Journal of Algebra 240, 836858 Ž2001. doi:10.1006jabr.2000.8698, available online at http:www.idealibrary.com on A Connection between Units of Burnside Rings and the Exterior Algebra of Elementary Abelian 2-Groups Michael A. Alawode Department of Mathematics, Uniersity of Ibadan, Ibadan, Nigeria Communicated by Walter Feit Received September 18, 2000 INTRODUCTION Let G be a finite group, ŽG. the Burnside ring of G, that is, the Grothendieck ring obtained from the semi-ring of G-isomorphism classes of finite G-sets under addition and multiplication induced respectively by the disjoint union and the Cartesian product. The goal of this paper is to give the connection between the structure of the group ŽG. of units of ŽG. and the associated Exterior Algebra, where G 2   2 n-times is an elementary abelian 2-group of order 2 n. In Section 1 we discuss the condition ŽUB. and show how an element of ŽG. can be identified. In Section 2, we show that the map  i : G i   ŽG.i1 Ž  G. i is multilinear and that  i Ž g1 , . . . , gi .  0 if  g1 , . . . , gi4  i . Finally, we show that  i induces an isomorphism between i ŽG. and ŽG. i1ŽG.i . 836 0021-869301 $35.00 Copyright  2001 by Academic Press All rights of reproduction in any form reserved. IBADAN UNIVERSITY LIBRARY BURNSIDE RINGS AND EXTERIOR ALGEBRAS 837 1. CONDITION ŽUB. 1.1. Let G 2   2 n-times be an elementary abelian 2-group of order 2 n and let SubŽG. denote its subgroup lattice. It is well known that the group ŽG. of units in the Burnside ring ŽG. of G is canonically isomorphic to the group of maps e : SubŽG.  14 satisfying the following condition: ŽUB. For all U,U1,U2 ,U3,V  SubŽG. with ŽV :U .  4 such that U1 ,U2 ,U34  W  SubŽG.  U  W  V 4 , we have eŽU .  eŽU1 .  eŽU2 .  eŽU3 .  1. 1.2. THEOREM. For eery H  G, the map eH : SubŽG.  14 U  1  2G , HU  ½ 1, if H  U  G1, if H  U  G satisfies ŽUB. and hence represents an element in ŽG.. Proof. Assume that U,V,U1,U2 ,U3 are as in ŽUB.. We distinguish the following cases: Case 1. If eH ŽU .  eH ŽU1 .  eH ŽU2 .  eH ŽU3 .  1 there is nothing to prove. Case 2. If eH ŽU .  1, that is, H  U  G , then G H  Ui H  U  G , so H  Ui  G for i  1, 2, 3 and therefore eH ŽUi.  1 for i  1, 2, 3. So also in this case eH ŽU . e ŽU 4  H 1 .  eH ŽU2 .  eH ŽU3 .  Ž1.  1. Case 3. If eH ŽU .  1, eH ŽUi .  1 IBADAN UNIVERSITY LIBRARY 838 MICHAEL A. ALAWODE for at least one i  1, 2, 34, say i  1, then we argue as follows. We have U  H  G and U1H  G. We have to show that we can neither have U2  H  U3  H  G nor U2  H  G , U3  H  G. To this end we prove first the following. 1.3. LEMMA. If G is a group, H a normal subgroup, and W1,W2 are subgroups of G with W1  W2 , then ŽW2 :W1 . . Ž H  W2 : H  W1 . Proof. Given that W1  W2 and H  G, then we have HW1  HW2  G , W1 H  W1 , and W2 H  W2 . Consider W1 H . Let  be an arbitrary element of W1 H. Then   H and   W1. But W1  W2; this implies   W2 . Now   W2 and   H; this implies   W2 H. So we have   W1 H    W2 H . Hence, W1 H  W2 H and as both intersection are subgroups W1 H  W2 H . In particular, H W2  H W1  is a positive integer. We now consider H  W2  Ž H   W2 .H W2  W2   H W1    H  W1  Ž H   W1 .H W1  W1   H W2  IBADAN UNIVERSITY LIBRARY BURNSIDE RINGS AND EXTERIOR ALGEBRAS 839 which implies that ŽW2 :W1 .  