MODELS FOR GROWTH CHARACTERISTICS AND THEIR APPLICATIONS IN YIELD STUDIES FOR Pinus caribaea Morelet 1851 IN SOUTHWESTERN NIGERIA BY Bukola Amoo OYEBADE (Matric. No. 114090) B.Agric.Tech. (Akure), M.Sc. (Ibadan) A thesis in the Department of Forest Resources Management, Submitted to the Faculty of Agriculture and Forestry in partial fulfilment of the requirement for the award of the Degree of DOCTOR OF PHILOSOPHY (FOREST BIOMETRICS) of the UNIVERSITY OF IBADAN, NIGERIA. JULY, 2014 UNIVERSITY OF IBADAN LIBRARY ABSTRACT Development of empirical models provides ample prospects of exploring established mathematical theories and relationships among tree growth variables for sustainable forest management options. However, there is inadequate information on modelling growth characteristics and productivity potentials of Pinus caribaea, a pulpwood species which is now being proposed for timber production in Nigeria. Hence, models for growth characteristics and their applications in yield studies for Pinus caribaea in southwestern Nigeria were investigated. Sixty Temporary Sample Plots (TSPs) of size 20m x 20m each and of different Age (A) series based on stocking density were sampled from Omo Forest Reserve (n=16 TSPs -15 and 21 years), Oluwa Forest Reserve (n=36 TSPs-18, 20, 35, 36 and 37 years) and Shasha Forest Reserve (n=8TSPs-27years) in Ogun, Ondo and Osun States respectively using stratified random sampling method. Growth variables: Diameter at Breast Height (DBH), Stem Quality (SQ) and Total Height (THT) were measured in each plot and Basal Area (BA), Stem Volume (SV), Tree Slenderness Coefficient (TSC), Crown Ratio (CR), Crown Projection Area (CPA) and Site Index (SI) estimated. A total of 1,592 trees were enumerated and each tree per plot classified into four canopy layers as dominant, co-dominant, intermediate and suppressed. Data obtained were used for modelling and categorized into individual tree level, size class level and whole stand level with Maximum Likelihood Estimation (MLE) technique adopted in 3-parameter Weibull Probability Distribution Functions (WPDF). Data were analysed using descriptive statistics, ANOVA, correlation and regression analyses at α0.05. Growth variables exhibited significant variations among the canopy layers with the dominant canopy layer having the highest mean THT of 14.9±0.2m and intermediate 3 2 canopy layer lowest with 7.8±0.1m. Stem volume (1.4±0.04m ) and BA (0.1±0.002m ) were also highest in the dominant canopy layer. Slenderness coefficient however was highest (80.6±1.1) within the suppressed canopy layer while crown ratio was highest (0.27±0.001) in intermediate canopy layer. There were positive relationships between the growth variables across the stands with coefficients of correlation (r) ranging from 0.01- 0.98 for individual tree level and 0.41-0.91 for whole stand level. Similar results of ii UNIVERSITY OF IBADAN LIBRARY correlation between Weibull parameters and other growth variables at the size class level were significant with r ranging between -0.72 and 0.92 with location parameter „a‟ of the WPDF having the highest positive association of r = 0.92 with DBH. The growth-yield 1 2 models were of the forms lnCR =-3.5507+0.6263lnTHT+0.1558CPA+10.2339A , R =0. -1 2 98 for dominant layer, lnCR = -3.1922+0.6363CPA+7.6876A , R = 0.994 for -1 2 intermediate layer, lnTHT= 0.4547+0.0032lnSQ+0.6757CPA+0.1052A , R =0.989 for -1 2 suppressed layer and lnTHT=0.5872+0.5348CPA+0.0567A with R = 0.996 for co- dominant layer respectively. The overall best model among individual, size and whole 2 stand categories was found within the whole stand level with R =0.999 and of -1 exponential form: lnSV=-0.7759+0.0001SI+0.0005A +0.9532lnBA. The best adjudged growth-yield model among the canopy layers was found within the co- dominant layer. The selected whole stand growth-yield model was suitable for both current and future prediction of major growth characteristics and productivity potentials of Pinus caribaea in southwestern Nigeria. Keywords: Pinus caribaea, Growth variables, Yield models, Tree canopy layers Word count: 489 iii UNIVERSITY OF IBADAN LIBRARY DEDICATION This work is dedicated to Him; who has the final saying. Him; with who‟s LIFE the universe consists. He is the Fountain of all knowledge; who speaks and come to pass. He is the God Almighty, the Most High who lives and abides forever. iv UNIVERSITY OF IBADAN LIBRARY ACKNOWLEDGEMENTS I am extremely grateful to the Almighty God for His providential enablement and grace given me to complete this research work. I am greatly indebted to my major supervisor, Professor J. S. A. Osho for his guidance, encouragement and immense scrutiny that have led to the successive completion of this study. I am also thankful to Dr. P. O. Adesoye, a member of my supervisory committee for his invaluable suggestions to improve the quality of the work and assistance in learning various statistical packages relevant to growth and yield modeling. Immense gratitude goes to the Head of Department, Forest Resources Management Department, University of Ibadan; Prof. B.O. Agbeja and other able Lecturers in the Department. I appreciate the immense contributions of my external examiner, Dr. Samuel Ajayi of Cross River State University of Technology (CRUTECH) Calabar, Cross River State and my internal supervisor, Dr. R.O. Awodoyin of the Faculty of Agric and Forestry, University of Ibadan. My special gratitude also goes to the member of staff of J4- Forest Reserve, Ogun State, Oluwa Forest Reserve, Ondo State and Shasha Forest Reserve, Osun State for their permission and assistance for data collection during this research work. I am also very thankful to my former Heads of Department; Dr. A. A. Aiyeloja and Dr. G.E. Omokhua at the University of Port Harcourt where I work; for their fatherly counsels and prayers while undertaking this research study. My profound gratitude also goes to my current Head of Department, Dr. H.M. Ijeomah for his encouragement and regular permission while concluding this research study. I am, moreover, indebted to my Pastors and spiritual mentors whose prayers and inspiration had added to the successful completion of this work. This study would not have been completed without the inestimable support, love and care of Dr. O. Y. Ogunsanwo and his loving wife Mrs. S. A. Ogunsanwo who were always my hosts at Orogun, Ibadan during this programme. Indeed, your family is a blessed family with epitomes of joy and love. May the God whom I serve continuously reward you and v UNIVERSITY OF IBADAN LIBRARY grant your hearts‟ desires, in Jesus Name. Special gratitude goes also to the family of Dr. I. O. Ajewole for his fatherly counsels and motivation. May the Lord God bless you really good sir. Last but not least, I would like to appreciate my friends and family for their constant support, love and understanding. I would not have been able to complete this programme without their unreserved inspirations. This is especially true for my wife, Rachael Adefiola, for her support, succour, stimulation and success-endowing supplications. Dear, I am so much grateful for your understanding while always away on several trips from the inception to the completion of this research study. Bukola Amoo OYEBADE July, 2014 vi UNIVERSITY OF IBADAN LIBRARY CERTIFICATION I certify that this work was carried out by Mr. Bukola Amoo Oyebade in the Department of Forest Resources Management, Faculty of Agriculture and Forestry, University of Ibadan, Ibadan, Nigeria. ……………………………………………………… SUPERVISOR: J. S. A. OSHO B. Sc. (Ife), M. Sc. (Iowa State), Ph.D (Ibadan). Professor of Biometrics Department of Forest Resources Management, University of Ibadan, Ibadan, Nigeria. ……………………………………………………… DATE vii UNIVERSITY OF IBADAN LIBRARY TABLE OF CONTENT Pages Title page i Abstract ii Dedication iv Acknowledgement v Certification vii Table of Contents viii List of Tables xii List of Figures xiv List of Appendices xv Acronyms and abbreviations xvii Chapter One 1.0 Introduction 1 1.1.1 Background 1 1.1.2 Application of growth models 4 1.1.3 Forest modeling: Modern trend 5 1.1.4 Pinus caribaea 5 1.1.4.1 Ecology and distribution 7 1.1.4.2 Propagation and management 7 1.2 Statement of problem 8 1.3 Objectives of the study 9 1.4 Justification of the study 9 1.5 Scope 11 Chapter Two 12 2.0 Literature Review 12 2.1 Modeling application in forestry 12 2.2 Model types 13 2.2.1 Whole stand models 13 viii UNIVERSITY OF IBADAN LIBRARY 2.2.2 Size class models 13 2.2.3 Single tree models 14 2.2.4 Process models 14 2.3 Data for growth models 14 2.4 Tree growth 15 2.5 Relationship between growth and yield 16 2.6 Uses of models 17 2.6.1 Valuation of stands 17 2.6.2 Production forecasting 17 2.6.3 Decision on rotation age and harvesting 17 2.7 Modelling Approaches in Forestry 18 2.7.1 Volume/yield table approach 18 2.7.2 Statistical distribution: models approach 19 2.7.2.1 Normal distribution 20 2.7.2.2 Lognormal distribution 21 2.7.2.3 Gamma distribution 22 2.7.2.4 Beta distribution 22 2.7.2.5 Weibull distribution 24 2.7.3 Matrix algebra formulation 25 2.7.4 Construction of diameter class projection models 33 2.8 Crown competition index 33 2.8.1 Crown competition factor 34 2.9 Model Comparison: Stochastic and deterministic models 35 2.10 Growth model development, evaluation and validation 37 2.10.1 Models development 37 2.10.2 Models validation and application 37 2.10.3 Model evaluation 39 Chapter Three 41 3.0 Materials and methods 41 3.1 The study area 41 3.1.1 Omo (J4) Forest Reserve 41 ix UNIVERSITY OF IBADAN LIBRARY 3.1.1.1 Location 41 3.1.1.2 Topography, geology and Soils 41 3.1.1.3 Climate and vegetation 42 3.1.2 Oluwa Forest Reserve 42 3.1.2.1 Location 42 3.1.2.2 Topography, geology and Soils 43 3.1.2.3 Climate and vegetation 43 3.1.3 Shasha Forest Reserve 43 3.1.3.1 Location, topography, geology and Soils 43 3.1.3.2 Climate and vegetation 44 3.2 Data collection 46 3.2.1 Reconnaissance survey and site selection 46 3.2.2 Sampling Techniques 46 3.2.3 Measurement of tree parameters 47 3.3 Data analyses 47 3.3.1 Computation of models variables 47 3.3.1.1 Stand basal area estimation 47 3.3.1.2 Stem volume estimation 48 3.3.1.3 Tree slenderness coefficient 48 3.3.1.4 Site quality assessment 49 3.3.1.4.1Site index 49 3.4 Crown variable estimation 51 3.4.1 Crown projection area 51 3.4.2 Crown ratio 51 3.5 Development of growth and yield characteristic models 51 3.5.1 Chapman-Richards functions 52 3.5.2 Weibull distribution functions 52 3.6 Model verification and validation 53 Chapter Four 55 4.0 Results 55 4.1 General estimates of Pinus caribaea growth characteristic variables 55 x UNIVERSITY OF IBADAN LIBRARY 4.2 Canopy layers growth characteristics/age series estimates 57 4.3 Correlation and regression analyses 63 4.5 Growth characteristics 73 4.5.1 Growth characteristics models among canopy layers 73 4.5.2 Individual tree growth models 79 4.5.3 Size class growth models 82 4.5.4 Whole stand growth models 86 4.6 Site index equation and curve for site quality evaluation 89 4.7 Models for optimal rotation age among canopy layers 94 4.8 Volume projection of Pinus caribaea in the study area 105 4.9 Models evaluation and categorization 109 Chapter Five 113 5.0 Discussion 113 5.1 Growth characteristics estimates 113 5.2 Growth characteristics models 114 5.2.1 Canopy layers growth models 114 5.2.2 Individual growth models 115 5.2.3 Size class growth models 116 5.2.4 Whole stand growth models 116 5.2.5 Optimal rotation age models 118 5.3 Site quality evaluation 119 5.4 Applications of growth and yield models for management options 121 Chapter Six 124 6.0 Conclusion and recommendations 124 6.1 Conclusion 124 6.2 Recommendations 126 References 127 xi UNIVERSITY OF IBADAN LIBRARY LIST OF TABLES 1. Extent of hectage distribution of Pinus caribaea plantation in the study area 46 2. Individual tree growth characteristics according to the study location 56 3. Growth characteristic among individual canopy layer and ages 59 4. Growth characteristics among individual different stand ages 60 5. Growth characteristics among different whole stand ages 61 6. Correlation matrix for individual tree growth characteristics in Pinus caribaea 68 7. Correlation matrix for whole stand growth characteristics in Pinus caribaea 69 8. Correlation matrix for diameter Weibull parameter and stand growth characteristics 71 9. Correlation matrix for stem quality distribution Weibull parameter and stand growth characteristics 72 10. Estimated parameters and models statistics among dominant canopy layer 74 11. Estimated parameters and models statistics among the Co-dominant canopy layer 75 12. Estimated parameters and models statistics among the intermediate canopy layer 77 13. Estimated parameters and models statistics among the suppressed canopy layer 78 14. Estimated parameters and models statistics in the individual tree model equations 80 15. Estimated parameters and models statistics in the individual tree model equations 81 16. Estimated parameters and models statistics in the size class model equations 84 17. Estimated parameters and models statistics in the size class model equations 85 xii UNIVERSITY OF IBADAN LIBRARY 18. Estimated parameters and models statistics in the whole stand equations 87 19. Estimated parameters and models statistics in the whole stand equations 88 20. Site index equation, model parameter and computed site index (SI) according to sites in the study area 91 21. Optimal rotation age model for different canopy layers in Pinus caribaea in the study area 96 22. Optimal rotation age models under different canopy layers in the study area 97 23. Rotaion age, yield (volume) and relative growth for the canopy layer 98 24. Projected volume of Pinus caribaea for the planning period of 25 years at interval of 5years 106 25. Model validation of the best adjudged models among individual growth variables 110 26. Model validation of the best adjudged models among size class growth variables 111 27. Model validation of the best adjudged models among whole stand growth variables 112 xiii UNIVERSITY OF IBADAN LIBRARY LIST OF FIGURES 1 Map of Nigeria showing ecological regions 3 2 Map of Southwestern Nigeria showing the study locations 45 3 Frequency of the canopy layers of Pinus caribaea in the study area 62 4 Relationship between merchantable volume and diameter at breast height (dbh) 65 5 Relationship between merchantable volume and stump diameter 66 6 Relationship between diameter at breast height and stump diameter 67 7 Site index curves for comparison of the Pinus caribaea in the three plantations of the study area 92 8 Site index curves for Pinus caribaea in the three plantation stands of the study area 93 9 Stem volume development curve for estimating optimal age rotation of Pinus caribaea in the study area 99 10 Residual plot for relationship of stem volume and age for determining optimal rotation of the pooled data of Pinus caribaea in the study area 100 11 Residual plot for relationship of stem volume and age for determining optimal rotation of the suppressed canopy of Pinus caribaea in the study area 101 12 Residual plot for relationship of stem volume and age for determining optimal rotation of the intermediate canopy layer of Pinus caribaea in the study area 102 13 Residual plot for relationship of stem volume and age