
IB
ADAN U

NIV
ERSITY

 LI
BRARY

Vol.:(0123456789)1 3

Modeling Earth Systems and Environment 
https://doi.org/10.1007/s40808-018-0479-0

ORIGINAL ARTICLE

Variable resolution modeling of near future mean temperature 
changes in the dry sub-humid region of Ghana

Enoch Bessah1   · Abdulganiy O. Raji2 · Olalekan J. Taiwo3 · Sampson K. Agodzo4 · Olusola O. Ololade5

Received: 7 February 2018 / Accepted: 23 May 2018 
© Springer International Publishing AG, part of Springer Nature 2018

Abstract
The study used two models from Rossby Centre Regional Atmospheric Model (RCA4) and two from Weather Research 
and Forecasting Model (WRF) plus the Statistical Downscaling Model—Decision Centric (SDSM-DC) at 44 km, 12 km 
and 2 m resolution respectively to project the impact of climate change on mean temperature in the Pra River Basin for the 
period 2020–2049. Results showed that the minimum temperature increased (+ 1.47 °C) faster than the increase (+ 1.11 °C) 
in maximum temperature for observed period 1981–2010. An evaluation of the performance of the models with time-series 
based metrics showed that SDSM-DC and RCA4 are better for projecting mean temperature in the study area compared 
to WRF despite its resolution. Analysis of variance (p < 0.05) indicated significant difference between the projected mean 
temperature of the five models but there was no significant difference between SDSM-DC and RCA4 models. Correlation 
between models was highest at R = 0.727 between SDSM-DC and RCA4. The years 2041, 2042 and 2047 were projected 
as hottest by minimum two different models. The mean temperature change was projected at + 1.36, + 1.42 and + 1.12 °C 
by SDSM-DC, RCA4 and WRF respectively. The ensemble of projection depicted same trend of February—April as the 
high mean temperature and July—September as the lowest as was for the observed period. However, January is projected to 
have the highest change in mean temperature of + 1.51 °C. The maximum temperature for observed period was found to be 
the mean temperature in the period 2020–2049. Future study will focus on the impact of projected temperature change on 
ecosystem services delivery in the region.
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Introduction

The Intergovernmental Panel on Climate Change (IPCC) 
fifth Assessment reports (AR5) shows a warming linear 
trend between 0.65 and 1.06 °C globally, over the period 
of 1880 to 2012 (IPCC 2014). They projected mean global 
temperature rise between 1.4 and 5.8 °C by the end of the 
twenty-first century in the third Assessment report (IPCC 
2001). The increase in temperature was attributed to the 
doubling of the CO2 concentration in the atmosphere. The 
temperature rise would impact on different socio-economic 
sectors in terms of productivity and resource availability. 
The first IPCC report on climate change (IPCC 1990) trig-
gered great interest in climate modeling in order to under-
stand climate mechanisms and assess climate evolution at 
short and long terms under different climate change sce-
narios (IPCC 2007; Vanvyve et al. 2008). The simulations 
are being implemented at different spatial scales, from the 
global, regional to the local scale through evolving models in 
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previous studies (Ibrahim et al. 2014). Global climate mod-
els (GCMs) have coarse resolutions ranging from 1.3° × 1.7° 
latitude and longitude or 150 × 150 km to 300 × 300 km and 
therefore require downscaling to finer resolutions depend-
ing on the local impact assessments (Gulacha and Mulungu 
2016).

Downscaling models have been developed to solve this 
pending critical aspect of climate assessment (Wigley et al. 
1990) resulting from the differences between global and 
regional climate models as well as local scale assessment. 
Machenhauer et al. (1996) stated that realistic simulations 
of the local climate are necessary for meaningful climate 
change impact studies which GCM does not provide. Down-
scaling techniques are means of bridging the gap between 
what climate modelers are able to provide and what impact 
assessors require (Wilby and Wigley 1997). It interpolates 
regional-scale atmospheric predictor variables to station-
scale meteorological series (Wigley et al. 1990). Regional 
climate models (RCMs) are nested into GCMs at 50 × 50 km 
resolution by dynamical downscaling whiles SDSM uses 
the statistical downscaling approach to generate multivariate 
regression models in reconstructing data at the point level 
(Xu 1999; Fowler et al. 2007; Wilby and Dawson 2013; 
Wilby et al. 2014).

The IPCC Fourth Assessment Report (AR4) on GCMs 
projects that temperature over West Africa will increase by 
1.1–1.3 °C and up to 1.4 °C for the southern and northern 
regions respectively by 2030 as a result of climate change 
(WRC 2012). Obuobie et al. (2012) used ECHAM4 and 
CSIRO with medium resolution to project hotter and dryer 
climate conditions for the Volta and Pra basins in Ghana. 
The mean daily temperature was projected to increase by 
0.6 and 0.5 °C by 2020 in Volta and Pra basins respectively. 
They found out that the increase could be as high as 1.9 °C 
in 2050 at both basins. This projection was relative to the 
baseline values from 1961 to 1990. It has been found that 
all models are projecting warming throughout the twenty-
first century, at a notable varying details between models 
(Laprise et al. 2013). The results from the different climate 
models vary based on resolutions and physical characteris-
tics in boundary conditions of the models. It has been found 
that the RCMs performance compared to GCMs is not obvi-
ous and varies with variables and timescales (Nikiema et al. 
2016). Also, the varying resolution amongst RCMs will 
have the same problems of modeling all variables differ-
ently across the regions. Assessing the performance of mod-
els helps to identify their capabilities to replicate observed 
records and determine their level of uncertainties in projec-
tions of future variables.