Ž H W2 : H W1 . Ž H  W2 : HW1 . . This implies that ŽHW2 : HW1. divides ŽW2 :W1., since ŽH W2 : H W1. is a positive integer. Hence ŽW2 :W1 . . Ž H  W2 : H  W1 . It also follows from this result that if ŽW2 :W1 .  2, then Ž H  W2 : H  W1 .  2. Next, we show that with G, H,U,U1,U2 ,U3,V as above. 1.4. LEMMA. If ŽG :U  H .  2, then one has Uj  H  G  Uj  U  H for j  1, 2, 3. Proof. Assume first that Uj  H  G. Then since U  H  G, we obtain that U  H  Uj  H, and this implies that Uj  H  U  H, so we have that Uj  U  H, since H  U  H. Thus, Uj  H  G  Uj  U  H. Conversely, suppose that Uj  U  H. Then Uj  H  U  H. It also follows that U  H  Uj  H, since U  Uj and therefore U  H  Uj  H but U  H  Uj  H. Now, as U  H  G, we get that U  H  G. We know also that Uj  H  G. So it follows that U  H  Uj  H  G. Hence 2  ŽG :U  H .  ŽG :Uj  H .  ŽUj  H :U  H . together with ŽUj  H :U  H .  1 and therefore Žby Lemma 1.3. ŽUj  H :U  H .  2. This implies 2  ŽG :Uj  H .  2 or ŽG :Uj  H .  1. So we must have that G  Uj  H . IBADAN UNIVERSITY LIBRARY 840 MICHAEL A. ALAWODE FIG. 1. Step 1. Thus, Uj  U  H  Uj  H  G , and so Uj  H  G  U1  U  H . Now we continue with the proof of Case 3. Consider the stepwise diagrams shown in Figs. 13 with the motive of getting a final result for Case 3. Step 1. Consider H  U1  G Žsee Fig. 1.. Step 2. See Fig. 2. Žiii. To show that U  H V  U1, assume U  H  G. We must show that Žii. H U1  U by first showing that Ži. H  U U1  U. Proof of Ži.. In the first place, it is evident that U  U  H U1 , FIG. 2. Step 2. IBADAN UNIVERSITY LIBRARY BURNSIDE RINGS AND EXTERIOR ALGEBRAS 841 FIG. 3. Step 3. since U  U  H , U  U1. To prove U  H U1  U, consider U  H U1. By definition of intersection, U  H U1  U1. So, U  U  H U1  U1. But since ŽU1 :U .  2, it then follows that either U  U  H U1 or U  H U1  U1. But then, by our assumption that U  H  G ; U1  H  G , which also implies U1  U  H Žsee Lemma 1.4. we obtain that U  H U1  U1 IBADAN UNIVERSITY LIBRARY 842 MICHAEL A. ALAWODE because U  H U1  U1 would imply that U1  U  H which in turn gives a contradiction to our assumption. Hence U  H U1  U. Step 3 Žsee Fig. 3.. Since we obtain from Step 2 that U  U  H U1  U1 , this implies U1  U  H and therefore U  H V  U1. Observe that U  U  H V  V . Step 4. See Fig. 4. Step 5. See Fig. 5. Without loss of generality, say, U  H V  U2 and U  H V  U3. We must show first that U  H V  U2 ,U34 . Proof. As U  H  U  H  V  G and V  U  H  V , we obtain U  H V  U  H , U  H  V   G   2 n . FIG. 4. Step 4. IBADAN UNIVERSITY LIBRARY BURNSIDE RINGS AND EXTERIOR ALGEBRAS 843 FIG. 5. Step 5. We also have that U  H   2 n , since U  H  G, and Ui  H  G for any i together implies 1  ŽG :U  H .  2. This implies ŽG :U  H .  2 and hence that U  H   2 n1. Next, we consider the equation U  H   V  U  H  V   ŽU  H . V which implies that 2 n1  V  2 n   2 n1 V : U  H V . Ž . Ž Ž . .U  H V This implies 2 n ŽV : ŽU  H . V .  2 n1  2, and since U  U  H and U  V implies U  U  H V, because ŽV : ŽU  H . V .  