for determining optimal rotation of the co-dominant layer of Pinus caribaea in the study area 103 14 Residual plot for relationship of stem volume and age for determining optimal rotation of the dominant layer of Pinus caribaea in the study area 104 15 Projected volume of Pinus caribaea for the planning period of 25 years at interval of 5years in age series 1974-1984 107 16 Projected volume of Pinus caribaea for the planning period of 25 years at interval of 5years in age series 1990-1996 108 xiv UNIVERSITY OF IBADAN LIBRARY LIST OF APPENDICES 1 Data for individual trees 142 2 Whole stand level data used in the computation and data analysis 199 3 Model summary for location parameter in diameter distribution model 201 4 Model summary for scale parameter in diameter distribution model 201 5 Model summary for shape parameter in diameter distribution model 201 6a Model summary for location parameter in stem quality distribution model 202 6b Model summary for location parameter in stem quality distribution model 202 6c Model summary for location parameter in stem quality distribution model 202 6d Model summary for location parameter in stem quality distribution model 203 6e Model summary for location parameter in stem quality distribution model 203 7 Model summary for scale parameter in stem quality distribution model 203 8 Model summary for shape parameter in stem quality distribution model 204 9 Model summary for mean quadratic mean model 204 10 Model summary for mean stem volume model 204 11 Model summary for annual stem quality model 205 12a Model summary for annual stem volume model 205 12b Model summary for annual stem volume model 205 13 Model summary for annual basal area model 206 14 Model summary for site index model 206 15 Model summary for stem quality model 206 16 Model summary for mean diameter at breast height model 207 17 Model summary for yield (stem volume) model 207 18 Model summary for basal area model 207 19a Model summary for stem quality model 208 19b Model summary for annual basal area model 208 20 Model summary for stem number model 208 21 Model summary for tree number model 209 22a Model summary for mean crown projection model 209 22b Model summary for mean crown projection model 209 23 Model summary for crown ratio model 210 xv UNIVERSITY OF IBADAN LIBRARY 24a Model summary for mean crown ratio model 210 24b Model summary for mean crown ratio model 210 24c Model summary for mean crown ratio model 211 25 Model summary for stem volume growth model 211 26 Model summary for mean stem quality model 211 27a Model summary for mean total height growth model 212 27b Model summary for mean total height growth model 212 xvi UNIVERSITY OF IBADAN LIBRARY ACRONYMS AND ABBREVIATIONS BA Basal area DBH Diameter at breast height THT Total height SQ Stem quality SV Stem volume CR Crown ratio CD Crown diameter TSC Tree slenderness coefficient DT Diameter at the top DB Diameter at the base TSPs Temporary Sample Plots A Age MSE Mean Square Error RMSE Root Mean Square Error RSS Residual Sum Square TSS Total Square Error SI Site index MHT Merchantable height CAI Current Annual Increment PAI Period Annual Increment MAI Mean Annual Increment LN Natural logarithm xvii UNIVERSITY OF IBADAN LIBRARY CHAPTER ONE 1.0 INTRODUCTION 1.1.1 BACKGROUND Forest growth models have provided forest managers with an abundance of tools for simulating stand dynamics. Modeling the growth of trees of forest stands is of great importance for development of a sustainable forest management system for multiple-use forestry. In general, the actual application of forest policies in the tropics and many parts of the world is based on future projections of the available data on extensive forest areas for sustainable forest management (Fenger, 1996; Euler and Epp, 2000).In recent years, models had been developed to explore the interaction between the ecological integrity of the forest and its timber management under different possible scenarios (Gustafson et al., 2000; Kurz et al., 2000).Predictive models that are used for volume estimation in sustainable forest management have to be dynamic and must capture forest attributes such as diameters at breast height (dbh), height, basal area, regeneration, mortality and some silvicultural operations such as thinning and partial harvest. Forest biophysical parameters have changed continuously both by the external and internal factors. Thus, information on forest status obtained from traditional inventory is pertinent and may be a significant pointer in a certain length of time for plantation forest where there is evenness in structure and optimized management advantages. In achieving plausible feats in sustainable forest management in many Sub-Saharan countries, there is urgent need for critical evaluation of growth characteristics from forest mensuration; where there is pragmatic approach to determining the forest variables such age, volume, biomass, basal density and height periodically (Husch et al. 2003). Such evaluation will pertinently utilize simulation methods that are system based and such that constitute empirical principles from growth parameters. Onyekwelu et al. (2003) reported that to achieve positive and substantial response of residual trees to thinning, formulation of management strategies must be based on good understanding of individual trees and stand growth processes. He however stated in his 1 UNIVERSITY OF IBADAN LIBRARY study that silvicultural interventions have been administered without a good knowledge of growth characteristics, thus leading to a bad management decision that had had some adverse effects on stand productivity and end products. There are positive and increasing trends of plantation development in the tropics in the last two decades with annual rate of establishment falling between 2 to 3 million hectares (Evans, 1998). Majority of these plantation species are managed to optimize yield of wood products within the possible short period, and thus amounting to their general acceptance of domestication in Nigeria (Onyekwelu et al., 2003). In most forested region of earth, people have recently and historically cleared forests for pasture and crops. In retrospect, many such cleared sites have been too erosive for continued pasturage or cropping; or have proved to be (or been degraded to become) marginal or submarginal for their intended human activities. Conversely, many of such degraded sites are now being proved as best sites for forest plantations with plausible varieties of important primary purposes other than supplying wood (Palmberg, 1989; Laarman and Sedjo, 1992). Abayomi (1984) supported the tremendous need for plantation establishments; particularly for meeting the rapid growing demand for wood and wood products in Nigeria. According to him, there were annual increments of timber volume above 40cm 3 -1 -1 3 -1 -1 diameter at breast height (dbh) between 1.14 m ha year and 8.30 m ha year in the 3 -1 sample plots with plantation species against the annual increments of between 2.0m ha -1 3 -1 -1 year to 3.0 m ha year of the natural forest stands. Among the less dominant exotic species is the Pinus caribaea of which records showed that it was originally confined to high altitudes of northern savannah of Nigeria‟s ecological delineation (Figure 1) to check desertification, but now been widely planted in Nigeria because of its long fibers suitable for manufacture of high quality paper and other pulpwood products (Iyamabo et al., 1972; Emerhi et al., 2008). 2 UNIVERSITY OF IBADAN LIBRARY Fig. 1: Map of Nigeria showing the ecological regions 3 UNIVERSITY OF IBADAN LIBRARY 1.1.2 APPLICATIONS OF GROWTH MODELS Growth models have been identified as having a broader role in forest management and in the formulation of forest policy, and have been very essential when used in conjunction with other resource and environmental data for growth predictions and prescriptions that will eventually be used as guidelines for forest policy. With suitable inventory and other resource data, growth models provide a reliable way to examine silvicultural and harvesting options, to determine the sustainable timber yield, and examine the impacts of forest management and harvesting on other values of the forest. Forest managers may require information on the present status of the resource (e.g. numbers of trees by species and sizes for selected strata), forecasts of the nature and timing of future harvests, and estimates of the maximum sustainable harvest. This information can be compiled from three sources: (i) area estimates of the existing forest (ii) stand level inventory of the present forest, and (iii) growth and harvesting models based on dynamic inventory data. A growth model is a synthesis of dynamic inventory data indicating growth and change in the forest. These data may be obtained from permanent sample plots. Growth models may also have a broader role in forest management and in the formulation of forest policy. A model is an abstraction, or a simplified representation, of some aspect of reality (and should not be confused with the normative meaning of the word, something worthy of being imitated). We frequently use models unconsciously, e.g. making mental models to visualize cause-effect relationships to help explain and anticipate the behaviour of systems. Models may be stated in verbal (e.g. a description) or material forms (e.g. a scale model). A mathematical model is like a verbal model, but uses mathematical language which is more concise and less ambiguous than natural language. Computers have become indispensable as tools to assist modeling, but are not central to the process of modeling. Modeling is about making a good representation, and the computer is merely a convenient way to realize it. García (1994) likened "computer modeling" to "typewriter poetry". There are so many growth models in existence that it is impossible to examine the methodology used in each. Thus it is necessary to identify some commonality, and to consider just a few examples for each class of model. 4 UNIVERSITY OF IBADAN LIBRARY It is useful to distinguish between models for understanding and models for prediction (Bunnell, -+`1989). Models for understanding (e.g. process models) are useful to comprehend and link previously isolated bits of knowledge and may help to identify gaps where more work is needed. The benefits come from the insights gained while developing and exploring the model, and future uses (if any), are less important. Conversely, models for prediction may sacrifice specific details of growth processes to achieve greater efficiency and accuracy in providing information for forest management. Therefore, this study has explored the concept of growth characteristics and their applications to timber yield of Pinus caribaea in Southwestern Nigeria. The study equally provided best predictive models that would proffer sustainable management options for Pinus caribaea in Southwestern and many other ecological regions of Nigeria. 1.1.3 FOREST MODELING: MODERN TREND A stand growth model is an abstraction of the natural dynamics of a forest stand, and may encompass growth, mortality, and other changes in stand composition and structure. Common usage of the term "growth model" generally refers to a system of equations which can predict the growth and yield of a forest stand under a wide variety of conditions. Thus a growth model may comprise a series of mathematical equations, the numerical values embedded in those equations, the logic necessary to link these equations in a meaningful way, and the computer code required to implement the model on a computer. In its broadest sense, the term may also embrace yield tables and curves, which are analogous to equations, but which have been stated in a tabular or graphical form, rather than a mathematical form. 1.1.4 Pinus Caribaea Pinus caribaea is a medium-growing tree that reaches 45 m in height and more than 1m diameter at breast height (d.b.h). The shafts are generally straight and free of branches. The bark is thick with wide fissures and is reddish brown to ashy brown. This variety has fascicles of three, and in the young trees these fascicles have four to six acicular leaves. 5 UNIVERSITY OF IBADAN LIBRARY The acicular leaves are 15 to 25 cm long and 1.5 mm wide; they are stiff and finely serrated, dark green to yellowish green, and covered with white stripes of stomata. The tree has a pivot root in deep soils, and superficial roots in slightly deep soils. It adapts very well to a wide variety of environments, including degraded, poor, lixiviated, rather low soils with good drainage. The species grows well in acid sandy soils (pH 4.3 to 6.5) and, to a lesser degree, sandy-clayey soils. Generally, moisture in the soil determines development more than the availability of nutrients. The tree grows well in oxisol soils that are not very deep, are saturated with water during the rainy season, and are very dry in the rainless season. In wet climates of the Tropics the species tends to form foxtail. It can tolerate drought for up to 6 months and sporadic floods. However, drought can also cause large losses in young stands (Lamprecht, 1986). Pinus caribaea grows well where temperatures range from 20 to 27 °C and annual precipitation is between 1000 and 1800 mm. Some trees grow where precipitation is 600 to 3900 mm. In its native region the tree grows from sea level to 850 m; it is occasionally found at 1000 m. The hard wood of P. caribaea is appropriate for floors and all types of construction. Treated with a preservative, the wood is used in mines, pilings, and railroad ties. Primarily used in construction and carpentry, the wood is also dried and turned (Centro Agronómico Tropical de Investigación Enseñza, 1994). In Villanueva, Casanare, Colombia, pine wood obtained by precommercial thinning at 8 to 10 years is used in tongue and groove boards and cabinet making such as portable crates, doors, windows, desks, and bookcases (Koenig and Venegas, 1978; Venegas, 1982). It is used for pulp even though its resin content is high. It is traditionally used as firewood and in the manufacture of charcoal. The trees are used as windbreaks and to control erosion and recover soils. Resins are also extracted to produce colophony and turpentine. The seeds of this species have a high commercial value. The cones are 6 to 14 cm long. The dark grayish seeds are ovoid and winged and sometimes have light brown speckles. Most of the seeds lose their wings. Fire is always allowed in its plantation for natural regeneration; however, the young plantules are damaged or killed by fire. Outside its native area, the species rarely regenerates naturally. Seeds can be stored up to 10 years if placed in hermetic containers 6 UNIVERSITY OF IBADAN LIBRARY at 3 to 4 °C and 6 to 9 percent humidity. A pre-germination treatment is unnecessary; however, seeds sub-merged in water for 12 hours will germinate more uniformly (Nieto and Rodriguez, 2002). Germination percentage of this species reaches 80 percent (Wong 1983; Trujillo, 1984). The species can be propagated in nurseries by seeds or bare roots. Seeds are sowed in germinators and transferred to bags; seeds with a high germination percentage can be planted directly in bags. The planting site should be thoroughly cleared; burning the site produces the best results. In deep soils, holes must be 20 cm deep and 20 cm in diameter. In shallow, compacted soils, holes must be 30 cm in depth and diameter. Up to 80 percent of the roots will remain when outplanting by lifting the plantules with clods of earth on the roots. Silvicultural treatments during the first 2 years in reforestation of savannas provide fire protection for this species while removal of underbrush by trampling is also essential. 