The objective of this study was to project the trends 
and changes in mean temperature in the Pra River Basin 
located in the dry sub-humid areas of Ghana for the 
period 2020–2049 and investigate how variation of model 

resolution affect efficiency of mean temperature modeling. 
The five different models grouped into medium (44 km), 
high (12 km) and very high (2 m) resolutions were used. 
Statistical Downscaling modeling at very high resolution 
of 2 m was used to reconstruct observed data with National 
Centers for Environmental Prediction (NCEP) predictors for 
the grid boxes of the stations selected and compared with 
four RCMs in projecting for the period 2020–2049 mean 
temperature. The spatial distribution of mean temperature 
for the models were also done.

Data and methodology

Study area

The Pra River Basin has the highest density of settlements 
(both rural and urban) in Ghana and is located between lati-
tudes 4°58′N and 7°11′N and longitudes 0°25′W and 2°13′W 
(WRC 2012). It covers an area of 23,321 km2 extent through 
almost 55% of Ashanti, 23% of Eastern, 15% of Central and 
7% Western Regions (WRC 2012). It has a mean annual 
discharge of 214 m3 s−1 (Akrasi and Ansa-Asare 2008; WRC 
2012). Pra is located in the dry sub-humid region of Ghana 
(Bizikova 2012) and covered by the moist-semi deciduous 
forest vegetation which is the largest of the south western 
drainage basins in Ghana containing most of Ghana’s valu-
able timber trees and cocoa farms (Amisigo et al. 2015). 
The relative humidity ranges between 60–95% with annual 
rainfall in the range of 1500–2000 mm. The average maxi-
mum and minimum temperatures of the basin are 32 and 
21 °C respectively (Akrasi and Ansa-Asare 2008). The larg-
est natural lake in West Africa known as Lake Bosomtwe 
and some forest reserves like Kakum forest are located in the 
basin (Fig. 1). The basin was selected for this study because 
of its response to climate change and the effects on ecosys-
tem deliveries. Pra River Basin is currently the highest spot 
for tuber crops production in Ghana (Nutsukpo et al. 2013) 
which may decrease due to the variation of temperature in 
the area (Brahic 2007; Rasul et al. 2011). The country is also 
surveying the potential of building a hydro-dam in this basin 
of which temperature will play a major role in its sustain-
ability (Murphy and Kapelle 2014). Kakum conservation 
area, which is home to some rare, endangered and vulnerable 
trees, wildlife, birds and butterfly species is located in the 
Pra River Basin (IUCN/PACO, 2010).

Data sources

Observed temperature records were acquired from the 
Ghana Meteorological Agency (GMA). Seven (7) climate 
stations with data that had limited missing records which 
could be used were Kumasi Airport, Konongo, Kibi, Akim 
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Oda, Dunkwa, Akim Oda, Twifo Praso and Atieku (Fig. 1). 
The station types were; two synoptic, one agro-meteoro-
logical and four climatological stations. The missing data 
were less than 5% for Kumasi Airport, Konongo, Akim 
Oda and Dunkwa whereas remaining stations were between 
20–50%. Therefore, amelia with four iterations was used in 
R software to fill the missing data before analysis. The base 
period years for the performance evaluation of the models 
was 1980–2010. This was because two of the models from 
the Weather Research and Forecasting Model (WRF) had a 
base period from 1980 to 2009 while the remaining three 
were from 1981 to 2010.

The emission scenario considered for this study was the 
Representative Concentration Pathways (RCP) 4.5. RCP 4.5 
is close to Special Report on Emission Scenarios (SRES) B1 
(Clarke et al. 2007; Vuuren et al. 2011; Cubasch et al. 2013). 
The method of validation of models within acceptable zones 
of projections (Fenech et al. 2007) was used to select two 
GCMs from the IPCC fifth Assessment Report (AR5) 43 
models. Table 1 shows the full meaning of models abbre-
viations which will be discussed in preceding paragraphs.

The two GCMs running on SMHI-RCA4 RCM at resolu-
tion of 44 km were; CCCma-CanESM2 (hereafter referred to 
as CanESM) and IPSL-CM5A-MR (hereafter referred to as 
IPSL). They were acquired from the Coordinated Regional 
Climate Downscaling Experiment (CORDEX). The other 
two GCMs running on WRFv3.5.1 model at resolution of 
12 km were; GFDL-ESM2M (hereafter referred to as GFDL) 
and HadGEM2-ES (hereafter referred to as Hadgem). WRF 
models were also acquired from West African Science 
Service Centre on Climate Change and Adapted Land Use 
(WASCAL) geoportal (Heinzeller et al. 2016a, b). The his-
torical simulation of WRF model was from 1980 to 2009. 
Since the historical simulation of both CORDEX and WRF 
RCMs ends in 2005, 2006–2010 projections under RCP4.5 
run was added to obtain the 1980–2009 and 1981–2010 
historical simulation for the evaluation of the performance 
of the model (Dosio and Panitz 2016). The acquired data 
from RCMs was mean near-surface air temperature (tas). 
The fifth model for the study was the Statistical Downs-
caling Model—Decision Centric (SDSM-DC) version 5.2 
(hereafter referred to as SDSM) developed by Wilby and 