2  ŽV : V . , ŽV :U . IBADAN UNIVERSITY LIBRARY 844 MICHAEL A. ALAWODE we obtain U  H V  V ,U and also by Step 3, U  H V  U1. Hence U  H V  U2 ,U34 . We shall finally prove Step 5. Since U  H V  U2 ,U34 by Step 4, we may then assume without loss of generality that U  H V  U2 ; U  H V  U3 . This implies U2  U  H ; U3  U  H , since U3  V . This implies U2  H  UH  G ; U3  U  H . Hence, U2 H  G ; U3  H  G Žby Lemma 1.4. . Therefore the proof of Case 3 is complete. So we conclude by Case 1, Case 2, and Case 3 that the map eH : SubŽG.  14 satisfies condition ŽUB.. 2. MULTILINEARITY CONDITION 2.1. Now for each i  0, 1, 2, . . . , we define Ž   G. i  e   ŽG.  eŽU .  1 for all U  G with U   2 ni4 and observe that  eH   ŽG. i if H   2 i1 , H  G. 2.2. THEOREM. Define the map : i  Ž .  Ž . l G  G i1  G i by : Ž g1 , . . . ,  gi .  e² g1 , . . . , g : ŽG. .i i IBADAN UNIVERSITY LIBRARY BURNSIDE RINGS AND EXTERIOR ALGEBRAS 845 Then 2.2.1.  i is multilinear, and 2.2.2.  iŽ g1, . . . , gi.  0 if  g1, . . . , gi4  i. Before we prove Statement 2.2.1, we shall first state and prove the following useful lemmata: 2.3. LEMMA. Let G be a group of order 2 n and K , H  G, such that K   2 i and H   2 n i. Then K  H  G  K H  1. Proof. As K  G and H  G imply K  H  ²K , H:  G , we consider the equation K   H  K  H   K H  2 i  2 n i  K H  2 ini  K H  2 n  . K H  Hence K  H   G   2 n  K H   1. Therefore G  K  H  K H  1. 2.4. LEMMA. Let G 2  2   2 , A  G. n-times Then ² A:  2A . Proof. Assume A  i. Label the elements in A as, say, a1, . . . , ai, so that A   a1 , . . . , ai4 . Then ² A:  a11 , . . . , a ii  1 , . . . , i  0, 14 4 . To see this, let H be the set on the righthand side above. Since ² A: is closed under multiplication and the forming of inverses, H  ² A:. But IBADAN UNIVERSITY LIBRARY 846 MICHAEL A. ALAWODE also, by definition, ² A: is the unique smallest subgroup of G containing A in the sense that, for all U  G, whenever A  U  G, then ² A:  U. Obviously, since all the elements of A are used up in the construction of an element of H, A  H. Now, let h1, h2  H. Then h  a1 . . . a i1 1 i for all choices of 1, . . . , i  0, 14, and h2  a1 . . . ai1 i for every choice of 1, . . . ,i  0, 14. Next we consider h  h11 2  Ža1  a 2 . . . a i11 2 i1  a ii . Ža1  a2 . . . a i 111 2 i1  a ii . ,  a1  a2 . . . a i1  a i  a i  a i1 . . . a 2  a 11 2 i1 i i i1 2 1  a1  a 1  a2 . . . a i1  a i  a i  a i1 . . . a 21 1 2 i1 i i i1 2  a1  a 1  a2  a 2 . . . a i1  a i  a i  a i11 1 2 2 i1 i i i1 . . . . Continuing in this way, we get h  h1  a1 1  a2 2 . . . a i1 i1  i i1 2 1 2 i1  ai  a1  a2 . . . a i11 2 i1  a ii , where in view of the special structure of G,  i is determined by i and i according to the scheme    0 1 0 0 1 1 1 0 Hence h  h11 2  H, and this implies that H  G. So we have ² A:  H , and therefore ² A:  H . Hence, we obtain ² A:   2A, since 2 i   Ž 1 , . . . , i .  i  0, 14 4 . Proof of Statement 2.2.1. Let r be such that 1  r  i. For every r and gr , hr  G. Consider  i Ž g1 , . . . , gr1 , gr hr , gr1 , . . . , gi .   i Ž g1 , . . . , gr , . . . , gi .   