1.1.4.1 Ecology and distribution The species P. caribaea is native to Central America and the Caribbean but widely planted throughout the American, Asian and African tropics and subtropics. P. caribaea (var.); which is of caribaea variety is confined to Cuba and the Isla de la Juventud, P. caribaea var. bahamensis is indigenous to certain Islands of the Bahamas and the Caicos groups and P. caribaea var. hondurensis can be found in the eastern half of Central America south-east from the Yucatán peninsula. The tree grows best in frost-free areas up to 700 m altitude on more fertile sites with good drainage and annual rainfall of 1000 - 3000 mm. 1.1.4.2 Propagation and Management The cones mature at the onset of the rainy season but there is often variation between trees and stands. In general, cones tend to mature during the same period, despite variation in flowering times. Seed production in exotic plantations is often poor due to either cool temperature preventing the formation of flowers or humid conditions during flowering preventing pollination (Londo and Stephen, 2006). When the tree is 3-4 years 7 UNIVERSITY OF IBADAN LIBRARY old, it begins to produce female cones but seed setting is low unless there are mature pollinating trees close by. The cones are mature when: (i) more than half of the cone has turned brown, (ii) when cut in two, the cone axis is dark brown, (iii) the apex of the cone feels firm when pressed with the thumb (iv) the seed coat is darkening in colour and (v) the inside of the seed is white and firm and filling the cavity. Collection is done directly from the tree. Care must be taken not to break the fragile branchlets as this can seriously reduce crop size for several years. Once the cones have become brown and are still moist, the scales may start to open and the pre-germination occur. 1.2 STATEMENT OF PROBLEM Modelling growth characteristics of Pinus caribaea; an exotic species is of great importance in quantitative forestry for ascertaining sustainable evaluation and production of its timber in Nigeria. Though the species was primarily introduced to Nigeria in the early 60 (Sixty); with a goal of exploring its pulp production potential for the then pulp and paper industries. This objective was however abandoned and jettisoned, and the pine plantations in the three major forest reserves in the southwestern Nigeria have overgrown its pulping production capability and now fully grown for apparent timber production. The pine plantation stands within the forests are threatened, and annually being exposed to incidence of fire attack as a result of bush burning around the reserves. Since no quantitative study exist on Pinus caribaea in Nigeria; mensurational information about this all-important tree species is significant for its reasonable growth characteristics evaluation, its yield production and valuation and plausible volume prediction that could project its sustainable management in Nigeria. It is therefore imperative to carry out this quantitative investigation to reconnoiter models for growth characteristics of Pinus caribaea with the objective of developing empirical models and determining the models‟ application to its yield (timber volume production) in southwestern Nigeria. According to Onyekwelu (2001), over 80% of total plantations in Nigeria are exotic, and their dominance is attributed to their ease of establishment, rapid growth rate and 8 UNIVERSITY OF IBADAN LIBRARY consequently short rotation length. Although, this assertion was factual, there has been little effort in modeling growth characteristics of plantation species such as Pine in Nigeria that can be significantly used to facilitate sustainable management and adequate policy making. It is therefore pertinent to develop growth models that are flexible and robust for multi-ecological diversity and comparison. The development of growth characteristics models for predicting growth, yield and other stem quality is therefore concomitant to attaining sustainable management of pine plantations in this ecological zone; which can be a model for reasonable management and planning in other ecological zone of the country. 1.3 OBJECTIVES OF THE STUDY The main objective of this study is to explore models for growth characteristics of Pinus caribaea with a goal to determine their applications to pine‟s timber yield in southwestern Nigeria. The specific objectives of the study include: 1. to develop appropriate growth characteristics models at canopy layers, individual tree, size class and whole stand levels for the Pinus caribaea plantations in the study area. 2. to determine the best model for predicting and forecasting the yield of Pinus caribaea in the study area. 3. to determine the optimal rotation age for pine timber production 1.4 JUSTIFICATION OF THE STUDY In forest management, information on both current forest resources and future yields is needed. The future development of forest resources can be predicted with growth and yield models (Sironen et al., 2001). The main uses of growth and yield predictions are updating forest inventories, comparing silvicultural treatments by simulating them and predicting their outcomes, harvest scheduling, stand and forest level decision support and management planning (Short III and Burkhart, 1992; Hynynen, 1995). 9 UNIVERSITY OF IBADAN LIBRARY Development of growth characteristics models remain significant aspect of research in growth and yield studies. According to Okojie (1981), it is essentially important in providing relevant information that are applied for predicting happenstances in forest industries, individual trees and stands in response to investments, silvicultural treatments and management alternatives. Consequently, the accumulation of pertinent information on tree and stand growth ensures development of simulation and growth models which are primarily aimed at modeling long-term effects of management options, cultural treatments and for yield predictions. It is therefore crucial to carry out this all important study on the development of growth characteristics models and explore their applications in ensuring sustainable management for Pinus caribaea in some selected plantations in Southwestern, Nigeria. Growth-yield models require site-specific knowledge about individual trees and environmental conditions. The data usually come from periodic growth yield censuses of marked individual trees in a large number of plots (Liu and Ashton, 1995). Most models are developed from growth variables simply because they are much easier to measure than other variables and for instance height and basal area information can be derived from functions which describe diameter-height and diameter-basal area relationships of individual species (Ker and Smith, 1957; Hilt and Teck, 1988). This study thus explored and investigated several growth models simulated from common growth characteristics within the Pinus caribaea in the study area. The growth functions vary in terms of types of functions and variables in the functions. For example, Hilt and Teck (1988) developed and simulated basal area estimates to establish a predictive model for diameter growth. The potential basal area growth model is a modified version of the Chapman-Richards function (Richards, 1959; as cited by Liu and Ashton, 1995). This quantitative study threw more light on several growth models as well as simulating variables of interest in Pinus caribaea plantations at the three forest reserves of the study area. 10 UNIVERSITY OF IBADAN LIBRARY 1.5 SCOPE OF THE STUDY This study primarily was restricted to development of growth characteristics models of pine plantations in Omo Forest Reserve (Ogun State), Oluwa Forest Reserve (Ondo State) and Shasha Forest Reserve (Osun State); all in South western Nigeria. The study also explored the applications of these growth characteristics to timber yield potential of Pinus caribaea in the study areas. The choice of these three forest reserves is based on availability of the species and possibility of obtaining reasonable age series data from the three Plantations. 11 UNIVERSITY OF IBADAN LIBRARY CHAPTER TWO 2.0 LITERATURE REVIEW 2.1 MODELING APPLICATION IN FORESTRY Model may be defined as the representation of some existing structure showing the proportions and arrangements of its component parts. It may also refer to a formal expression of a theory (Ford-Robertson, 1977). Common usage encompasses the mathematical equations, the numerical values embedded in those equations, the logic necessary to link these equations in a meaningful way, and the computer code required to implement the model on a computer. Model development involves exploring data to provide new insights into forest dynamics and reveal gaps in present knowledge. Once implemented, the model may be used to study forest dynamics, to explore silvicultural and management options, and to forecast future harvests and stand conditions. These applications indicate directions for model development. Modelers should critically explore available data and existing knowledge, and design models that are robust in extrapolation. Implementation should encourage both exploratory and operational use of the model. Although apparently obvious, these principles are not reflected in many models. It is necessary to emphasize the nature and detail of growth models by discussing whole stand, stand class and single tree models. Whole stand models draw on stand-level parameters such as stocking (trees/hectare), stand basal area and standing volume to predict stand growth or yield. Size distributions may be inferred, but few details of individual trees are available. Stand class models provide more details by simulating several classes within the stand (e.g. stand table projection). The approach is a compromise between whole stand models and single tree models. If the class is infinitely large and only one class exists, it is a whole stand approach. When the class width is considerably small and each tree is a single class, then it becomes a single tree model, in which the individual tree is the basic unit of modeling. The minimum input required for a single tree model is a list containing the size of every tree in the stand. 12 UNIVERSITY OF IBADAN LIBRARY Other models draw on different foundations to help understand growth and stand dynamics exist, but have not yet successfully been used for predicting timber yields. Succession models (West et al., 1981; Shugart, 1984) attempt to model species succession, but are generally unable to provide reliable information on timber yields. Process models attempt to model the processes of growth, taking as input light, temperature and soil nutrient levels, and modeling photosynthesis and the allocation of photosynthates to roots, stems and leaves (Landsberg, 1986; Sievanen et al., 1988; McMurtrie et al., 1990). The challenge is to provide sufficient physiological and ecological basis to ensure realistic predictions under a variety of site and stand conditions, even when empirical data for calibration are limited. 2.2 MODEL TYPES There are so many growth models in existence that it is impossible to examine the methodology used in each. Thus it is necessary to identify some commonality, and to consider just a few examples for each class of model. It is important to classify models on the level of detail they provide. A model may be considered a whole stand model, a size class model, or a single-tree model, depending on the detail required, provided and utilized by the model. 2.2.1 Whole stand models Whole stand models are often simple and robust, but may involve complexities not possible in other approaches. Population parameters such as stocking (number of trees per unit area), stand basal area and standing volume are used to predict the growth or yield of the forest. No details of the individual trees in the stand are determined. Stem size distributions may be inferred from existing or predicted distributions. 2.2.2 Size class models Provide some information regarding the structure of the stand. Several techniques are available to model stand structure, but one of the most widely used is the method of stand table projection which essentially produces a histogram of stem diameters. This approach 13 UNIVERSITY OF IBADAN LIBRARY is a compromise between whole stand models and single-tree models. When the class size is infinitely large and only one class exists, then the method is a whole stand approach. When the class width is infinitely small and each tree is considered a single class, then the method is the single-tree approach. 2.2.3 Single-tree models This type of model is the most detailed and has an approach that uses the individual tree as the basic unit of modeling. The minimum input required is a list specifying the size of every tree in the stand. Some models also require the spatial position of the tree, or tree height and crown class. Single-tree models may be very complex, modeling branches and internal stem characteristics, and may be linked to harvesting and conversion simulators (Mitchell, 1988; Vanclay, 1988). 2.2.4 Process models These are also known as mechanistic of physiological models. These models help to provide a better understanding of growth and stand dynamics, but have not yet successfully been used for predicting timber yields for forest management. Attempt to model the processes of growth and taking light, temperature, soil nutrient levels and modeling photosynthesis, respiration and the allocation of photosynthates to roots, stems and leaves as inputs of the models define the central principle of process modeling (Landsberg, 1986; Mäkelä, 1992). 2.3 DATA FOR GROWTH MODELS Growth models rely on data for calibration. Too often, the model is dictated by limitations of the data rather than the needs of the application. Most models have similar data requirements and standard procedures have been established (Campbell, 1989; Vanclay, 1991; Alder and Synnot, 1992). Since few tropical tree species are amenable to stem analysis (Mariaux, 1981), data must be obtained from re-measurements on permanent sample plots (PSPs). Re-measurements must span a sufficient period to average anomalous weather patterns and ensure that growth is not obscured by measurement error. Graphical (Beetson et al., 1992) and computer algorithms (Gertner, 14 UNIVERSITY OF IBADAN LIBRARY 1987) may guide sampling schemes. Both passive monitoring and treatment response data from designed experiments are necessary. Extreme treatments need not applied in practice, but remain essential to define the response surface for growth models. The accuracy of growth predictions depends largely on the stratification of site; but there are few techniques for site productivity assessment in tropical moist forests (Smith and Burkhart, 1984). The average height of dominant and co-dominant trees remaining after logging has been used to indicate site productivity in dipterocarp forests (Mendoza and Gumpal, 1987). Vanclay (1992) favored a growth index based on permanent plot data, but estimated for temporary plots from presence or absence of several indicator species. Further research is necessary to develop efficient methods for site evaluation in tropical forests, and this will require comparisons with long term permanent plot records to ensure reproducible and consistent estimates which are not unduly influenced by stand condition or management history. 