Fig. 1   Map of Pra River Basin
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Dawson (2013). It was freely acquired from Loughborough 
University website with the National Centers for Environ-
mental Prediction (NCEP) predictors for calibration (Wilby 
et al. 2014). The resolution of the SDSM is very high at 
2 m. The baseline of 1981–2010 was used because it has 
a current representation of the present climate compared 
to 1961–1990 and 1971–2000 climate baseline normal and 
captures the anthropogenic trends (Arguez et al. 2012). Also, 
most of the climate stations were active during the selected 
baseline period which gave minimal missing data (Smith and 
Pitts 1997; Hulme et al. 1999).

SDSM model calibration and validation

Data for SDSM analysis were prepared in Microsoft Excel 
2016 and saved as text file which is the accepted extension 
of input data in the model. The mean temperature time series 
was considered an unconditional variable based on its nor-
mal distribution. In creating the multivariate regression 
model in the SDSM software, correlation analysis including 
correlation matrix and scatter plot were used on all predic-
tors from NCEP in each cell and best correlating independ-
ent variables were selected to view their scatter plot graphs. 
Correlation analysis was done at 0.05 significance and all 
insignificant and low correlating large scale independent 
variables were rejected. From the analysis the best predictors 
for mean temperature are shown in Table 2. The predictors 

selected for each station were used to calibrate the model. 
SDSM uses the weather generator to simulate daily data for 
calibrated variables. Results were extracted into excel via the 
Time Series Analysis menu. Future climate scenarios were 
generated using mean factors from the IPCC fifth assessment 
report (AR5) projections of the various stations which was 
done using the University of Prince Edward Island (UPEI 
2017) Database (https​://clima​te.upei.ca) in Table 5. Since 
the future period assessment was 2020–2049, the average 
of 2020s and 2050s validated means was used to gener-
ate future scenario at each station. The performance of the 
model was evaluated with the extracted weather generated 
results for the base period between 1981 and 2010. The 
respective coefficient of correlation, r (−) ranged 0.31–0.63 
and (+) 0.38–0.70, indicating medium to high performance 
of the SDSM (Gulacha and Mulungu 2016).

Data analysis

The ncdf.tools, ncdf and raster packages in R software were 
used to extract grid location specific temperature data from 
the four RCMs. The performance of the models was evalu-
ated with Nash–Sutcliffe efficiency (NSE), root mean square 
error (RMSE), and correlation coefficient (R2) (Moriasi et al. 
2007) and areas that models were not within acceptable 
range of the time-series based metrics were bias-corrected 
with the variance scaling method using Microsoft Excel 

Table 1   Full description of 
models

Model code Full name

CCCma Canadian Centre for Climate Modeling and Analysis
CanESM2 The second generation Canadian Earth System Model
IPSL Institut Pierre Simon Laplace
CM5A-MR Climate Modelling Centre mid-resolution 1.25° × 2.5°
SMHI Swedish Meteorological and Hydrological Institute
RCA4 Rossby Centre regional atmospheric model
GFDL-ESM2M The General Fluid Dynamics Laboratory Earth System Model
HadGEM2-ES Hadley Global Environment Model
WRFv3.5.1 Weather Research and Forecasting Model

Table 2   The partial correlations between observed station mean temperature at 2 m and selected predictors of model for base period 1981–2010

Predictor Description Synoptic Stations

Atieku Dunkwa on Ofin Twifo Praso Akim Oda Kibi Kumasi Konongo

lftx Surface lifted index − 0.49 − 0.52 − 0.52 − 0.51 − 0.50 − 0.31
mslp Mean sea level pressure − 0.48 − 0.47 − 0.51 − 0.52 − 0.49 − 0.63 − 0.39
p850 850 hPa geopotential height − 0.32 − 0.33 − 0.34 − 0.36 − 0.34 − 0.39
pottmp Potential temperature 0.50 0.50 0.53 0.54 0.50 0.69 0.38
r500 Relative humidity at 500 hPa height − 0.31 − 0.32
shum Near surface specific humidity 0.63 0.66 0.67 0.67 0.67
temp Mean temperature at 2 m 0.54 0.54 0.57 0.58 0.54 0.70 0.49

https://climate.upei.ca
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2016 (Teutschbein and Seibert 2012). The objective of the 
bias-correction was not to check the effect of bias-correction 
on model output since it has been done in many other studies 
(Hashino et al. 2007; Leander et al. 2008; Teutschbein and 
Seibert 2012; Muerth et al. 2013; Fang et al. 2015; Teng 
et al. 2015; Jeon et al. 2016) but to correct results of models 
to improve the accuracy of ensemble projection from this 
study. The climate extreme indices were also determined 
using Instat v3.36 software (New et al. 2006). Model results 
were transferred into ArcGIS 10.4 and kriging method was 
used to generate the temperature maps of the basin for the 
period 2020–2049.