i Ž g1 , . . . , hr , . . . , gi . . To see this, we must prove that e² g1 , . . . , g r  hr , . . . , g :Ž H . ei ² g1 , . . . , g r , . . . , g :Ž H . e² g Ž H .  1i 1 , . . . , hr , . . . , g i: for all H  G with H   2 n i. IBADAN UNIVERSITY LIBRARY BURNSIDE RINGS AND EXTERIOR ALGEBRAS 847 Without loss of generality we may assume that r  i, put a  gi, b  hi, c  gihi so that a  b  c  1. Then we can define A  ² g1 , . . . , gi1 , a: B  ² g1 , . . . , gi1 , b: C  ² g1 , . . . , gi1 , c:. Note that since  A   2 i , B   2 i , C   2 i , we have by the above result that eA   Ž .  G i1, eB   ŽG.  i1, and eC    ŽG. i1, respectively, that is, the following case is obvious. For any H  G with H   2 n i, we get that eAŽ H .  eB Ž H .  eC Ž H .  1. So, we consider the only non-trivial case H   2 n i. Next we shall discuss under this case some of the useful consequences derived for members in the set  A , B ,C4 and with respect to distinguished cases as Ži. Assume  A   B   C   2 i. Žii. Assume  A   2 i, B   C   2 i. Žiii. Assume  A   2 i, B   2 i, C   2 i. Živ. Assume  A   2 i, B   2 i, C   2 i. First, we discuss case Živ. as follows: As  A   2 i1 , B   2 i1 , C   2 i1 , we obtain H  A   2 n i  2 i1  2 n1  G , H  B   2 n i  2 i1  2 n1  G , H  C   2 n i  2 i1  2 n1  G , IBADAN UNIVERSITY LIBRARY 848 MICHAEL A. ALAWODE and it follows by definition that eAŽ H .  eB Ž H .  eC Ž H .  1. Second, we discuss cases Žii. and Žiii. by proving the following lemma: 2.5. LEMMA. The following are equialent Ži. A  ² g1, . . . , gi1: Žii. a  ² g1, . . . , gi1: Žiii. B  C. Proof. Ži.  Žii., i.e., A  ² g1, . . . , gi1:  a  ² g1, . . . , gi1:. As- sume A  ² g1 , . . . , gi1:. Since a  A  ² g1 , . . . , gi1 , a: and A  ² g1 , . . . , gi1: it follows that a  ² g1, . . . , gi1:. Žii.  Žiii., i.e., a  ² g1 , . . . , gi1:  B  C. Assume a  ² g1, . . . , gi1:. Then we have a  g 11 , . . . , g  i1i1 for some choices 1 , . . . , i1  0, 14 . In view of g1, . . . , gi1  C by definition, it is enough to observe that b  ac  g 11 . . . g  i1i1  c  ² g1 , . . . , gi1 , c:  C , hence, B  C. Similarly, on the other hand, in view of g1, . . . , gi1  B we observe that c  ab  g 1 . . . g  i11 i1  b  ² g1 , . . . , gi1 , b:  B. Hence, C  B; therefore, B  C. Žiii.  Žii., i.e., B  C  a  ² g1, . . . , gi1:. Assume B  C. Then there exist  , . . . ,  ,  and  , . . . , ,  with b  g 1  i1 1 i1 1 i1 1 . . . gi1  c and c  g1 . . . g i1  b1 i1 . Now if   1, then a  bc  g 1 . . . g  i11 i1  c  c  g 11 . . . g  i1   ²i 1 g1 , . . . , gi1:. Similarly, if   1, then a  bc  cb  g1 . . . g i11 i1  b  b  g11 . . . g i1 i ²1  g1 , . . . , gi1: IBADAN UNIVERSITY LIBRARY BURNSIDE RINGS AND EXTERIOR ALGEBRAS 849 and if     0 then b  ² g1 , . . . , gi1:, c  ² g1 , . . . , gi1:. This implies a  bc  ² g1 , . . . , gi1: hence, a  ² g1 , . . . , gi1:. Žii.  Ži., i.e., a  ² g1, . . . , gi1:  A  ² g1, . . . , gi1:. Assume a  ² g1 , . . . , gi1:. Then we have ² g1 , . . . , gi1:  A , since a  A  ² g1 , . . . , gi1 , a: also A  ² g1 , . . . , gi1:, since by assumption a  ² g1 , . . . , gi1:, hence A  ² g1 , . . . , gi1:, and the proof of the lemma is complete. Continuation of the Proof of Statement 2.2.1. By Lemma 2.4, we get that ² g1 , . . . , gi1:  2 i1. Hence, in this case,  A   2 i   A   2 i1  A  ² g1 , . . . , gi1:. In view of the above considerations we conclude that Case Žii. is possible and our formula eAŽ H .  