2.4 TREE GROWTH Tree growth is an intermittent process characterized by change in stem form and dimension over a period of time. This change, according to Avery and Burkhart (1994), manifest itself as an increase (increment) in size over a given period of time and in terms of diameter, height, basal area or pubic volume. Climate, soil and biotic factors contribute tremendously to the growth of a plant. Deficiency or excess of any of these environmental factors can become limiting and thus cause trees to grow at different rates. The ability to absorb and assimilate carbon dioxide for the purpose of growth (photosynthesis) is controlled by such factors as wind speed, available moisture and competition with other plants (Nwoboshi, 1982). Although, the exact form of the cumulative growth curve will differ with variable used and the fluctuations, the elongated S-shaped (sigmoid) pattern is a characteristic that can be invariably expected. Wood production in the central stem can be predicted by measuring past rates of diameter and height growth. Indeed, the primary objective of most tree growth studies is the reliable prediction of future wood yield. 15 UNIVERSITY OF IBADAN LIBRARY 2.5 RELATIONSHIP BETWEEN GROWTH AND YIELD Growth is the increase (increment) over a given period of time (Avery and Burkhart, 1994). Growth is a complicated process embracing a multitude of factors such as soil climate and tree properties (Fries et al., 1978). On the other hand, yield is the total amount available for harvest at a given time (Avery and Burkhart, 1994). Yield, can thus be regarded as the summation of the annual increments. To be meaningful, Leuschner (1984) emphasized the need for growth and yield values to be quantified with regard to the part of the tree and the position of the stand being considered, and one must be certain of the unit of measure being used and for growth, the time period involved. Clutter et al. (1983), Avery and Burkhart (1994), identified three factors that determine the growth and yield for stands of given species or species composition. These factors are: i) age of stand (the point in time in stand development) ii) the innate productive capacity of the land area involved (site quality) and iii) the cultural treatments applied (thinning, fertilization, competing vegetation control). For even-aged stands, the first three factors can be expressed quantitatively through the variables of stand age, site index and stand density respectively. The measure of stand density most commonly used in growth and yield models for natural stands has been Basal Area (BA) per unit area whereas most models for planted stands have employed number of trees per unit area. For a given site index and initial stand density level, volume per unit area (yield) can be plotted over stand age which result in a sigmoid curve. The growth curve often referred to as current annual growth or current annual increment (CAI) increases up to the inflection point of the yield curve and decreases thereafter. Another important quantity is the mean annual increment (MAI) defined as the yield at any given age divided by the total number of year (age) required for achieving that yield. Early work did not attempt to relate growth analysis to yield analysis, although the 16 UNIVERSITY OF IBADAN LIBRARY biological relationship can be readily expressed mathematically. Clutter (1963) derived compatible and yield models for loblolly pine by ensuring that the algebraic form of the yield model could be obtained by mathematical integration of the growth model. Sullivan and Clutter (1972) extended Clutter‟s model by estimating yield and cumulative growth as a function of initial stand age, initial basal area, site index and future age. When the future age equals the current age (i.e. when the projection period is zero), the projection model is reduced to a conventional current yield model. 2.6 USES OF MODELS 2.6.1 Valuation of stands If the growth functions have been developed for any tree species in a certain area, then it becomes possible to estimate the standing volume of trees in that area at any age (Adegbehin, 1985). Thus, economic rotation age of the stand can be determined, and the current value of the stand can be compared with its potential value. Such comparison aids the forest owner in estimating the profit to be made in holding his timber for cutting at a future date as against sale at present time. 2.6.2 Production Forecasting In forestry, growth models are used to predict the increment of individual trees and of stands. They are also used to obtain the estimates of potential cut from the forest. This provides guidelines for the forest manager to adopt the principle of sustained yield. The concept of sustained yield when implemented keeps the volume of the growing stock constant and regulates exploitation in the forest (Okojie, 1981), watershed protection and eco-tourism have also been solved through modeling (Buonogiorno and Gilles, 1987). 2.6.3 Decision on Rotation age and Harvesting Rotation age is the normal period of years required to grow and harvest an even aged of crop of trees on a given land area. Rotation age is usually not an easy thing to decide in forest management. It is sometimes determined based on the age of maximum mean annual increment, stumpage value, and tree size specifications for various products and 17 UNIVERSITY OF IBADAN LIBRARY other management considerations. Other factors include urgent need for money, anticipated price increase. The economic optimum production point (EOPP) is another useful approach to deciding rotation age. Growth and yield data are required for deciding age irrespective of the criteria considered. Given a minimum exploitable diameter or girth, it is possible to calculate from distribution models the percentage of the stand that meets this requirement. This will assist the forest manager to decide if the proportion of the stand meeting the diameter or girth requirement is reasonable enough. 2.7 MODELING APPROACHES IN FORETRY 2.7.1 Volume or Yield table Approach th th Foresters in the 18 and 19 centuries assembled their data in the form of tables, which were based on graphically produced relationships between the crop characteristics (Omiyale and Joyce, 1982). Two types were prominent: Volume and yield tables. Volume table according to Husch et al. (1982) is a tabular presentation of the volume of a tree of some specified dimensions. Depending on the number of independent variables and area covered, volume table could be divided into two types; (i) Local or single entry volume tables (only Dbh) and; (ii) Standard or multiple entry tables (Dbh, merchantable or total height and some measure of form included). The introduction of regression analysis and advent of computers have made possible the establishment of various objective relationship (Volume equations) between tree volume and other measured parameters such as height, tree diameter at breast height (Dbh) or basal area (BA) from which such tables can be constructed. Multiple regression procedures (usually stepwise) are often used to select the best combination of independent variables from a series of equations, which may take the following forms: 18 UNIVERSITY OF IBADAN LIBRARY (i) Simple Linear regression model 2 V = bo + b1 D ……eqn. 1 3 V = bo + b1 D ……eqn.2 (ii) Multiple Linear regression models 2 V = bo + b1 D + b2H …….eqn.3 2 2 V = bo + b1 D + b2 D H ……..eqn.4 2 V = bo + b1D H + b2H …….eqn.5 (iii) Quadratic model 2 V = bo + b1 D + b2 D …… eqn.6 (iv) Logarithmic transformed Model According to Osho (1988), most yield table methodologies were first developed in Europe in the 1920s and later in the limited usefulness of yield tables in comparing silvicultural alternatives since the methodologies were only intended to describe undisturbed development of natural stands. 2.7.2 Statistical distributions: Models Approach Forest management systems are becoming increasingly intensive and many decisions are dependent on knowledge of forest stand dynamics. Several studies have been carried out to describe the distribution patterns of forest data particularly tree diameters, basal areas and volumes. Actual diameter distribution may be calculated from data derived from forest inventories. In many cases, more useful predictions may be based on models that generalize and portray the expected distributions. Most of these studies appear to concentrate more on diameter distribution pattern which characterizes the structure of a stand, and is one of the growth parameters that is most accurately measured and can also be used to predict basal area or volume. 19 UNIVERSITY OF IBADAN LIBRARY Diameter distribution represents the number of trees in specific size classes. The observed diameter distribution results from the natural development of the trees in relation to age, site index and total number of stems per hectare. Diameter distribution models help to provide answers to such questions as when, how and where to cut timber? They are therefore very important in forest management. According to Okojie (1981) citing other workers, efforts to describe stem diameter distribution from empirical data date back to many years. He referenced that in 1899, DeLioncourt constructed a model using geometric progression for diameter distribution in uneven aged forests which was also found satisfactory in describing diameter distribution in old growth forests in Indiana by Shmelz and Lindsey (1965). Several distribution models have now been in use although only some of these are flexible enough to describe the growth curves. These models include: normal, lognormal, beta, gamma, negative or double exponential and Weibull probability distribution functions (Gadow, 1983; Philip 1994). 2.7.2.1 Normal Distribution A random variable x, assuming all real values from - < x < has a normal distribution if its probability density function is of the form: f(x) = …………eqn..7 Where,  = means x = random variable and 2 = variance. 20 UNIVERSITY OF IBADAN LIBRARY For a normally distributed population; it is expected that 68.27% of the cases will fall between  -  and  +  and 95.45%.between  -2 and  +2 while 99.73% of the cases are found between  - 3a and  + 3. The standardized normal distribution in most cases does not meet the flexibility desired in growth studies. However, its importance is due to the fact that it is tabulated hence facilitating practical tests of a data set for normality. A standardized form is obtained by transformation of original x values with unit standard deviation and zero mean. Among the few others who obtained some promising results in the application of distribution to growth studies is Gringrich (1967); he used the distribution to describe composition and diameter data in upland hardwood forests. 2.7.2.2 Lognormal Distribution A lognormal distribution occurs in practice whenever a random variable X has its logarithm showing a normal distribution. Its probability density function is expressed as: f (x) = ……………eqn.8 Where x > 0; ln x = natural logarithm of x. This distribution is positively skewed with: 2 Mean = exp (u+ ) and 2 2 Variance = exp (2u-  ) (exp  -1) Bliss and Reinker (1964) found this suitable in describing diameter distribution in some even-aged stand. However, the lognormal distributions are of limited use in growth studies as they generate only positively skewed curves. 21 UNIVERSITY OF IBADAN LIBRARY 2.7.2.3 Gamma Distribution A continuous random variable x has a gamma distribution if its probability density function is given by: F(x) = , x > 0 ……………eqn. 9 = 0 elsewhere Where α > 0, β > 0 and (x) = (α-1)! Otherwise (n) = gamma function with parameter n Mean, 2 Variance  Gamma distribution is generally noted for generating positively skewed Curves. Nelson (1964) found this appropriate for describing diameter distribution in a loblolly pine stand. 2.7.2.4 Beta Distribution If a random variable x has a probability density function f (x) = ……………….…..……...eqn.10 = 0 elsewhere Where α > 0, β > and β (α, β) = 22 UNIVERSITY OF IBADAN LIBRARY The mean of the distribution is given by ……………..…eqn.11 And its variance 2  = …………..…eqn.12 Because of its ability to ensure a wide variety of shapes, beta distribution has been used in describing diameter distribution in stands of different specialty and many studies abound on such premises (Burkhart and Strut, 1974; Jayarman and Rugruini, 1988). The Beta distribution reduces to uniform (rectangular) distribution so called because its density is uniform or constant over a certain interval say (a, b). Its probability density function is given by: f(x) = ……………eqn.13 0 a < b < = elsewhere and, means, ………………….……eqn.14 variance,  2 ……………………….eqn.15 for a = 0, b = 1, f(x) = 1, µ= ½,  2 =1/12 The gamma and beta functions have their density highly flexible in shape and are therefore promising for adaptation in growth studies. 23 UNIVERSITY OF IBADAN LIBRARY 2.7.2.5 Weibull distribution The Weibull function is equally flexible in terms of the ability to assume various shapes (both positive and negative skewness) and have become increasingly popular for characterizing stand diameter distributions. Weibull distribution was developed in an entirely different context from its application in forestry. Weibull was Swedish physicist who derived and used the function in his experiments. It has since been recognized as a useful and most appropriate model in reliability studied and life lasting experiments in forestry (Osho, 1989). A random variable „x‟ is side to have a two-parameter Weibull density function α -1 if f(x) = (α /β) (x/β) exp ……………………… eqn.16 Where, α = shape parameter β = scale parameters. The cumulative distribution function of the two-parameter Weibull function is given by: f(x) = 1-exp ……………….………………eqn.17 When the location parameter „c‟ is included, we have a 3-parameter density function given by: c-1 c f(x) = c/b (x-a/b) exp xa / b  ……………….………..…eqn.18 For x, b, c> 0 (in general, „a‟ can be positive, zero or negative, but for diameter distribution, a must be non-negative). The parameter „a‟ is known as the location parameter, „b‟ as the scale parameter and „c‟ as the shape parameter. 24 UNIVERSITY OF IBADAN LIBRARY The expected class probability (Pi) of the ith diameter class with limited Li and upper limited Ui is given as: c c Pi = exp  L i a / b exp U ia / b  ………………… eqn.19 A number of works had been done on the application of Weibull distribution in quantitative forestry. Weibull distributions that have used to characterize stem diameter distribution include Bailey and Dell (1973), Bailey and Clutter (1974), who used it to predict development of Pinus radiata in New Zealand. In Nigeria, Okojie (1981) and Adegbehin (1985) have used Weibull functions to characterize the stem diameter distributions for plantation of indigenous Meliaceae and exotic tree species respectively. 