Performance evaluation of models

It is paramount to check performance of the models in sim-
ulating current climate before accepting the credibility of 
model projections (Laprise et al. 2013). GFDL and Hadgem 
were biased corrected for all stations except Kumasi where 
only GFDL data needed bias-correction. CanESM out-
put was good for three out of four stations that needed no 
bias-correction whiles IPSL was okay for only two stations 
(Dunkwa and Kumasi) as shown in Table 3. NSE were 
very good for all models (both bias-corrected and those 
that needed no bias-correction) except the IPSL at Dunkwa 
which was very low (0.04) but was still within the range 
of acceptable models (Table 3). RMSE ranged between 0 
and 0.97. Studies have shown that the lower the RMSE the 
better the model, therefore both the unbiased and bias-cor-
rected models used in this study are within acceptable limits 

(Moriasi et al. 2007). All bias-corrected models were not in 
acceptable levels of performance with observed data before 
variance scaling method of bias-correction was applied 
(Teutschbein and Seibert 2012). From the performance eval-
uation, SDSM was the best amongst the five to model mean 
temperature in the Pra River Basin followed by CanESM 
which had three out of seven stations within acceptable lev-
els of modeling without bias-correction. Although IPSL was 
not as good as the first two, it was better than Hadgem and 
GFDL in order of descending in efficient modeling of mean 
temperature over the study area.

Results and discussion

Historical temperature trend in the basin

Maximum temperature varied widely with about 29.8 °C at 
Konongo in 1999 to 33 °C at Twifo Praso in 1997. The mean 
maximum temperature ranged between 31.04–32.15 °C with 
an increasing trend from 1981 to 2010 (Fig. 2). Maximum 
temperature increased by 1.11 °C within this period with 
hottest peaks in 1983, 1987, 1995 and 1998. The lowest min-
imum temperature of about 19.3 °C was recorded in Kon-
ongo in 1999 while Twifo Praso recorded the highest mini-
mum temperature of about 23.3 °C in the year 2010. The 
mean minimum temperature varied between 21 and 22.47 °C 
(Fig. 2) indicating temperature rise of 1.47 °C within the 
assessed period. This finding confirms the temperature 
range of the Pra River Basin which has been reported to 

Table 3   Nash–Sutcliffe 
efficiency (NSE), Root-mean-
square error (RMSE) and 
coefficient of determination 
(R2) for comparison of observed 
period and model historical 
monthly mean

a Bias corrected with variance scaling method

Ateiku Akim Oda Dunkwa Kibi Konongo Kumasi Twifo Praso

Nash–Sutcliffe efficiency (NSE)
 SDSM 0.99 0.99 0.99 0.99 0.99 0.99 0.99
 CanESM 1a 1a 0.52 1a 1a 0.83 0.28
 IPSL 1a 1a 0.04 1a 1a 0.44 1a

 Hadgem 0.99a 1a 1a 1a 1a 0.12 1a

 GFDL 0.99a 1a 1a 1a 1a 1a 1a

Root mean square error (RMSE)
 SDSM 0.01 0.03 0.02 0.01 0.01 0.03 0.02
 CanESM 0.0002a 0.0003a 0.55 0.0002a 0.0003a 0.37 0.63
 IPSL 0.0003a 0.0003a 0.73 0.0003a 0.0005a 0.62 0.0004a

 Hadgem 0.0004a 0.00011a 0.0009a 0.0006a 0.0008a 0.97 0.0006a

 GFDL 0.014a 0.0009a 0.0009a 0.0005a 0.0005a 0.0009a 0.0008a

Coefficient of determination (R2)
 SDSM 0.99 0.99 0.99 0.99 0.99 0.99 0.99
 CanESM 1a 1a 0.91 1a 1a 0.91 0.89
 IPSL 1a 1a 0.93 1a 1a 0.86 1a

 Hadgem 0.99a 1a 1a 1a 1a 0.68 1a

 GFDL 0.99a 1a 1a 1a 1a 1a 1a
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be between 21 and 32 °C by previous studies (Akrasi and 
Ansa-Asare 2008). The increasing trend in mean maximum 
(+ 1.11 °C) and mean minimum (+ 1.47 °C) temperature 
shows that minimum temperature is increasing faster than 
maximum temperature. This finding was similar to Kima 
et al. (2015) who found maximum and minimum tempera-
ture between 1980 and 2012 to have increased by + 0.66 and 
+ 0.89 °C in the sub-humid zone of Burkina Faso. It implies 
that temperature change is higher in the dry sub-humid zone 

of Ghana than the sub-humid zone of Burkina Faso. Other 
studies in the region also confirms that minimum tempera-
ture is increasing faster than maximum temperature (Vose 
et al. 2005).

The increasing temperature trends in the Pra River Basin 
varied from one station to another. The highest mean tem-
perature for the base period 1981–2010 and 1980–2009 were 
recorded at Twifo Praso at 27.3 and 27.14 °C respectively 
while Kibi station recorded lowest mean temperature of the 

Fig. 2   Observed temperature 
trends in the Pra River Basin: a 
maximum and b minimum
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base periods. Both 1981–2010 and 1980–2009 recorded 
26.1 °C for Kibi station. Increased greenhouse gases in the 
atmosphere forms an atmospheric canopy that reduce the 
amount of heat leaving the earth surface popularly known 
as the greenhouse effect (IPCC 1990, 2007; Anderson et al. 
2016). Therefore, daily insolation increases the amount of 
heat on earth leading to the recorded rise in temperature. 
Climate change has been found to increase cloudiness and 
therefore leading to higher albedo percentage with negative 
effect on global warming (Held and Soden 2000). It is likely 
that albedo effect of increased clouds due to the amount of 
water vapour in the atmosphere during the daytime reduces 
the rate of maximum temperature rise compared to the 
nighttime when even heat from earth surface is limited by 
greenhouse effect (Karl et al. 1993; Anderson et al. 2016; 
Oktyabrskiy 2016). Also urban heat island is strongest in 
the nighttime hours which contributes to the quick rise in 
minimum temperature in the Pra River Basin as the rate 
of urbanization cannot be ignored (Karl et al. 1993, 1999; 
GSS 2014).