eB Ž H .  eC Ž H .  1 is almost trivially satisfied, since H  A   2 n i  2 i1  2 n1  G , implies eAŽ H .  1, IBADAN UNIVERSITY LIBRARY 850 MICHAEL A. ALAWODE and either H  B  H  C  G and then we have H  B   2 n i  2 i  2 n  G , implies eB Ž H .  1, and H  C   2 n i  2 i  2 n  G , implies eC Ž H .  1, or H  B  H  C  G. Then we obtain H  B   2 n i  2 i1  2 n1  G , implies eB Ž H .  1, H  C   2 n i  2 i1  2 n1  G , implies eC Ž H .  1. But case Žiii. is not possible. So we are left to discuss case Ži. as follows. Assume  A   B   C   2 i and consider A  ² g1 , . . . , gi1:²a:, B  ² g1 , . . . , gi1:  ²b:, C  ² g1 , . . . , gi1:  ²c:, ²a: ² : ² :  Ž A : ² g1 , . . . , g :.  2.g1 , . . . , g i1i1 a Since ² g1 , . . . , gi1:  2 i1 , this implies ²a:  2, ² g1 , . . . , gi1: ²a:  1. Similarly, we obtain ŽB : ² g1 , . . . , gi1:.  2, ŽC : ² g1 , . . . , gi1:.  2. Also, since it is clear that g1, . . . , gi1  A and g1, . . . , gi1  B implies g1, . . . , gi1  A B, this implies ² g1 , . . . , gi1:  A B  A , B and A B  A or B because A  B by Lemma 2.5. IBADAN UNIVERSITY LIBRARY BURNSIDE RINGS AND EXTERIOR ALGEBRAS 851 Similarly, we obtain ² g1 , . . . , gi1:  B C  B ,C , B  C ² g1 , . . . , gi1:  A C  A ,C , A  C so we must have Ž A : A B.  2, Ž B : A B.  2, ŽC : B C .  2, Ž B : B C .  2, ŽC : A C .  2, Ž A : A C .  2. Next we consider Ž A : A B.  Ž A B : ² g1 , . . . , gi1:.  Ž A : ² g1 , . . . , gi1:. . Then we have 2  Ž A B : ² g1 , . . . , gi1:.  2. This implies Ž A B : ² g1 , . . . , gi1:.  1 hence, A B  ² g1 , . . . , gi1:. Similarly, we obtain B C  ² g1 , . . . , gi1:, A C  ² g1 , . . . , gi1:. It also follows that  A B   B C    A C   2 i1. Also, since g1 , . . . , gi1 , a, b  ² g1 , . . . , gi1 , a:  ² g1 , . . . , gi1 , b:, g1 , . . . , gi1 , b , c  ² g1 , . . . , gi1 , b:  ² g1 , . . . , gi1 , c:, g1 , . . . , gi1 , a, c  ² g1 , . . . , gi1 , a:  ² g1 , . . . , gi1 , c:, and a  b  c  1, we get that D  A  B , because c  a  b , D  B  C , because a  b  c, D  A  C , because b  a  c, where D  ² g1 , . . . , gi1 , a, b:, IBADAN UNIVERSITY LIBRARY 852 MICHAEL A. ALAWODE and since A  D , B  D implies A  B  D , B  D ,C  D implies B  C  D , A  D ,C  D implies A  C  D , it follows that D  A  B  B  C  A  C. Now we compute  A  B  B  C   A  C  D      2 i1.  A B  B C   A C  2.6. We are now set to give the proof of non-trivial case: That is, we must prove that if H  G, H   2 n i and H  A  G then either H  B  G and H  C  G or vice-versa. Note that H  A  G implies H  D  G. Proof. Since H  D  H  D   , H D  we have 2 n i  2 i1 2 n  , H D  and hence 2 n i  2 i1 H D    2 nii1n 1n  2  2.2 Similarly, we obtain H ² A  B:  H ²B  C:  H ² A  C:  2, since D  A  B  B  C  A  C , Now as H ² A  C:   2, there exists precisely one element, say u  G, such that u  1 and ²u:   2 with ²u:  H and ²u:  ² A  C:, since H ² A  C:  ²u:. Similarly, we