a temporal space
or time-step interval (Torrens, 2000).
Despite all the achievements in CA urban growth modeling, the selection of the CA
transition rules remains a research topic (Batty, 1998). CA models are usually
designed based on individual preference and application requirements with transition
rules being defined in an ad hoc manner (Li and Yeh, 2003). Furthermore, calibration
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of CA models is still a challenge. Most of the developed CA models need intensive
computation to select the best parameter values for accurate modeling.
The purpose of this study is to apply an integrated approach incorporating GIS, RS,
and modeling to identify and analyze patterns of urban changes within the study area
of Johannesburg between the years 1995 and 2010. The study also aims to
determine the probable future developed areas in 2030 to enable the anticipation of
planning policies that aim to preserve the natural characteristics of the study area.
Material and methods
Study area

Johannesburg is South Africa’s economic powerhouse and it’s most populous
metropolitan area. It is a rapidly growing city, with a population in excess of 3.2
million. The growth rate is 3-4% per year resulting from natural increase as well as
migration from surrounding areas within and outside the country. Johannesburg
configures 7.37% of the country's population, the population density of
Johannesburg is 2231 person per km2 (Lynelle, 2012).
The study area covers 3,657 Km2 (51 x 71 km) and includes the entire area of
Johannesburg and some other areas from the surrounding cities as shown in the
following figure (1).

Figure 1: Study area.
The topography of study area is made up of diverse topographical features
Mountainous ranges on the middle and western sides surround Johannesburg; the
eastern side of the area is much flatter in comparison with the western part. The
northern part is the lowest area (1230 m). Elevation of the area ranges between
1230m to 1930m above sea level.
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Data analysis and processing

Two Landsat images were downloaded from the USGS web site. The first was a
Landsat 5 TM image acquired in August 1995 while the second was a Landsat 7
ETM+ captured in May 2010 (figure 2). Due to the Landsat Scan Line Corrector
(SLC-off) failure the second image was gap filled using another Landsat image
captured on March 2010. Other auxiliary data were collected as listed below:

 Road network layer was collected from Gauteng City-Region Observatory
(GCRO) in vector file format.

 2.5 m LULC data set obtained from GCRO in raster format was used for
accuracy assessment for 2010 LULC map

 Twelve topographic sheets of 1:50,000 that covers the study area were used for
accuracy assessment for 1995 LULC map.

 Five meter contour line data set for extracting the digital elevation model for the
study area.

Figure 2: Landsat natural look for the study area.
Two bands local histogram match gap filling was done using Landsat gap fill module
embedded in ENVI 5 software (ENVI, 2012). Layer stack was carried out to get multi-
band file. The study area was clipped from the entire scene. Figure (3) summarizes
the different steps applied to get the study results.
Minimum distance supervised classification was done using IDRISI Selva software
(Eastman, 2012). The study area was classified into 10 different classes that were
merged to 5 classes: Water and wet land, Crop land and Natural vegetation, Urban
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and Industry, Mines and Quarry, and bare soil and Rock. Accuracy assessment was
carried out for the two classified images using 341 random points for 1995 and 315
points for 2010. The ground truth points was collected using the 2.5m LULC obtained
from GCRO for the 2010 image while for 1995 image ground trothing points were
collected from the topographic maps in combination with the satellite image itself.
The Land Change Modeler module embedded in IDRISI was used for LULC change
analysis and modeling future development of the study area.

Figure 3: Flow chart for the applied methodology.
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Results and discussion

Accuracy assessment

Table (1) summarizes the results for accuracy assessment for the year 1995. A total
number of 341 points were chosen randomly. For the water and wet land class 52
points were selected with accuracy of 86 %. For the crop land and natural
vegetation 62 points were selected. The final accuracy for that class is 96%. Urban
class final accuracy is 84% with 90 points representing it. The major interference is
due the industry, mines and quarry class which interfere with the urban class by
more than 30%. For the bare soil and rock class the total of 63 points selected to
represent that class. It interferes with crop land and natural vegetation class by 11%
and this is resulting in a class accuracy of 84%. This reduces the total accuracy for
the classification to 79%.
Table 1: Accuracy assessment for 1995.

1995

W
ater & W

et Land

C
rop Land &

N
atural Vegetation

U
rban

Industry, M
ines &

Q
uarry

Bare Soil & R
ock

Total

Accuracy

Water & Wet Land 46 2 0 2 1 51 0.86

Crop Land & Natural Vegetation 3 60 2 0 7 72 0.96

Urban 0 0 80 24 0 104 0.84

Industry, Mines & Quarry 0 0 0 44 0 44 0.53

Bare Soil & Rock 3 0 8 4 55 70 0.84

Total 52 62 90 74 63 341 0.79

Accuracy assessment result for 2010 image represented in table (2). A total number
of 315 points were selected for the assessment. Water and wet land class 39 points
were selected. The final accuracy for the water and wet land class is 91 %.  For the
crop land and natural vegetation 58 points were selected. The final accuracy for that
class is 89%. Urban class final accuracy is 93% with 92 points representing it. The
industry, mines and quarry class final accuracy is 82%. For the bare soil and rock
class the total of 64 points selected to represent that class. It interferes with crop
land and natural vegetation class and the Urban class which reducing the class
accuracy of 65%. This reduces the total accuracy for the classification to 84%.
Image classification

Figure (4) represents the classified images for the study area for the two investigated
dates. Generally; for the year 1995 the area of the urban area was 988 km2 and
increased to 1582 km2 in the year 2010 with change rate of 39.6 km2 per year. New
development areas have emerged during the investigated 15 years as well as the
expansion of the existing ones. The highlighted areas by circles (1, 2, and 4) are
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examples for urban expansion in the study area. There is a big difference in the
density of urban inside each circle.  Circle 3 representing an example of new
developed area over the 15 years investigated.
Table 2: Accuracy assessment for 2010.