The climate extreme temperature indices showed that fre-
quency of cool day (< 28.7 °C) and warm day (> 34.3 °C) 
were 8.37 and 7.95% respectively. There were more cool 
days than warm days in the observed period of 1981–2010 
in the basin. Also, cool night (< 20.13 °C) and warm night 
(> 23.41 °C) frequency were at 6.83 and 4.66% respectively 
(Table 4). These findings were about 1.7–5% lower than the 

extreme temperature occurrence in the sub-humid regions 
of Burkina Faso (Ly et al. 2013; Kima et al. 2015). The 
counts of cool days were more than warm days which fur-
ther explains the slow rate of rising maximum temperature 
attributed to cloudiness and albedo negative effective on 
global warming (Held and Soden 2000). Pollination which 
is an important stage in crop production is very sensitive to 
temperature extremes (Hatfield and Prueger 2015) that led 
to inconsistency in crop production in the basin in the last 
decade of baseline period (Nutsukpo et al. 2013). There were 
more cool nights than warm ones in this period accounting 
for more stable production than irregularities since respira-
tion in crop growth is less sensitive to night temperatures 
(Frantz et al. 2004).

IPCC AR5 temperature projections over Pra River 
Basin

An area between latitude 4.94 N and 7.20 N and longitude 
0.95 W and 2.65 W was selected on the UPEI database using 
scatter plot analysis for temperature covering an area of 47, 
192 km2. Mean temperature which is the ensemble of all 43 
models was 26.30 °C with maximum and minimum of 28.36 
and 24.64 °C respectively for the base period 1981–2010. 
The result was very close to the mean of the seven stations 
which was 26.33 °C (Table 5).

Table 4   Extreme temperature indices for 1981–2010 in the Pra River Basin

Index Descriptive names Definition Value

TxMean Mean annual maximum temperature 31.62 (2.12) °C
TnMean Mean annual minimum temperature 21.74 (1.57) °C
Tx10P Cool day frequency Percentage of days with TX < 10th percentile of data 8.37%
Tx90P Warm day frequency Percentage of days with TX > 90th percentile of data 7.95%
Tn10P Cool night frequency Percentage of days with TN < 10th percentile of data 6.83%
Tn90P Warm night frequency Percentage of days with TN > 90th percentile of data 4.66%

Table 5   AR5 ensemble and validated temperature projections in the Pra River Basin

Ensemble—average of all 43 AR5 GCMs. Validated—models with acceptable performance over the study area

Climate stations Ensemble (mean) Validated mean

Baseline (°C) 2020s (°C) 2050s (°C) 2080s (°C) Baseline (°C) 2020s (°C) 2050s (°C) 2080s (°C)

Akim Oda 26.25 0.83 1.76 2.68 25.98 0.91 1.91 2.88
Kumasi 25.94 0.84 1.79 2.74 25.31 0.95 1.95 2.98
Atieku 26.84 0.72 1.52 2.31 26.20 0.72 1.53 2.33
Dunkwa on Offin 26.18 0.84 1.77 2.69 25.58 0.91 1.83 2.79
Twifo Praso 26.72 0.78 1.65 2.51 25.88 0.79 1.67 2.54
Kibi 26.38 0.83 1.77 2.70 25.54 0.92 1.90 2.86
Konongo 26.00 0.84 1.79 2.73 25.46 0.93 1.96 3.02
Mean 26.33 0.81 1.72 2.62 25.71 0.88 1.82 2.77
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The mean of the model was 0.37 °C below the actual 
mean of the observed calculated data of 26.70 °C. The 
ensemble of GCMs projected temperature change of 
+ 0.80, + 1.68 and + 2.56 °C for the future period of 2020s 
(2011–2040), 2050s (2041–2070) and 2080s (2071–2100) 
respectively are presented in Fig. 3. This is comparable to 
the Earth system version of the Canadian Centre for Cli-
mate Modelling and Analysis (CanESM2) and the Earth 
system version of the Max Planck-Institut fur Meteorologie 
(MPI-ESM-LR) GCMs projection over the southern part of 
Ghana by Laprise et al. (2013). CanESM2 projected 0.5–1.5 
and 1.5–3 °C for January–February–March (JFM) for the 
period 2020s and 2050s respectively. This projection of JFM 
reduced in July–August–September (JAS) which was 0.5–1 
and 1–2 °C for same future periods. It implies that the IPCC 
AR5 projections of the 43 ensemble for the Pra River Basin 
is within the range of modelled results over southern Ghana 
(Laprise et al. 2013). MPI-ESM-LR projected the range 
of 0.5–1 °C mean temperature change for same location 
for both JFM and JAS for the period 2020s and increased 
temperature change of 1.5–2 °C for JFM and 1–1.5 °C for 
JAS in 2050s. Maximum temperature change is projected to 
increase as high as 5 °C in 2100 while minimum temperature 
change will be around 0.8 °C. However, spatial temperature 
change projections over the basin was 0.1–0.6 °C lower than 
the mean of the selected stations (Table 5). This might be 
attributed to the rectangular box selection of coordinates 
which expand beyond the basin to other basin especially at 
the southern part of Pra River Basin due to its reduced size. 
Validation results which is calculated as the average of the 
models within acceptable range of first standard deviation 
was 0.62 °C lower than the mean of ensemble as shown 
in Table 5. Under the 2020s projection of + 0.80 °C, cli-
mate related diseases will increase and more warm nights 
will be experienced (Brahic 2007; Obuobie et al. 2012). 
The + 1.68 °C temperature increase in the 2050s is likely 
to reduce crop yield, increase the rate of malaria infections 
and reduce water yield in the basin. Cocoa and other cash 
crop production will be more vulnerable to the attack of 