get H ² A  B:  H ²B  C:  H D  ²u:. But then by our hypothesis H  A  G implies H A  1, and it follows that ²u:  A, as ²u:  H. Now we know the following: IBADAN UNIVERSITY LIBRARY BURNSIDE RINGS AND EXTERIOR ALGEBRAS 853 H  A  G and H A  1, and this implies u  A, H  B  G  H B  1, H  C  G  H C  1, H D  ²u: H B, H C 1, and this implies H B  1  u  B and H C  1  u  C or, in other words, H B  1  u  B and H C  1  u  C. We must show either u  B and u  C or u  B and u  C To see this, we have to show that neither u  B and u  C nor u  B and u  C can hold. Hence, assume first that on the contrary u  B and u  C. Then we consider B C, and use the fact that Ž A : ² g1 , . . . , gi1:.  2, B C  ² g1 , . . . , gi1:. We obtain B C  A , and it follows that u  A, a contradiction. So we can’t have u  B and u  C. Assume second that u  B and u  C. Then we have u  B  C  D  ² g1 , . . . , gi1 , a, b:. IBADAN UNIVERSITY LIBRARY 854 MICHAEL A. ALAWODE This implies u  g 1 . . . g  i1  a i1 i1  b i1 for some choices of 1, . . . , i1  0, 14. Now, by hypotheses u  A implies u  g 11 . . . g  i1  a ii1 for every choice of  , . . . ,  1 i  0, 14, u  B implies u  g 11 . . . g  i1  b ii1 for every choice of  1 , . . . ,  i  0, 14, and u  C implies u  g 1 . . . g  i1  i1 i1  c for every choice of  1 , . . . ,  i  0, 14. Now if i1  0, then we shall have u  g 11 . . . g  i1i1  a i  A  ² g1 , . . . , gi1 , a:, hence i1  0  i1  1. If i  0, then we get that u  g 11 . . . g  i1  b i1i1  B  ² g1 , . . . , gi1 , b:, hence i  0  i  1, and so we have i  1, i1  1. Hence we obtain u  g 1 . . . g  i11 i1  Ž ab. 1  g 11 . . . g  i1i1  c1 since abc  1  C  ² g1 , . . . , gi1 , c:, a contradiction. So we cannot have u  B and u  C. Therefore, the proof of the non-trivial case is complete. Hence e² g1 , . . . , g r  hr , . . . , g i:Ž H .  e² g1 , . . . , g :Ž H .  ei ² g1 , . . . , hr , . . . , g i:Ž H .  1 IBADAN UNIVERSITY LIBRARY BURNSIDE RINGS AND EXTERIOR ALGEBRAS 855 for all H  G with H   2 n i, and by definition, we obtain  i Ž g1 , . . . , gr hr , . . . , gi .   i Ž g1 , . . . , gi .   i Ž g1 , . . . , hr , . . . , gi . . Thus,  i is a multilinear map. Now, consider again the map  ii :G   ŽG.  i1 Ž .  G i : Ž g1 , . . . ,  gi .  e² g1 , . . . , g : ŽG. .i i If we impose on this map the condition that  g1, . . . , gi4  i then we obtain as follows. As  g1, . . . , gi4  i  1, then we obtain by Lemma 2.4 that ² g , . . . , g :  2 i11 i and this implies  e² g1 , . . . , g :   ŽG.i i or  e² g , . . . , g : ŽG. i   Ž  G. . 1 i i So by definition, we get  i Ž g1 , . . . , gi .  0. Hence,  iŽ g1, . . . , gi.  0 whenever  g1, . . . , gi4  i, and the proof of Theorem 2.2 is complete. 3. ISOMORPHISM BETWEEN i ŽG. AND ŽG.i1ŽG.  i 3.1.  i induces a canonical map i ˆ   i :  ŽG.   ŽG. i1 ŽG. i which maps i g1  gi   ŽG. onto  e² g1 , . . . , g : ŽG.i i . IBADAN UNIVERSITY LIBRARY 856 MICHAEL A. ALAWODE 3.2. CLAIM. ˆi is an isomorphism. Proof. First, we note that ˆi is a well defined linear map, because of the universal properties of i ŽG. and the particular properties established above of the map  i. Second, i  Ž  G. and  ŽG. i1 ŽG. i are both of the same order, because Ž Ž .  