2010

W
ater & W

et Land

C
rop Land & N

atural
Vegetation

U
rban

Industry, M
ines &

Q
uarry

Bare Soil & R
ock

Total

Accuracy

Water & Wet Land 36 1 0 0 0 37 0.91

Crop Land & Natural Vegetation 0 53 0 0 6 59 0.89

Urban 1 2 88 9 13 113 0.93

Industry, Mines & Quarry 1 0 3 53 0 57 0.82

Bare Soil & Rock 1 2 1 0 45 49 0.65

Total 39 58 92 62 64 315 0.84

Figure 4: LULC maps for the study area for the two investigated dates.
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Figure 5: LULC changes between 1995 and 2010.
Change analysis

Table (3) and figure (5) summarizes the changes between the two investigated dates
(1995 and 2010). Water and wet lands decreased by 19%, crop land and vegetation
decreased by 40%, bare soil class decreased by15% all of these in comparison to
1995 areas. Urban and industry, mines and quarry increased by 60% and 40%,
respectively compared to their areal extents in 1995.
Table 3: Class areas and the differences between 1995 and 2010 images.
Class 2010 (Km2) 1995 (Km2) Differences (Km2) %

Water 145 179 -34 -19.1

Vegetation 644 1075 -431 -40.1

Urban 1582 988 594 60.1

Industry 224 158 66 42.0

Bare soil 1062 1257 -195 -15.5

Total 3657 3657 0 0.0

Figure (6) explore the gains and losses in areal extents of the different classes. It is
clear that the urban class has gained the most with no significant loss in areal extent
(597, -2.89 km2). Industrial areas also gained but lost some of their extent (66, -0.2
km2). The bare soil and rock class has also lost and gained a substantial extent.
(278, -473 km2). This could attributed to the difference in seasonality between the
two images, hence the 1995 image captured in winter which is a dry season in
Johannesburg and the study area, meanwhile the 2010 one captured in summer
which has a lot of rains. The crop land and natural vegetation class decreased (-431
km2) due to the transformation to urban and industrial areas.

Figure 6: Gains and losses between 1995 and 2010.
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In an attempt to understand the expansion of urban area, figure (7) shows the
contribution of each of the classes to urban expansion that occurred during the 15
year period. It is obvious that; bare soil and vegetation classes are the main
contributors to that expansion: 430 and 152 km2 respectively. The Water and wet
land class contributed to that expansion by only 12 km2.

Figure 7: Contribution to net change in urban areas.
Figure (8a, b) shows the trend of urban expansion in the study area, and the spatial
distribution of the occurred changes. Figure (8a) shows that the urban expansion in
the eastern parts (Midrand and Noordwyk) of the study area is very rapid and also
the south-western part area around Soweto (De Deur, Finetwon, Protea South and
Lenasia). Figure (8b) maps the spatial distribution for the transformation accrued
between different classes. The transformation of bare soils to urban areas is mainly
concentrated on the periphery of the study area where the land is cheaper and the
facilities are limited, meanwhile the transformation from vegetation to urban much
noticed inside the urban communities and it is in small patches compared with the
bare soil.
Modeling urban expansion

For modeling urban expansion the first step was to produce transition probability
maps based on the detected changes and trend. In producing these maps the
distance from roads, existing urban areas, the DEM and slope were taken into
consideration. From the change analysis results; it was evident that two main
significant changes have occurred in the study area i.e. the transformations of
vegetated areas and bare soil to urban forms. Therefore in the prediction process;
only these two transitions were taken into consideration.

Figure 8: a) urban trend in the study area, b) main changes between 1995 and 2010
in the study area.
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Figure 9: Probability transition (a) bare soil to urban, b) vegetation to urban.
Figure (9a, b) illustrates the probability of transition for the two modeled transitions in
the study area. The probability of transition of bare soil is higher than that of
vegetation and this may be attributed to vicinity to the roads and existing urban
areas.
Change prediction results

Cellular automata model embedded in IDRISI software was applied to predict the
urban expansion based on the produced transition probabilities. Figure (10)
represents the forecasted land cover of 2030. The urban area will be increased by
600 Km2 in 2030. Bare soil contributes to that change by 450 km2 whereas 150 km2
will be contributed by vegetated areas.  Figure (11) shows the spatial distribution of
the changed areas from bare soil and vegetation to urban.

Figure 10: predicted land cover for 2030.
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Although model validation was not carried out for the year 2030, the same model (i.e.
same transition probability maps) was run for the year 2013 and the resultant land
cover was compared with a 2013 Landsat 8 image. The model produced accurate
results in forecasting the new areas within the urban area itself. . However, the
model produced less accurate results for the new development areas.
Conclusion
This study assessed and modeled the trend of urban land cover changes in the
study area using an integrated approach including GIS, RS, and modeling tools. The
area experienced extensive conversion to urban land cover over the 15 year period
(1995-2010). The results indicate that urban growth may continue to expand further
into the future (2030), and might have certain impact on land resources, unless some
careful planning and management are implemented.
For the transformation of vegetation to urban it was noticed that it occurs inside the
urban communities. It comes on the share of the green area inside the urban area
which has a hazardous impact on the environment and health of the habitants in
these areas. In addition to that it overloads the facility exist in the area.
Cellular automata have been shown to be successful in capturing complexity with
simple rules. However, there are many uncertainties with the technique and more
research is required for adapting it better to an urban context. Future work should
consider model validation and apply an advanced modeling approach that would
allow for long-term accurate simulation.

Figure 11: Spatial distribution from bare soil and vegetation to urban.
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