pest that are emerging because of increasing temperature 
in the basin. Army worms and other cereal crops pest may 
also increase and reduce yield (Brahic 2007; Hatfield and 
Prueger 2015). This will definitely affect the livelihood of 
the dwellers since majority are farmers (GSS 2014). The 
2080s projection of + 2.56 °C will aggravate the situation 
of water scarcity, low crop yield, floods and droughts, pov-
erty and malnutrition and possibly lead to migration (Brahic 
2007; Obuobie et al. 2012; Nutsukpo et al. 2013). Within the 
projected change of + 0.80 to + 2.56 °C, soil temperature 
will also increase affecting root development directly in their 
nutrient uptake and respiration processes (IPCC 2014; Gray 
and Brady 2016).

Projected trends of near future mean temperature

The mean historical temperature of SDSM, CanESM and 
IPSL for the base period 1981–2010 were 26.71, 26.72 
and 26.79 °C, showing a deviation of + 0.01, + 0.02 and 
+ 0.09 °C respectively from the observed data in the Pra 
River Basin. Comparing the mean temperature output of 
Hadgem and GFDL to the observed records of the basin 
between 1980 and 2009 (26.56 °C), GFDL modelled 0.10 °C 
more whiles Hadgem modelled 0.01 °C less.

The mean temperature projections for 2020–2049 
were 28.04, 28.04, 28.15, 27.74 and 27.62 °C for SDSM, 
CanESM, IPSL, Hadgem and GFDL respectively. Analysis 
of variance (ANOVA) at 95% confidence indicated that there 
is a significant difference between the mean temperature of 
the five models for the projected period (p = 2.086 × 10−12). 
However, ANOVA of SDSM, CanESM and IPSL indicated 
no significant difference in the mean temperature of projec-
tions (p = 0.252). Also, there was no significant difference 
between Hadgem and GFDL (p = 0.1062). It implies that res-
olution of models affects their output but in this case, SDSM 
at resolution 2 m is not different from CanESM and IPSL at 
resolution of 44 km. This could be due to the effectiveness 
and efficiency of the RCMs at that medium resolution to 
capture the temperature conditions of the basin better than 
WRF models. All models correlated positively under the 
Pearson correlation (R) with SDSM and CanESM having the 
highest correlation at R = 0.727 and the lowest between IPSL 
and CanESM at R = 0.366. Pearson correlation measures the 
strength of the linear relationship between two variables as 
they vary in time (Nikiema et al. 2016).

From Fig. 4, all models projected an increasing trend in 
mean temperature for the period (2020–2049). CanESM 
projected hottest years of 28.14, 28.21, 28.65 and 28.59 °C 
mean temperature for 2021, 2030, 2037 and 2041 respec-
tively. The temperature peaks indicating hottest years varied 
from one model to another. IPSL projected 2025, 2034, 2044 
and 2047 as hottest years with mean temperature at 28.35, 
28.69, 28.62 and 28.75 °C respectively. GFDL projected Fig. 3   Projections of future temperature change over Pra river basin
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only one major peak in 2042 at 28.02 °C whereas Hadgem 
in same resolution projected 2032, 2041 and 2047 to be hot-
test with mean temperature of 28.18, 28.23 and 28.51 °C 
respectively. SDSM also indicated that 2026, 2037, 2042 

and 2049 will be hottest at mean temperature of 28.18, 
28.31, 28.30 and 28.50 °C respectively (Fig. 4). Twifo Praso 
was projected with the highest temperature for all models 
except at IPSL which was Dunkwa station whiles Kibi was 