2.7.3 MATRIX ALGEBRA FORMULATIONS Weibull equation can be reformulated using matrix algebra in a way that is both concise, and allows growth of trees through several diameter classes in one time period. The basic matrix formulation can be stated as: Nt+1 = G.Nt ……………………….………… eqn.20 Where: Nt is a column vector whose elements are the stem numbers in each diameter class at time t. It may be written as: Nt = [n1 n2 n ... nk ... nm]‟ The elements nk are identical to the scalar values Nk in equation (20). There are m diameter classes altogether. Nt+1 is a column vector of stem numbers by diameter classes one time period later, its definition is as in (20). G is a square matrix of order m known as the transition matrix. Each element gij defines the proportion of stems, which grow from the ith diameter class to the jth diameter class during a time period. 25 UNIVERSITY OF IBADAN LIBRARY The elements of G correspond to components of equation (20) for trees, which move exactly one class or remain in the same class. However, they can also allow growth of trees across several classes, or even shrinkage of trees. Similarly, Weibull equation works because of the way the operation of matrix multiplication is defined. Each element of Nt+1, will be given as: m nj,t+1 =  k=1nk,t.gkj ……………………………. eqn.21 This is implicit in the definition of matrix multiplication (Green, 1976). The application of matrix algebra to growth modeling in uneven-aged forest stands appears to have evolved from three distinct lines of thought. The models developed by Usher (1966) were derived from animal demographic methods applied to plant populations. Bruner and Moser (1973) used the general technique of Markov modeling, whilst other authors (Mengin-Lecreuix, 1990) simply adapt matrix algebra to the „classical‟ diameter class projection model defined in equation (20) above. The use of matrix models in forestry appears to have originated with Usher (1966). He noted that Leslie (Leslie, 1945, 1948) had described a matrix model of animal populations with the following form: at 1,1 a ,   fo  f t 1 1  f n1 f n          po . .   a    .  t at .i ................... eqn.22 1,i .  p  . . 1       .    p   n1 .  a a , t 1,n  t n  which can be expressed more compactly in matrix notation as: at+1 = A.at ............................. eqn.23 The column vectors a t and at+1 are the numbers of animals in each age class at time t and t+1 respectively. The square matrix A contains a top row of elements f0 to fn which are 26 UNIVERSITY OF IBADAN LIBRARY the fecundities of each age class. In other words, f1 is the number of offspring that will be born to the i‟th class during one time interval. The off-diagonal elements p1 are the probabilities that any individual will survive over a time period. Usher adapted this model from the context of animal demography to tree growth and regeneration, reformulating equation (21) as: qt+1 = Q.qt ……………………… eqn.24 Instead of the population vector a with elements representing age classes, we have the vector q whose elements correspond to tree diameter classes. The transition matrix Q in equation (21) is analogous to A in) (20), but with some differences of interpretation. It is constructed of zero elements except for a top row k1 diagonal elements ai and off- diagonal elements b1 as shown in equation (22). The interpretation of these elements in forestry terms is as follows:  The a1 terms are the proportion of static trees that remain in a given class during any growth period.  The b1 terms are the proportion of trees in the i‟th size class that will grow into the next class up (i + 1) during the period. a0 k1 k2  kn1 kn    b0 a1 . . .  . b1 a2  . .  Q    ..........................eqn.25 . .   . .  . . .  a n1 .   . . .  bn1 an   The k1 terms are the total numbers of ingrowths, or plants added to size class 0, during a period, as a result of trees being harvested from the i‟th class. For classes 0 to n-1, these terms can be defined as: 27 UNIVERSITY OF IBADAN LIBRARY k1 = C1 (-1) ……………………. eqn.26 and for the n‟th class as: Kn = Cn(-an) ………..…………….eqn.27 where n is the proportion of trees left after harvesting, and c is the number of ingrowths trees expected to arise in the gap left by a single tree in that class. Bruner and Moser (1973) developed a model of stand growth for uneven-aged mixed hardwood forest in Wisconsin that is purely Markovian‟ in its design. The basic model is identical in formulation to equation (21). The elements of the state vector consisted of the size classes from 8” to 29”, 29” +, dead trees, and harvested trees. Permanent sample plot data was used to calculate the transition probabilities, which aggregated for all species. The work does not indicate either the species mix or the number of plots used to derive the data, but the original transition matrix is reproduced, it appears that annual measurements existed over a 19-year period; the first nine measurements were used to define the transition matrix, which thus had a 9-year time step. The subsequent measurements were used for validation. This shows that trees can grow one or more 1” class during the time step. Mortality is small but positive for the smallest and largest classes; and zero for the mid-sized trees 19- 25”. Harvesting also occurs at all sizes, but principally above 22” diameter, where it is about 20% of the class stocking. The model was used to make forecasts of stand structure over an 18-year period (2 time steps) by squaring the transition matrix. In general with a Markov model, the state of the system after n steps, tn can be determined analytically from the initial state t0 by the matrix equation: tn  P n.t0 .........................................eqn.28 Bruner and Moser (1973) reported a comparison between the model‟s projection over 9 years and the observed growth and mortality. The fit appears good with respect to both 28 UNIVERSITY OF IBADAN LIBRARY tree numbers and diameter distribution. However, their study appeared to have been unaware of Ushers (1966) work, in spite of the close similarities of the approach. Usher‟s method concentrated to some extent on regeneration, and allowed harvesting only as the same constant proportion in each size class (the a factor in equation {24}). Usher also allowed growth over only a single diameter class. Bruner and Moser‟s work, on the other hand, explicitly neglected regeneration, but included a flexible method of defining the harvest and mortality rates. Buongiorno and Michie (1980) extended Ushers formulation of the matrix model by including a separate vector of harvested trees, and by allowing ingrowths to be a density- dependent function of basal area at the previous time period. n matrix notation, the model is: y t1 Gyt ht   c ..................................eqn.29 where: yt is a column vector of tree numbers by size classes in the current growth period. yt+1 is a column vector of tree numbers by size classes at the next growth period. G is the transition matrix, comprising the following non-zero elements: d1 d 2 d3  d n   b2 a2 .   .   G  . b 3 a3  . ........................................ eqn.30   . .   .   . . . bn a  n  ht is a column vector of tree numbers harvested during the period. c is a column vector comprising only a single non zero element: 29 UNIVERSITY OF IBADAN LIBRARY 0    0     0  ..................................eqn.31        0   The a1 terms define, as in the other matrix models, the proportion of trees that remain in the i‟th class. The b1 elements likewise define the proportion of trees in i‟th class that will move into the (1 + l)‟th class during a growth period. The d1 and 0 elements relate to the formulation of the ingrowth function. It is assumed that the number of trees in the smallest class at the next growth period can be predicted from the equation: y1,t1  0  d1 y1,t h1,t  dn yn,t hn,t  ................ eqn.32 where: d1  a1  11  2 ................................. eqn.33 d1  11 2 .................................... eqn.34 The 1 are the mean basal areas of each size class, whilst the 1 are empirical coefficients. When the matrix multiplication is worked out, equation {32} resolves to an equation to predict ingrowth into the smallest class with the form: 1t  0  11(Y1 h1,t )  2y1,t h1,t  .................. eqn.35 ,t In other words, ingrowth is a linear function of stand basal area and the total number of trees. The 1 term is likely to be negative, with lower ingrowth at higher stand densities due to shading; the 2 term should be positive, indicating that that there will be more seedlings developing as more gaps are formed from dead or felled trees. Buongiorno and Michie (1980) tested this model with data from mixed hardwood forests in Wisconsin and Michigan, dominated by Sugar Maple. They found that over long periods of simulated time, the stocking tended to oscillate in long cycles of some 200 30 UNIVERSITY OF IBADAN LIBRARY years, with the diameter distribution tending to be U-shaped, with abundant large trees and a deficit of Intermediate sizes. This is interesting as such diameter distributions may be observed in undisturbed tropical high forest (Alder, 1991). The work also explored the conditions and effects for a sustainable yield defined such that the stand vector y at the end of a felling cycle is the same as at the beginning. It is possible to solve for the yield that will satisfy this condition using linear algebra. The result is a vector of tree numbers to be removed, with each element being a size class. In later works on the same theme, Michie and Buongiorno (1984) gave more details of how the elements of the transition matrix and the empirical coefficients could be calculated from permanent sample plot data. Buongiorno and Hsien-Chi (1990) discussed how the basic model in equation {2.26} can be used in a linear program that maximizes the value of the harvest, subject to the sustained yield condition that the stand vector should be constant at the end of successive felling cycles. From this, both the optimum harvest and th e cutting cycle can be determined using the modeling approach which had been applied to forest sector projections in Nigeria (World Bank, 1992). Mengin-Lecreuix (1990) reports on a matrix model developed for mixed tropical forest in Yapo, Cote d‟lvoire. The basic model is: xt2  v.p.xt  R .........................................eqn.36 where: xt is a column vector of diameter classes in year t. Each class is 5 cm wide, and the model had 25 classes in all. The basic time period was 2 years, hence the vector xt+2 gives the stand 2 years later, after a single growth step in the model. v is the survival over each growth step, given as a constant fraction irrespective of size class. 31 UNIVERSITY OF IBADAN LIBRARY P is a growth matrix giving the transition probabilities. As with the matrix Q in equation (36), only the a1 diagonal elements and b1 sub- diagonal elements are non-zero, and define the proportions of static trees and those which move into the next higher class in each 2-year step. R is a column vector whose elements are zero except for the first, after the manner of the c vector in equation (36). This first element represents a constant rate of recruitment into the smallest diameter class. The data for the plots was derived from experimental plots at Irobo, cote d‟ivoire. Different growth, mortality and recruitment functions were established for 30 species and for thinned and unthinned forest, and used to project the growth of the forest at Yapo. These examples illustrate some of the various formulations of matrix models of stand growth. All are essentially related to the simpler diameter class projection model of equation (35). Matrix algebra provides a compact notation for discussing the basis of a model. However, in practice, as will be seen, there are significant difficulties in applying matrix models to tropical mixed forests due to the large number of species. Even with grouping of data for species of similar habit, there may be 40-50 groups, each of which requires its own transition matrix, all of whose elements have to be defined as model parameters from data. With the inefficiency of a matrix representation in the examples discussed, most of the elements of the transition matrix are zero and if this algebraic approach is translated directly into a computer program, then the majority of the memory is used storing zeroes, and most of the computer time looping through empty portions of matrices. Matrix models also suffer from the general deficiency of diameter class projection models, arising from the lack of sensitivity to density-dependent interactions. 32 UNIVERSITY OF IBADAN LIBRARY 2.7.4 CONSTRUCTION OF DIAMETER CLASS PROJECTION MODELS USING A SIMPLE TRANSITION MATRIX MODEL Transition matrix models based on equation (30) are simple to construct if a large amount of data is available. They are difficult to build with sparse data, when the transition matrix will have many zero elements and will be poorly defined. The matrix model can be defined as: Nt1  R  G.Nt .....................................eqn.37 This is identical to the definition of equation (31) but with an additional column vector, R. Each element of R gives the numbers of trees growing into the corresponding diameter class as recruitment over a fixed period. G is the matrix of transitions, with each element gij defining the number of trees which move to class i from class j. The column totals will normally be less than one. In other words: m gij  1 ...........................................eqn.38 I1 The summation gives the total survival over the period. This type of formulation differs from a pure Markov model such as that of Bruner and Moser (1973) discussed earlier. In a Markov model, states would need to be defined for dead and harvested trees, so that column totals would always equals 1. 2.8 CROWN COMPETITION INDEX In general modeling, there is a need to quantify the effects of competition when plants or trees grow in communities. The effect of intensity of competition depends to a large extent upon whether the competition is intra-specific on inter-specific. Tree to tree interaction may result in reduction of growth of weak competitive trees. So the extent of this growth reduction is of main concern for the modelers to incorporate in their models for the realistic prediction of stand productivity, which is of real interest to the forest managers for making silvicultural, management and economic decisions for their estates. 33 UNIVERSITY OF IBADAN LIBRARY A competition index characterizes the degree to which the growing space of an individual plant is shared by other plants (Deluis et al., 1997). It is difficult to define a zone of influence for use in a competition index for individual tree that includes all competition and sources of competition for scarce resources. Two major classes of competition indices have been developed: distance-independent and distance-dependent (Munro, 1974). Distance- independent indices don‟t require spatial data whereas the distance- dependent indices use spatial data to stimulate individual trees or their parts (crowns, branches, etc.). Single tree spatial models use information about the distances and sizes of neighbouring trees. The distance-dependent competition indices can further be divided into size-ratio, crown or influence-zone overlap and growing space or area potentially available indices. However the size ratio index is the mostly used method which calculates sums of ratio of subject tree dimensions to competitive tree dimensions. These ratios are often weighted by distances of the subject tree to its competitors. The most common tree dimensions used are diameter at breast height (DBH), total height and basal area (the sum of individual tree cross-sectional areas). Hegyi (1974) competition index is the most widely used size-ratio index which is calculated as in function: CI = ……………..