n G :  ŽG. .  2Ž .i1 i i and by standard results, we know that as dimŽG2 .  n, we have dimi ŽG.  Žn.i , and this implies i  Ž .  nG 2Ž .i . Third, we establish injectivity of ˆi in the following way. Now assume that  i ŽG. satisfies ˆi Ž .  0, that is, Ž ˆ Ž . .  1, . . . , n4 T  i 1 for all T  ž n  i / , where T : Ž   G. i1  14 . This implies that for every  ž 1, 2, . . . , n4T n  i / we have ˆi Ž . ޲ei  i  T:.  1, where ei  Ž1, . . . , 1,1, 1, . . . , 1.  G ith position for all i  1, . . . , n. As G  ²e1, . . . , en: and  i ŽG. there are unique coefficients Ck , . . . , k  2 Ž1  k1    ki  n. such that1 i  Ý Ck1 . . . k ei k  e .1 k i 1k1k2  k in IBADAN UNIVERSITY LIBRARY BURNSIDE RINGS AND EXTERIOR ALGEBRAS 857 Hence, for any  ž 1, . . . , n4T ,n  i / we have T Žˆi Ž . .  ˆi Ž . ޲ei  i  T:.  Ł e² e , . . . , e :޲ei  i  T:.Ck1 . . . k i  1,k k 1k1k   k n 1 i 2 i where e  T k1 , . . . , k i4 ² ek , . . . , e :޲ei  i  T:.  Ž1. ,1 k i we define with ½ 0, if  k1 , . . . , ki4 T   Tk1 , . . . , k i4  1, if  k1 , . . . , ki4 T  . This means that  Tk , . . . , k 4  1 if and only if T  1, . . . , n4  k1 , . . . , ki4 .1 i Applying this definition on individual factors of the above products rela- tion, we obtain for a fixed k 01 , . . . , k 0 i 4 with T  1, . . . , n4 k 01 , . . . , k 0i 4 that  T Tk 01 , . . . , k 04  1 and i k1 , . . . , k 4  0i for  k 0 01 , . . . , ki4  k1 , . . . , ki 4 . This implies e² e , . . . , e :޲ei  i  T:0 0 .  1, ek k ² ek , . . . , e :޲ei  i  T:.  11 i 1 k i and substituting this in the above products relation, we get that T Ck . . . k i 1  T Žˆi Ž . .  Ł žŽ1.  1k1 , . . . , k i4 / 1k1  k in  Ž1. Ck 01 . . . k 0i , and therefore, Ck 01 . . . k 0  0.i IBADAN UNIVERSITY LIBRARY 858 MICHAEL A. ALAWODE Hence, for every k 01 , . . . , k 0 i 4 we must have Ck 01 . . . k 0  0,i which implies that  Ý Ck . . . k ek  e  0,1 i 1 k i 1k1k2  k in hence, ˆi is injective. So it is clear from the above considerations that ˆi is surjective and that the vectors e² ek , . . . , e : ,  k1 , . . . , ki4  1, 2, . . . , n41 k i generate Ž .   G i1  ŽG. i . Therefore, ˆi is an isomorphism. ACKNOWLEDGMENTS I am sincerely grateful to my Ph.D. thesis supervisors Professor Andreas Dress and Professor Aderemi O. Kuku for their guidance, patience, and generosity. REFERENCES 1. M. A. Alawode, ‘‘The Group of Units of Burnside Rings of Various Finite Groups,’’ Ph.D. thesis, University of Ibadan, Nigeria, 1999. 2. H. Bender, On groups with abelian sylow 2-subgroups, Math. Z. 117 Ž1970., 164176. 3. A. Dress, A characterization of solvable groups, Math. Z. 110 Ž1969., 213217. 4. A. Dress, Notes on the theory of representation of finite groups, Bielefeld Notes, 1971. 5. W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 Ž1963., 7751029. 6. W. H. Greub, ‘‘Multilinear Algebra,’’ Springer-Verlag, BerlinHeidelbergNew York, 1967. 7. A. O. Kuku, Axiomatic theory of induced representations of finite groups, in ‘‘Group Representation and Its Applications: Les cours du C.I.M.P.A.’’ ŽA. O. Kuku, Ed.., 1985. IBADAN UNIVERSITY LIBRARY