Fig. 4   Projected mean temperature by the five models



IB
ADAN U

NIV
ERSITY

 LI
BRARY

	 Modeling Earth Systems and Environment

1 3

the lowest from all except SDSM and Hadgem that project 
Atieku and Kumasi stations to be lowest. The hottest years or 
peaks projected by the five models agree with the maximum 
temperature projection of the AR5 43 GCMs for the basin 
which was determined to be 28.36 °C for the base period 
1981–2010 (Table 5). This implies that the maximum of 
the base period from AR5 assessment and mean maximum 
temperature of the historical period 1981–2010 may become 
the mean temperature in the future period. Extreme events 
of temperature resulting in heat shock [short period of very 
high temperatures (> 33 °C)] has a significant risk impact on 
crop production (Barlow et al. 2015). Kumasi which is the 
second highest growing city in Ghana is located in the basin. 
This urban population being fed by migrations from sur-
rounding regions like Central and Eastern regions of Ghana 
with a net volume of migration of − 274,579 and − 224,386 
in 2000 and − 238,015 and − 332,086 in 2010 respectively 
(GSS 2014) will contribute to increased urban heat island 
(Karl et al. 1993). The years 2041, 2042 and 2047 were pro-
jected by minimum of two different models as hottest years 
to have mean temperature peaks of averagely 28.41, 28.16 
and 28.63 °C respectively. The rare and endangered spe-
cies of wildlife, consisting of 226 bird species and minimum 
of 405 butterfly species habiting the Kakum conservation 
area in the basin will be exposed to increased temperature 
that might cause some to migrate and less resilient ones to 
even be extinct from the park (UICN/PACO 2010; Dowsett-
Lemaire and Dowsett 2011). The already polluted rivers in 
the Pra River Basin (Ansa-Asare et al. 2014) combined with 
increased stream temperature resulting from the projected 
temperature change will also change the stream chemistry 
and play a critical role in the fluvial erosion of cohesive 
streambanks (Hoomehr et al. 2018).

The monthly distribution of mean temperature in the 
basin for the observed period 1981–2010, varied with 
August recording the lowest at 25.21 °C and March record-
ing the highest at 28.04 °C. Seasonal variation was also 
seen between February–April and July–September where 
the former recorded high mean temperature and the latter 
was the lowest for the observed period (Fig. 5). The ensem-
ble of the five models for the period 2020–2049, depicted 
same trend of February–April as high and July–September 
as the lowest in the future similar to the findings that June 
to September/October is a cooler period in the basin (Akrasi 
and Ansa-Asare 2008). However, January is projected to 
have the highest change in mean temperature of + 1.51 °C. 
From Fig. 5, the secondary axis shows the mean tempera-
ture change projected by the five models used in this study. 
The mean temperature change was projected at 1.37, 1.47, 
1.06, 1.18 and 1.36 °C by CanESM, IPSL, GFDL, Hadgem 
and SDSM respectively. The lowest temperature change 
was projected by GFDL at 0.35 °C in January and highest 
at 2.30 °C in December by Hadgem. All models projected 

mean temperature change trend to drop from June to August 
and rise from August to October except SDSM which was 
even around 1.36 °C for those 5 months (Fig. 5). Contrary to 
the findings of Laprise et al. (2013) that mean temperature 
change of JAS season is generally warmer than JFM, JFM 
in the Pra River Basin is projected to be higher than JAS 
for all models. It is worth noting that mean temperature in 
the dry season from December to February is not as high as 
from February to April. This might be due to the harmattan 
which occurs from December to February in the study loca-
tion. Evaporation is expected to increase from February to 
April thereby extending the dry periods of the basin from 
December to April. This dry period may result in rainfall 
deficits which will affect the development of crops in the 
first raining season, hence having an impact on farmers who 
are engaged solely in rainfed agriculture.

Spatial distribution of future mean temperature 
in the basin

Temperature change across the stations projected for the 
period 2020–2049 were all positive and varied between 
0.40–1.49 °C amongst the five models (Table 6). This was 
similar to the AR5 ensemble projected temperature change 
of 0.80 and 1.68 °C for the period 2020s and 2050s respec-
tively. It implies that the models are within the global cli-
mate projections for the basin. Hadgem projected the lowest 
change and both SDSM and CanESM projected the highest 
change of same value. Both changes in projections were at 
Kumasi Airport (Table 6).

The ensemble results of this study confirm the IPCC 
AR4 temperature projection over West Africa to increase 
by 1.1–1.3 °C in 2030 (WRC 2012). Only the Hadgem pro-
jection at Kumasi Airport station was close to the 2020s 
(2011–2040) temperature change results from ECHAM4 
and CSIRO joint model for the Pra River Basin which was 
at 0.5 °C (Obuobie et al. 2012). GFDL projections were all 
below increase of 1 °C except at Akim Oda stations which 

Fig. 5   Monthly distribution of observed and future (2020–2049) 
ensemble mean temperature (primary axis) and mean temperature 
changes (secondary axis) of the five models
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was 1.14 °C. Spatially, SDSM, CanESM and IPSL showed 
a good distribution of temperature change in the basin 
with increasing change from the south to the north in the 
case of SDSM and from south-east upwards for CanESM 
and IPSL (Fig. 6). It could be seen that the low projection 
of change at Kumasi by Hadgem and GFDL affected the 
ensemble map significantly. Temperature change distribu-
tion was between 1.15–1.48 °C for SDSM, 1.31–1.46 °C for 
CanESM, 1.38–1.68 °C for IPSL, 0.92–1.14 °C for GFDL 
and 0.41–1.28 °C for Hadgem.