………eqn.39 Where CI is overall competition index of ith subject tree, DBHj is diameter at breast height of jth competitor, DBHi is the diameter at breast height of subject tree and d is distance between jth competitor and ith subject tree. Size-ratio indices are useful for situations where there is uncertainty about the radius of the influence zone. 2.8.1 Crown Competition Factor (CCF) Crown competition factor was used in the study as a measure of stand density from predetermined relationship. The index enabled the development of model that expresses relationship between crown width (CW) and diameter (D) for open-grown trees with the general form: 34 UNIVERSITY OF IBADAN LIBRARY CW= bo +b1D ………………………………………eqn.40 Where βo and β1 are regression model coefficients. However, Lemay and Marshall (1990) reported that CCF is dependent on the horizontal projection of crown areas of stand- grown trees of a given diameter relative to the maximum crown area that would be associated with open-grown trees of the same diameter and that if CW is measured in meters, crown area (CA) is expressed in square meters as: 2 2 CA= X (CW) = X (bo +b1D) …………………..eqn.41 Similarly, the maximum crown area (MCA) of the study was computed from whence the CCF of the stand was estimated. The MCA is the crown area of an open- grown tree of diameter D, expressed as percentage of a hectare as in the form: MCA= ………………………….eqn.42 The MCA was then computed for every tree in the stand, and the summation of these values on the basis of hectare is the crown competition factor (CCF). 2.9 MODELS COMPARISON: STOCHASTIC AND DETERMINISTIC MODELS Acharjee (2006) reported that deterministic growth model produces an estimate of the expected growth in the equivalent such that the estimate of the mean indicates the expected trend for a population with the ample possibility of the model types being effective for determining the expected yield which are tremendously applicable and useful in indicating the optimum stand condition of a forest estate. On the contrary, stochastic models attempt to exemplify the natural disparity which always gives the provision of different predictions, each with a specific probability of occurrence (Frange, 2005; Haugh, 2010).For example, Huang et al. (1992) compared 20 published non-linear height-diameter functions including S-shaped and concave-shaped curves for 16 different species in Alberta, Canada. Fang and Bailey (2001) also investigated 33 height- 35 UNIVERSITY OF IBADAN LIBRARY diameter equations including S-shaped and concave-shaped curves for tropical forests in Hainan Island of Southern China. Lei and Zhang (2006) reported that when a large number of models are compared, much longer time is needed besides mixing up the conceptions and properties of different mathematical models in the process of computation and selection for a given data set. Apparently, such a process based on model selection may have at least two drawbacks. First, the model forms are subjectively constrained to a given data set, and consequently some biases may be introduced in some competing models, and some may not even achieve convergence due to the use of an inappropriate functional form to start with. Secondly, it takes a considerable amount of time to complete the model selection process because of too many candidate models. For example, the curve forms of the competing models are often assigned a priori by restrictions on the S-shape, the concave shape or the parabolic shape at a given database. Instead, the form of a function selected to represent forest growth process must be sufficiently flexible and versatile to allow the curves to vary with different data sets (Lei and Zhang, 2006). The functional forms suggested by Richards (1959) and Schnute (1981) can describe both S-shape and concave shape relationships depending on the estimated coefficients in a given data set. Both models have this useful feature, as they allow for a test of different curve shapes and thus do not make it necessary to assume an S-shape or a concave shape a priori and to use so many candidate models before the best model in a given data set is selected. However, this feature has not yet been used to conduct real data analysis with various outcomes that might be of interest to forest biometricians involved in similar model problems in forestry despite wide uses in growth models (Cieszewski and Bella, 1992, 1993; Cieszewski and Bailey, 2000; Cieszewski, 2001). This may lead to a commonly used and recommended approach that includes different curve shapes for a given database from sample plot information. The two models possess similar capabilities or basically similarity, but the deterministic model is more flexible and versatile than the stochastic model (Bredenkamp and Gregoire, 1988). The deterministic model is much easier to fit and quicker to achieve convergence for any populations (Lei, 1998). 36 UNIVERSITY OF IBADAN LIBRARY Significantly, deterministic models produce a characteristic curve that peculiarly shows an initial period of decelerating growth and, passed the inflection point, continues with an indefinite period of accelerating growth. Such a curve might not occur very often in forest growth modelling. It occurs only when competition mortality leads thinned stands to an accelerated growth in mean diameter at breast height-dbh; which is an integral part of forest growth characteristics (Bredenkamp and Gregoire 1988). 2.10 GROWTH MODELS’ DEVELOPMENT, EVALUATION AND VALIDATION 2.10.1 Models development Growth modelers need data to develop models, to test models, and to use models, and each of these three activities may require data of a different nature. The initial and obvious requirement in model development most especially when data are used to fit the basic functions comprising the model is thoroughness of the data for the model testing. Interpolations are always safer that extrapolations, so permanent plot system should be designed to sample the widest possible range of site and stand conditions. Limited but reliable data at each extreme and at the mean are more useful than copious data clustered about the mean. Re-measurements are necessary to detect growth and change, and must span a sufficient time period to incorporate climate variation. The measurement interval should be long enough to ensure that growth patterns are not obscured by measurement error. Some statistical difficulties may arise if there are many re-measures of each plot, unless the number of plots should is large relative to the number of plot re-measurements. 2.10.2 Model Validation and Application The validation of a model or computer program is the process of checking inputs and corresponding outputs to determine accuracy. In the case of a forest growth model, this means comparing the projected growth of stands over various periods of time and under various management regimes with the observed growth, as determined from PSPs, experimental plots, and stands of known age since logging. 37 UNIVERSITY OF IBADAN LIBRARY The data used to test or validate a model may be completely independent of the data used to construct it, or it may be the same data. These two situations can be referred to as Independent or self-validation. Self-validation is a normal procedure with simple regression models, where statistics such as residual standard deviation provide indicators of regression accuracy. Residual plots are used in regression analysis to determine undesirable features such as lack of fit, heteroscedacity, or bias (Draper and Smith, 1966). Independent validation is more rigorous than self- validation, but when data is limited, may be an unachievable ideal. As an example, Alder (1979) used both self and Independent validation to test the VYTL growth model. Self-validation was based on the same PSPs as were used to develop the model. Independent validation was performed by simulating a number of thinning experiments whose data had not been used in the model. It may be the case that no suitable data exists to fully validate a model. This case arose in the work of Alder (1995), for example, with the GH FOSIM study. GHAFOSIM was based on individual tree growth data, from which whole stand yields were estimated. There was no data available on whole stand growth that could be used to check the model. Validation in such cases is limited to determining that model outputs are reasonable, conforming to general expectations and published results from similar forest types. Formal documentation of the validation process is important to the acceptance of a model as a management tool. Introduction of growth modeling techniques into forest management implies and requires the evolution of a forest management information system. This in turn imposes a need for organizational change. Such changes will tend to be resisted by individuals who are threatened or challenged by them. If no formal validation has been performed, it will be relatively easy to oppose the introduction of modeling techniques on the grounds that the model is unproven and of doubtful accuracy (Alder, 1995). Conversely, there may be a tendency to an over-enthusiastic and uncritical adoption of computer methods without thorough testing, in such cases, programming errors („bugs‟) and model weaknesses could lead to grossly erroneous management decisions. Apart 38 UNIVERSITY OF IBADAN LIBRARY from the direct environmental and fiscal damage that might ensue, this would have the effect of discrediting modelling techniques, and retarding their wise and proper use (Alder, 1995). Although a model should be formally validated as a terminal component of its development and documentation, validation is also an ongoing process during its composition. It is applied to check individual growth functions and also complete program modules. This internal validation will generate changes and adjustments to functions used, especially with respect to bias, validation thus becomes a component of function and program development. 2.10.3 Model Evaluation Model evaluation is an important part of model building, and some examination of the model should be made at every stage of model design, fitting and implementation. It should not merely be an afterthought or an acceptance trial. A thorough evaluation of a model involves several steps, including two which are often called verification and validation. In forest growth modeling, these usually denote qualitative and quantitative tests of the model, respectively. However, there are some objections to these terms (Oreskes et al., 1994): 1. They are value-loaded, and it is preferable to use neutral language to assess model performance. 2. The same terms are used in other branches of mathematics and logic to denote other meanings: a model is valid if the logic is correct, and verified if it is “true”. 3. Verity implies truth, but it is impossible to prove a model “true” (except in the special case of a closed system). The only truth that can be established in a growth model according to Goulding (1979) is that the model is a faithful representation of what the modeler intended. Similarly, the only sense of validity that can be demonstrated for an empirical model is the “reasonableness” of the statistical assumptions. Thus it is appropriate to avoid these terms, and to use alternatives. We use the term model evaluation to encompass both these aspects. Thorough model evaluation comprises 39 UNIVERSITY OF IBADAN LIBRARY several steps, each of which may involve qualitative and quantitative aspects. Some steps involve examination of the structure and properties of a model, with or without supplementary data, to confirm that it has no internal inconsistencies and is biologically realistic. Others require comparisons with empirical data to quantify the performance of the model, and have become known in some forestry literature as benchmarking. Ideally, benchmark tests should involve data which are in some sense unlike the data used to fit the model, but useful insights can also be obtained with the calibration data. These tests cannot prove a model to be "correct", but may be used in attempts to falsify inferences made from the model. The quality of a model can only be evaluated in relative terms, and its predictive ability always remains open to question. However, the failure of several attempts to falsify a model should increase its credibility and build user confidence. This is the role of model evaluation. Thus model evaluation should be an on-going procedure which commences during model design and continues throughout model construction and for as long as the model remains in use. Vanclay (1994) and Soares et al. (1995) recently reviewed ways to evaluate forest growth models. It can be stressed that model evaluation should not be a mere mechanical procedure to examine a model‟s technical credentials, but should also involve philosophical considerations by modellers and model users. 40 UNIVERSITY OF IBADAN LIBRARY CHAPTER THREE 3.0 MATERIALS AND METHODS 3.1 THE STUDY AREAS 3.1.1 Omo (J4) Forest reserve 3.1.1.1 Location o 1 o 1 The Omo Forest Reserve is located between latitudes 6 42 and 7 00 N and longitude o 1 o 1 4 17 and 4 25 E (Figure 2). The reserve has to its northern boundary Osun and Ago Owu forest reserves in Osun State and Oluwa forest reserve in Ondo State. The Omo and Oni rivers delineate the southern and eastern boundaries, while the western frontier of the reserve is demarcated by surveyed lines and trails. The reserve had a total area of approximately 130,550ha which includes a 460 ha Strict Natural Reserve (Okali and 2 Ola-Adams, 1987), with about 65km of enclave and cut out areas with a total of about 20,000 inhabitants (Dike, 1992); is roughly triangular in shape, and tapers southwards with its southernmost tip about 20 km from the Atlantic coast. 3.1.1.2 Topography, Geology and Soils Topographically, the reserve has a general terrain that is undulating with maximum elevation of 150 m above sea level is towards the west while the lowest parts of the Reserve are in the south where the River Omo joins River Oni before flowing into the Lekki Peninsular on the Atlantic coast. The Lagos-Ore-Benin Highway passes through the southern tip of the Reserve. The main study area is generally lowland with fair undulation towards the Ajebandele community of the reserve. Geologically the Reserve lies on crystalline rocks of the undifferentiated basement complex which in the southern parts is overlain by Eocene deposits of sand, clay and gravel. The majorities of soil representatives are found similar to the Ondo Association as contained in the Smyth and Montgomery (1962) soil classification pattern. This characteristically comprises of well-drained, mature, red, rocky and gravelly soils in the upper component of the order, which result into hill wash overlying original parent materials deposits in valley floors. Chijioke (1988) reported that the texture of the reserve varies from coarse 41 UNIVERSITY OF IBADAN LIBRARY sandy clay at the upper slopes to loamy sand at the bottom with generally acidic soil reaction. 