Generally, temperature increases northward in Ghana 
(Nutsukpo et al. 2013) which is depicted accurately by the 
SDSM map. Kumasi Metropolitan Assembly, the largest and 
most industrious city in the whole basin was mapped by 
CanESM, SDSM and IPSL to have the highest temperature 
change in the period 2020–2049. This was contrary to the 
projection of the WRF models (Hadgem and GFDL) which 
mapped same Assembly as the lowest temperature change 
location. Studies have shown that temperature change in 
urban industrious areas are higher compared to other loca-
tion with less industrial activities. Also, population has been 
found to have a direct effect on the atmospheric temperature 
in the immediate environment due to urban heat island effect 
(Sakakibara and Owa 2005; Zielinski 2014; Zeleňákováa 
et al. 2015). The temperature distribution in Ghana becomes 
hotter as you move from the south to north of the country. 
Therefore, SDSM, CanESM and IPSL (RCA4) was a better 
model to predict temperature trend in the basin compared to 
Hadgem and GFDL from the WRF-model which has 12 km 
resolution.

Implication of projected temperature trends 
in the basin

Higher night temperatures increase respiration in crops 
which stress plants thereby reducing the net gain in the form 
of grain yield. Temperature rise causes significant reduction 
in grain yield and affect the health of crops especially during 
the reproductive stage of crops life cycle. Increased tempera-
ture affects the physiological processes necessary for crop 
growth and development which leads to drop in crop yields. 
Temperature anomalies is playing an important role in the 
uncertainties of crop production in this century (Rasul et al. 

2011). Crop yields in Africa is estimated to drop by 5–10% 
at 2 °C temperature rise (Brahic 2007). The reproductive 
stage of development of cereals such as maize is primarily 
impacted by warmer temperatures with a significant reduc-
tion in grain yield (Hatfield and Prueger 2015).

Water availability in some vulnerable regions such as 
Africa has been estimated to decrease between 20 and 
30% at 2 °C rise in temperature (Brahic 2007). Increas-
ing temperature trends will also affect the annual flow of 
the basin negatively since temperature increase will also 
lead to evaporation increase and might results in droughts 
(Murphy and Charlton 2006; Arias et al. 2014; Gulacha 
and Mulungu 2016). Elderd and Reilly (2014) reported 
that disease transmission and outbreak intensity increased 
at higher temperatures. This was done by measuring the 
cumulative fraction infected during an epizootic although 
the change in mean transmission rate was not appreciable. 
Also, it has been found that a rise in atmospheric tempera-
ture tend to increase most diseases (Choi et al. 2007). For 
instance, about 40–60 million people have been estimated 
to be exposed to malaria in Africa by 2 °C increase in tem-
perature (Brahic 2007). Increasing temperature trends in 
the basin will increase the release of carbon and methane 
through increased rate of root respiration that could signifi-
cantly affect soil processes like decomposition and water 
transportation. Crowther et al. (2016) reported that 1 °C 
temperature rise will result in the release of 30 petagrams 
of carbon. Therefore, the average increase of 1.25 °C for the 
future period 2020–2049 is expected to emit more carbon 
dioxide than the base period.

Conclusion

Findings from the study indicate that mean minimum tem-
perature is increasing faster than maximum mean tempera-
ture for the observed period between 1981 and 2010 which 
might explain the increased warming experienced in the 
night across the country. The best models after performance 
evaluation deviated from their base period by + 0.01, + 0.02 
and + 0.09 °C for SDSM, CanESM and IPSL respectively. 
SDSM has a resolution of 2 m whereas CanESM and IPSL 
from RCA4 are at a resolution of 44 km but their outputs 

Table 6   Projected changes in 
temperature (°C) in 2020–2049

Model Atieku Akim Oda Dunkwa Kibi Konongo Kumasi Twifo Praso

CanESM 1.34 1.30 1.37 1.31 1.34 1.49 1.40
IPSL 1.37 1.35 1.63 1.36 1.38 1.84 1.37
GFDL 0.93 1.14 0.94 0.94 0.97 0.92 0.94
Hadgem 1.17 1.21 1.20 1.20 1.28 0.40 1.18
SDSM 1.12 1.41 1.39 1.44 1.45 1.49 1.25
Ensemble 1.19 1.28 1.31 1.25 1.28 1.23 1.23
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are better and correlate very well compared to WRF models 
which were at resolution of 12 km. Although resolution of 
models affects its accuracy, this result shows that, the setting 
of good boundary conditions to replicate the predictors influ-
encing the climate of a particular area in RCMs has a possi-
bility of affecting the efficiency of the model’s performance. 
That’s why CORDEX RCMs at 44 km performed better than 
WRF in this study. There was an increasing trend of mean 
temperature by all models in the period 2020–2049 with 
the years 2041, 2042 and 2047 identified as hottest at mean 

temperature peaks of 28.41, 28.16 and 28.63 °C, respec-
tively. Projected temperature change may reduce crop yield 
by increasing plant respiration and affecting other physio-
logical processes at the development stage. Evaporation will 
also increase thereby reducing annual river flows which may 
results in droughts. Rate of soil carbon loss will be increased 
by the increasing temperature change projected and diseases 
like malaria is also estimated to rise. Appropriate adaptation 
strategies are recommended to be practiced by farmers and 
residents in order to curb the impact of rising temperature in 

Fig. 6   Spatial model projection of future temperature change by kriging
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the basin as a results of climate change. Also, measures must 
be put in place by health services to control the projected 
spread of climate related diseases like malaria in order to 
protect basin dwellers from climate related disease mortal-
ity. Both plant and animal species within the protected areas 
in the basin will require the strict implementation of effec-
tive reserve management practices to conserve the rare and 
endangers species seeking habitat in the basin.
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