3.1.1.3 Climate and Vegetation The climatic description of Omo forest reserve is that of humid tropics with distinctive high temperature and high annual rainfall. The report of Chijioke (1988) showed that an annual rainfall of about 2362mm is common with highest rainfall occurring between April and October. Similarly, the driest months in the reserve is reported to occur between November and February (Lowe 1993; as cited by Isichei, 1995). The forest vegetation present in the reserve is that associated with Ferruginous Tropical soil with abundance in species including Hunteria umbellata, Lanneawelwitschii, Terminalia superba, Triplochiton scleroxylon, Bridelia atroviridis, Celtis mildbraedii, Discoglypremna caloneura, Erythrophleum ivorensis, Khaya ivorensis, Mitragyna ciliata, Pausynstalia macroceras, P. talbotii, and Scottellia coriacea (Isichei, 1995). 3.1.2. Oluwa Forest reserve 3.1.2..1 Location Similarly, Oluwa Forest reserve (mainly OA6, OA2 and OA1) is a pet project of Ondo State Afforestation (OSAP), Lisagbede, Ondo State of Nigeria; co-established by the World Bank, Federal Government and the Ondo State Government in 1979 in furtherance Iwopin Paper Mill Industry in Ogun State. The Oluwa forest reserve geographically lies within latitude 6°55' and 7°20‟N and longitude 3°45' and 4°32‟E; and it is situate ted between the Oni River and the Omo Forest Reserve (Figure 2). The reserve has boundaries with Ogun State to the West of the reserve; Ore-Sagamu/Lagos-Benin expressway to the South; River Oluwa to the East and sparsely bounded in the North by some communities in Ondo State. The operation base of OSAP within the forest covers an area of about 56,110 hectares with the major activities centred at Lisagbede. 42 UNIVERSITY OF IBADAN LIBRARY 3.1.2.2. Topography, Geology and Soil Oluwa Forest Reserve has a gently undulating steeply slopes with occasional hilly outcrops. The soil present within the forest reserve is of Precambrian period with soil composition dominantly ferralitic with usual sandy loamy overlaid with slightly clay gravel. The area of the reserve has mean attitude of about 100m above the sea level. 3.1.2. 3. Climate and Vegetation As a true replica of tropical Climate, Oluwa Forest reserve has the two predominant seasons- Dry and the Wet sessions with annual rainfall varying between 1,500mm to o o 2,200mm; and the mean daily temperature is noted to range between 20.7 C to 27.5 C while the mean annual daily humidity finds its range between 81% and 84%; with the mean elevations of 100m above sea level. Oluwa forest reserve is a typical of rainforest type with diverse species and distinct canopies. The notable structure and physiognomy of the reserve is with a peculiar stratification yet highly heterogenous floristic composition of the following recognizable indigenous tree species- Alstonia boonei, Afzelia africana, Buchholzia coriacea, Ceiba pentandra, Celtis zenkeri, Cleistopholis patens, Cola gigantea, Pterygota macrocarpa and Triplochiton scleroxylon. 3.1.3 Shasha Forest Reserve 3.1.3.1. Location, Topography, Geology and Soil Shasha Forest Reserve is situated in the Ife South Local Government Area of Osun State, 2 Nigeria. It has landed area coverage of about 310.798 km or 31079.857 ha and geographically located on 70 and 70 10' N and 40 20' and 40 40'E (Figure 2). It shares boundaries with Omo Forest Reserve in the west. The northern and eastern boundaries are with Ife Native Authority Reserve (No. 2) and Oluwa Forest Reserve Ondo State respectively. According to Bada (1977) and Kio (1978), the geology and soils of Shasha Forest Reserve is composed of undifferentiated crystalline rocks (basement complex). The rocks components are made up of granites, gnesis and schists with occasional rock out - crops on riverbeds; while the soil belongs to the Ferruginous 43 UNIVERSITY OF IBADAN LIBRARY tropical group, which varies in depth from a few centimeters near rock out crops and one to two meters in areas occupied by large trees. 3.1.3.2. Climate and Vegetation The annual rainfall is between 1000 and 1500 mm while the mean annual temperature is 0 0 0 26.5 C with the annual range between 19.5 C and 32.5 C (Kio, 1978).The vegetation according to Keay (1959) and Keay (1989) was classified as tropical lowland rainforest with three distinct canopy stories with scattered emergents. The vegetation of Shasha Forest Reserve can be classified as mixed/moist semi evergreen forest. There is however a mixed deciduous forest in the northern part and a wet evergreen forest in the larger percentage of the southern area of the reserve as it was been identified by Okali and Ola Adams (1987) with several individual stems of about 95 species reported. Dauda et al., (2004) submitted also that the indigenous species encountered during the study were mostly Strombosia pustulata, Tabernaemontana pachysiphon, Anthostema aubreyanum and Diospyros iturensis. There are also patches of exotic species plantations such as Tectona grandis, Gmelina arborea and Pinus caribaea among others. 44 UNIVERSITY OF IBADAN LIBRARY Figure 2: Map of Southwestern Nigeria showing location of Oluwa, Omo and Shasha Forest Reserves of the study area 45 UNIVERSITY OF IBADAN LIBRARY 3.2 Data collection 3.2.1 Reconnaissance survey and sites selection A reconnaissance survey was carried out to ascertain the accessibility and suitability of the study areas. The visual assessment of the stands made enabled the proper planning of the sampling techniques. The selection of sites for this study was based on the availability of existing Pinus caribaea stands in the study areas with uniform growth differences and sufficient planting density suitable to get information needed for the study (Table 1) Table 1: Extent of hectage distribution of Age series of Pinus caribaea plantations in the study areas Year of planting Location Age Density per Ha 1974 Oluwa Forest 37 2500 1975 Oluwa Forest 36 2050 1976 Oluwa Forest 35 4575 1984 Shasha Forest 27 5900 1990 J4 Area 21 6050 1991 Oluwa Forest 20 5925 1993 Oluwa Forest 18 1425 1996 J4 Area 15 11575 3.2.2 Sampling Technique Sampling techniques are paramount necessary in quantitative forestry to obtain estimates that are representative of the entire population. In this study, stratified sampling technique was used with the three Forest Reserves (J4-Omo, Oluwa and Shasha Forest Reserves) representing the strata and from where Twenty (20) Temporary Sampling Plots (TSPs) were randomly chosen from each stratum and the estimates of the mean and the total population were obtained without element of biasness. 46 UNIVERSITY OF IBADAN LIBRARY 3.2.3 Measurement of Tree parameters Tree growth characteristics measured and estimated during this study period included diameter at breast height over bark of all trees (cm), diameter at the base, at the middle and at the top of all trees in each of the sampling plots (cm), total height of all the trees (m), crown length of all the trees (m), crown diameter of the entire tree (m), merchantable height of all the trees (m) as well as the record of the age of each plot. Also determined from each of the temporary sampling plot are stem quality and canopy layer in all the study areas using mensurational instruments such as Relascope and Girth Tape for diameter measurement, Clinometer (height related attributes), a Measuring Tape for distance or land measurement and Compass and GPS for locating the coordinates within the study area. 3.3 Data Analyses 3.3.1 Computation of models variables 3.3.1.1 Stand Basal Area Estimation The estimations of basal area in this study were both computed for every tree in each plot and for eventual mean of tree per plot. For individual trees within the plot, the basal area was estimated using the formula: g = …………….………………… eqn.43 where 2 g = basal area (m ) D = diameter at breast height π = 3.142 (a constant) Similarly, the mean basal area per plot was estimated using the formula dg= ………………………………eqn. 44 where dg= mean basal area 47 UNIVERSITY OF IBADAN LIBRARY d = dbh (diameter at breast height) n = number of trees per plot Correspondingly in every plot, the total basal area of all trees was computed and used to estimate the basal area per hectare by simply multiplying the plot basal area by 25 (being the number of 0.04 ha sample plots in a hectare. Likewise, the annual tree basal area growth and stand basal area growth per hectare were obtained by dividing individual tree basal area and basal area per hectare by the plot equivalent age respectively. 3.3.1.2 Stem volume estimation The stem volume of each P. caribaea tree in each plot was estimated using Newton‟s formula: …………………….……eqn.45 3 where, V= stem volume (m ), h = total height of the section of the tree, Ab, Am,Au, are cross sectional areas at the base, middle and top of the tree respectively. The formula for this estimation was based on the work of Husch et al. (1982). Volume 3 per hectare (m /ha) was also estimated by multiplying each plot stem volume per tree by 25. Similarly, annual stem volume increments for individual trees and on stand basis were computed by dividing both tree volume and stem volume per hectare by comparable plot age. 3.3.1.3 Tree Slenderness Coefficient The slenderness coefficient of a tree is defined as the ratio of total height (h) to diameter at 1.3 m above ground (d). For the stand level, the slenderness coefficient is calculated using the quadratic mean diameter and the height of the mean tree as (hg/dg). There is well known that a straight relationship exist between the slenderness coefficient of the 48 UNIVERSITY OF IBADAN LIBRARY stands and the risk of stem breakage or tree fall due to abiotic factors such as the wind or snow (Nunes, 2010). The tree slenderness coefficient of each P. caribaea tree in each plot was computed using the formula: TSC = …………………………… eqn. 46 where TSC = tree slenderness coefficient, THT = tree total height (m) and D = diameter at breast height (m) 3.3.1.4 Site quality assessment 3.3.1.4.1 Site index The importance of site assessment remains concomitant in quantitative forestry; simply for its possibility of allowing a measure of site quality. Though several methods have been developed and applied, the method used by Akindele (1990) was adopted in this study following the procedures of development of site index equation for estimating the site indices of the sample plots, the computation of site index values of the corresponding sample plots, and fitting of the linear regression model for predicting site index from the growth characteristics variables. Similarly, there is need for consideration of an index age for developing equations for site index estimation for each plot under the Pinus caribaea plantation. Twenty Five (25) years was therefore used as an index age for this study, being a nominated age within the range of the plantation in the study area. Additionally, the linearized regression of Schumacher (1939) was adopted for the estimation of site index for each plot and it is of order: 49 UNIVERSITY OF IBADAN LIBRARY -1 Hd = exp (bo +b1(A ) ….……………..…………….eqn. 47 Where, Hd = average dominant height A = Stand Age bo - b1= Regression coefficients Taking the logarithm of the equation, the equation becomes: -1 lnHd = bo +b1A …………………………eqn.48 Fitting the equation to dominant height data when A equals the index age (25 years); Hd will be equal to site index (SI). Thus -1 bo = lnHd - b1A ……………………………..eqn.49 -1 bo = ln(SI) –b1(25 ) ……………………………..eqn.50 -1 Note that (25 ) = 0.04 -1 lnHd = ln(SI) - b1(0.04) +b1(A ) .……………….…………...eqn.51 -1 lnHd = ln(SI) + b1(A - 0.04) ..…………….………………eqn.52 Making the SI the subject of the formula -1 Ln(SI) = lnHd - b1(A - 0.04) ……………………………..………..eqn.53 Therefore, [lnHd - b (A-1 - 0.04)] SI = exp 1 …………………….……….. eqn.54 The above equation was conveniently used for site index estimation and curves within the individual stand and the three stands with known values of age and dominant heights. 50 UNIVERSITY OF IBADAN LIBRARY 3.4 Crown variables estimation 3.4.1 Crown Projection Area (CPA) The Crown projection area for each tree in the study area was estimated from the formula: ……………………………….. eqn. 55 where CPA = crown projection area and CD = crown diameter. 3.4.2 Crown ratio Crown ratio was also computed for each tree in this study using the formula ……….………………………………………eqn. 56 where CR = crown ratio, CL = crown height and THT = total height. 3.5 Development of Growth and Yield Characteristics Models Different regimes of growth and yield characteristics models were developed at various levels of measurements (i.e individual tree, size class and whole stand). At the individual tree level, diameter growth per year, basal area growth per year, stem growth per year and 3 stem volume growth per year were used in modeling process. Stem volume (m ) and 2 basal area (m ) were used for yield models development while stem quality modeling utilized the merchantable height (m) as an indication of stem quality in the study area. Modeling from size class level used diameter stem quality distributions for modeling processes. Similarly, growth and yield variables per hectare per year and per hectare 3 respectively were explored for whole stand levels such that stem volume (m /ha/year), 2 basal area (m /ha/year) and stem quality (m/ha/year) for growth models while stem 3 2 volume ((m /ha) and basal area (m /ha) were used for individual growth models. The models developed essentially were combination of deterministic and stochastic models and their comparison in terms of performance was evaluated accordingly. 51 UNIVERSITY OF IBADAN LIBRARY 3.5.1 Chapman-Richards Functions Allometric relationships were used in this approach to derive height and diameter increment from volume increment. Allometry is based on the fundamental finding that the relative increment of one growth quantity is proportional to another growth quantity th of one and the same organism and was being used by 19 century foresters to estimate the growth of one part of a tree by the growth of a different part of the same tree. The allometric coefficient describing the height growth depending on volume growth of each tree was derived from the growth parameter by applying a Chapman-Richards growth function. This function was a common sigmoidal relationship that is often used to fit yield equations and it was of the form: - A Y = b1 (1 – e b )b2 3 ……………….. eqn. 57 Where Y is the variable of interest, b1, b2, b3 are parameters estimated using non- linear regression, and A was the age of the stand. The b1 parameters indicated the asymptotic value for Y and b2 and b3 parameters control the shape of the curve. Subsequently, the allometric coefficient was estimated assuming its dependence on the spatial arrangement of the trees under study. 3.5.2 Weibull distribution Functions Probability density function using Weibull distribution functions was adopted to establish the diameter and stem quality distribution models for Pinus caribaea in the study areas. The general probability density function for a 3-parameter weibull function is given as: 52 UNIVERSITY OF IBADAN LIBRARY f (x) = ………………..eqn.58 when x, β, λ >0; α ≥ 0; This will thereafter be simulated in to diameter and stem quality distribution functions; such that i) Diameter distribution function used was given as: f (dbh) = ………..eqn.59 ii) Stem Quality distribution function was expressed as: f (SQ) = ………………eqn.60 3.6 Model Verification and Validation All the models developed in this study were evaluated using quantitative or statistical procedures. The commonest methods that were adopted in this study are given below: i) The Mean Square Error (MSE): This was used in measuring the extent of the empirical data used for the primary purpose of ensuring optimum precision of the predicted response. This is expressed as: MSE= ……….…………….……….. eqn. 61 ii) 2The Square Multiple Correlation Coefficient (R ) This was used in measuring the proportion of variation in the dependent variable following the significant relationship to the independent variable. This is also 2 called coefficient of determination (R ) and is expressed as: 2 R = ………………..………. eqn. 62 2 iii) The Adjusted Square Multiple Correlation Coefficient (R ad) was also adopted in 2 evaluating the models to be developed. The R ad is given as: 53 UNIVERSITY OF IBADAN LIBRARY 2 2 R ad = 1- (1-R ) …………...………..eqn.63 = 1 - MSE ……………………...eqn.64 where, p = number of parameter in the model n = number of observation RSS = Residual sum of square TSS = Total sum of square (corrected) Similarly, the series of growth characteristics models developed were validated using Student‟s T-Test mean comparison method between the observed and predicted values of all the parameters being evaluated. The validation ensured the suitability and robustness of the models for futuristic predictions. 54 UNIVERSITY OF IBADAN LIBRARY CHAPTER FOUR 4.0 RESULTS 4.1 GENERAL ESTIMATES IN PINUS CARIBAEA GROWTH CHARACTERISTICS The general estimates of growth characteristics across the eight forest stands of the study area are shown in Table 2. Oluwa Forest Reserve 1974 (OFR-74) had the highest diameter at breast height (DBH) estimate with 34.99±1.085 cm while J4 1996 (J4-06) had the least DBH of 18.69±0.371 cm. The highest estimate of tree total height, merchantable height and stem quality were found in Oluwa Forest Reserve 1975 (OFR-75) with estimates of 17.23±0.218 m, 15.22±0.221 m and 13.27±0.225 m respectively; while their corresponding minimum values are found within J4-1999 with estimates of total height being 9.09±0.056 m, merchantable height of 8.54±0.059 m and stem quality having 6.71±0.063m. The 2 highest estimate (0.23±0.04 m ) of basal area (BA) was found in Oluwa Forest 2 Reserve 1991 while its least estimate (0.03±0.001 m ) was found in J4-1996. 3 Highest stem volume estimate (1.38±0.101m ) was observed within Oluwa Forest Reserve 1975 (OFR-75) and J4-1996 had the least stem volume estimate 3 (0.22±0.007 m ). Similarly, the highest estimate (0.272±0.002) of crown ratio (CR) was found within J4-1990 Pinus caribaea stand and the least estimates of 0.15±0.001 and 0.15±0.002 were found within OFR 1974 and OFR 1975 respectively. The crown projection area (CPA) had its highest estimate (6.93±0.087) found within J4-1990 and the least estimates (6.03±0.04 and 6.03±0.05) are contained within Shasha Forest Reserve (SFR) and OFR-1993 respectively. The highest estimate (82.88±1.085) of slenderness coefficient was found within OFR-1991 of Pinus caribaea while the least estimate (47.62±0.719) of slenderness coefficient was found within J4-1990. 55 UNIVERSITY OF IBADAN LIBRARY Table 2: Individual tree growth characteristics according to the study locations 2 3 Study N AGE DBH(cm) THT(m) MHT(m) SQ(m) CL(m) CD(m) BA(m ) SV(m ) CR SC CPA Location OFR-1974 100 37 34.99±1.085 17.13±0.194 15.20±0.216 13.34±0.219 2.55±0.005 2.88±0.016 0.11±0.006 1.14±0.094 0.15±0.001 52.51±1.219 6.54±0.072 OFR-1975 82 36 34.50±1.240 17.23±0.218 15.22±0.221 13.27±0.225 2.55±0.008 2.93±0.020 0.10±0.007 1.38±0.101 0.15±0.002 54.04±1.481 6.78±0.094 SFA-1984 236 27 24.41±0.530 14.16±0.139 12.17±0.145 10.03±0.142 2.49±0.004 2.77±0.009 0.05±0.002 0.56±0.030 0.18±0.002 62.33±0.956 6.03±0.040 J4-1990 241 21 22.51±0.439 10.09±0.104 8.87±0.105 7.39±0.111 2.64±0.013 2.96±0.018 0.04±0.002 0.32±0.015 0.27±0.002 47.62±0.717 6.93±0.087 OFR-1991 237 20 18.69±0.371 14.63±0.124 12.88±0.287 10.94±0.439 2.47±0.004 2.74±0.007 0.23±0.001 0.35±0.18 0.17±0.002 82.88±1.085 5.90±0.031 OFR-1993 57 18 21.06±0.704 14.82±0.202 12.90±0.193 10.93±0.191 2.49±0.007 2.77±0.012 0.04±0.002 0.44±0.036 0.17±0.002 73.40±1.459 6.03±0.050 J4-1996 464 15 18.76±0.242 9.90±0.056 8.54±0.059 6.71±0.063 2.49±0.005 2.77±0.008 0.03±0.001 0.22±0.007 0.25±0.001 55.70±0.565 6.06±0.037 OFR-1976 175 35 25.24±0.66 15.32±0.168 13.26±0.165 11.90±0.178 2.51±0.006 2.80±0.010 0.06±0.003 0.67±0.040 0.17±0.002 66.17±1.405 6.19±0.046 * Mean± S.E 56 UNIVERSITY OF IBADAN LIBRARY 4.2 CANOPY LAYERS GROWTH CHARACTERISTICS AND AGE SERIES ESTIMATES Estimates of growth characteristics within the crown canopy layer are shown in Table 3. Four crown canopy layers were identified across the Pinus caribaea stands in the study areas; namely dominant, co-dominant, intermediate and suppressed crown canopy layers (Fig.3). Diameter at breast height (DBH) were significantly different at P<0.05 among the crown canopy layer with dominant canopy having the highest estimate of 36.21±0.461 cm. The highest tree total height and merchantable height were found in the dominant crown canopy layer and the suppressed being the least. The stem volume estimates of suppressed and intermediate crown canopy layer were not significantly 3 different from each other but the highest stem volume estimate (1.36±0.046 m ) was found in the dominant crown canopy layer. Similarly, there existed sameness in the estimates of slenderness coefficient of intermediate (57.90±0.757) and co-dominant (59.21±0.512) crown canopy layer at P>0.05 level of significance. The estimates of diameter at the top to the diameter at breast height (DBH) were not significantly different between suppressed and intermediate crown canopy layer but highest estimate (0.063±0.004 cm) was found among the co-dominant crown canopy layer (Table 3). Test of significance among both individual and whole stand growth characteristics across the age series are shown in Tables 4 and 5. Stem volume, total height, merchantable height, diameter at breast height (DBH) and slenderness coefficient are the growth characteristics evaluated for the individual tree level while the variables evaluated for whole stand included averages per hectare of stem volume, tree total height, slenderness coefficient, merchantable height, diameter at breast height (DBH) and crown projection area (CPA). There were general significant differences among the growth characteristics across the age series in the individual growth variables. The mean stem volume ranges 3 3 from 0.22m to 1.42 m with distinct significance in ages 15 and 35. The stem volume among ages 18, 20 and 21 are not significantly different from one another at P>0.05 level of significance. Similarly, stem volume among ages 18 and 27 as well as ages 36 and 37 are not significantly different at P>0.05 level of significance. Comparably, similar trends 57 UNIVERSITY OF IBADAN LIBRARY were observed among the same growth characteristics at the whole stand level, which indicates obvious variations among the growth characteristics across the age series of the Pinus caribaea stands across the study area. This observation was in consonant with many studies on growth characteristics of tropical rain forest area plantation grown (Akindele and Abayomi, 1993; Dupuy and Mille, 1993; Onyekwelu et al., 2003). 58 UNIVERSITY OF IBADAN LIBRARY Table 3: Growth characteristics among individual canopy layer and Age Growth CROWN LAYER characteristics Growth Suppressed Intermediate Codominant Dominant characteristics a b c d DBH(cm) 14.14±0.1998 16.49±0.209 22.77±0.1609 36.21±0.4607 a b c d THT(m) 9.27±0.1339 7.78±0.0534 11.46±0.1079 14.86±0.1459 2 a b c d BA(m ) 0.02±0.0006 0.022±0.0005 0.04±0.0006 0.11±0.0028 a b c d SQ(m) 7.61±0.3543 6.13±0.0621 9.47±0.0730 12.90±0.1396 3 a a b c SV(m ) 0.13±0.0045 0.14±0.0041 0.41±0.079 1.36±0.0447 a b c d CR 0.23±0.0035 0.27±0.0015 0.20±0.0015 0.16±0.0022 a b b c SC 80.56±1.1042 57.90±0.7566 59.21±0.5191 47.28±0.5373 a b c d CPA 5.41±0.235 5.71±0.0361 6.28±0.0161 7.38±0.0637 a a b c DT/DB 0.57±0.0037 0.56±0.0049 0.63±0.0036 0.61±0.0070 Means with same superscript along the rows are not significantly different at P > 0.05 level of significant 59 UNIVERSITY OF IBADAN LIBRARY Table 4: Growth characteristics among individual different Stand Ages Stand age 15years 18years 20years 21years 27years 35years 36years 37years SV(m3) 0.22±0.0069a 0.44±0.0359bc 0.35±0.0181b 0.32±0.0153b 0.56±0.0304c 0.67±0.0404d 1.38±0.1008e 1.42±0.0935e THT(m) 9.90±0.0562a 14.82±0.2024b 14.63±0.1244b 10.09±0.1049a 14.16±0.1390c 15.32±0.1677b 17.23±0.2176d 17.13±0.1942d TSC 55.70±0.5648a 73.40±1.7567e 82.88±1.0953f 47.62±0.7174c 62.33±0.95656d 66.17±1.4053g 54.04±1.4809ab 52.51±1.2195b MHT(m) 8.54±0.0594a 12.92±0.1929b 12.88±0.2871b 8.87±0.1059a 12.17±0.5548c 13.26±0.1649b 15.22±-0.5398d 15.20±0.2163d DBH(cm) 18.76±0.2417a 21.06±0.7043b 18.69±0.3708a 22.51±0.4396b 24.41±0.5300c 25.24±0.6634c 34.50±1.2400d 34.99±1.0855d Means with same superscript along the rows are not significantly different at P > 0.05 level of significant 60 Growth U characteristic NIVERSITY OF IBADAN LIBRARY Table 5: Growth characteristics among different whole stand Ages Whole Stand age 15years 18years 20years 21years 27years 35years 36years 37years SV/ha(m3ha-1) 306.54±16.78bc 195.60±46.23a 255.63±24.11ab 242.22±16.81ab 413.53±49.17c 365.34±28.05c 352.53±23.52c 443.41±36.17c AVTHT(m) 9.99±0.18a 13.82±1.01b 14.65±0.24bc 10.14±0.15a 14.15±0.23b 15.57±0.39c 17.36±0.28d 17.27±0.25d AVSC 55.56±1.06a 69.74±4.29d 82.89±1.81e 46.98±1.52b 62.37±1.74c 64.92±1.85cd 51.96±2.95ab 51.33±1.69ab AVMHT((m) 8.58±0.11a 12.02±0.89b 12.93±0.46bc 8.97±0.19a 12.19±0.20b 13.51±0.38c 15.35±0.28d 15.35±0.27d AVDBH(cm) 18.96±0.49a 20.62±0.99ab 18.70±0.59a 22.86±0.75bc 24.08±0.67bc 26.08±0.87c 35.92±1.55d 36.19±2.45d CPA/ha 8294.08±545.19 3653.3±1510.12 9090.50±4690.01c 5218.59±581.76abcab 4449.06±520.26 abc 3385.03±441.51ab 1736.41±160.25b 1774.03±345.03b ac c Means with same superscript along the rows are not significantly different at P > 0.05 level of significant 61 Whole stand Growth U characteristic NIVERSITY OF IBADAN LIBRARY 62 UNIVERSITY OF IBADAN LIBRARY 4.3 CORRELATION AND REGRESSION ANALYSES Both linear and non-linear relationships among basic growth characteristics were evaluated to determine the relationship among dependent and predictors variables evaluated. The pattern of relationships among growth characteristics are shown in Figures 4 - 6. It is evident from the scatter diagrams in the figures that none of the predictor variables had linear relationship with corresponding dependent variables among one another. All the relationships evaluated are curvilinear and their 2 corresponding coefficient of determination (R ) ranges from 0.890 to 0.944. Relationship between merchantable volume and stump diameter had the highest 2 R value while diameter at breast height with total height had the lowest. The high relationships observed of diameter and stump on merchantable volume showed that these two variables are good predictor of merchantable volume. This observation agrees with similar results reported in tropical rain forest area of Nigeria for plantation grown Tectona grandis (Osho, 1983) and Gmelina arborea (Akindele, 2003). The results of linear correlation analyses between growth characteristics and other parameters at individual, size class and whole stand levels are shown in Tables 6- 9. The results of linear correlation at the individual tree level showed that there was high association between tree age and growth variables such as the tree total height, crown projection area, diameter at breast height and merchantable height with correlation coefficients (r) of 0.69, 0.53, 0.50 and 0.58 respectively. However, crown length, crown diameter, crown ratio, slenderness coefficient and basal area showed no significant linear association with the tree age (Table 6). Conversely, stem quality increment per year had negative association with the tree age. Diameter at breast height showed significant association with many of the growth characteristics except basal area, crown ratio, slenderness coefficient and stem quality. Associations between tree total height were only very significant with merchantable height (r = 0.88), stem quality (r = 0.73), stem volume (r = 0.68) and crown projection (r = 0.78) while the correlation coefficient with other 63 UNIVERSITY OF IBADAN LIBRARY growth characteristics is low (r < 0.50). Similarly, stem quality showed high correlation coefficient with basal area, stem volume and crown projection area, but its association with other growth variables is significantly low. There was high significant association with high correlation coefficient (r) between annual diameter at breast height with basal area, stem volume and stem quality. There was no linear correlation between basal area and other growth parameters except stem quality with correlation coefficient of r = 0.78 at P < 0.05 level of significance. Linear correlation analysis at the whole stand level showed that there was high association between tree age and other growth characteristics such as diameter at breast height, tree total height, merchantable height and slenderness coefficient. Stem age however revealed negative association with stem quality and crown ratio; indicating that as the tree age increases, these two variables significantly decrease. Slenderness coefficient at the whole stand is highly associated with tree total height and merchantable height with correlation coefficient of r = 0.98 and 0.99 respectively. Linear association only existed between stand index and slenderness coefficient among all other growth characteristics within the whole stand level (Table7). 64 UNIVERSITY OF IBADAN LIBRARY 120 y = 32.184x0.3598 100 R² = 0.8903 80 60 40 20 0 0 5 10 15 20 25 30 35 Dbh (cm) Fig.4: Relationship between merchantable volume and dbh for the pooled data of Pinus caribaea in the study area (n=1592) 65 UNI merchantable volume (m3)VERSITY OF IBADAN LIBRARY 120 y = 35.094x0.3194 100 R² = 0.9132 80 60 40 20 0 0 5 10 15 20 25 30 35 Stump diameter (cm) Fig.5:Relationship between merchantable volume and stump diameter for the pooled data of Pinus caribaea in the study area (n=1592) 66 UNI Merchantable volume (m3)VERSITY OF IBADAN LIBRARY 70 60 y = 1.7984x 0.8515 R² = 0.9439 50 40 30 20 10 0 0 10 20 30 40 50 60 70 Stump diameter (cm) Fig.6:Relationship between diameter at breast height and stump diameter for the pooled data of Pinus caribaea in the study area (n=1592) 67 UNIV Dbh (cm)ERSITY OF IBADAN LIBRARY Table 6:Correlation matrix for individual tree growth characteristics AGE DBH THT MHT SQ CL CD BA SV CR SC CPA ∆DBH ∆SQ ∆BA ∆SV AGE 1.00 DBH 0.50* 1.00 THT 0.69* 0.69* 1.00 MHT 0.58* 0.64* 0.88* 1.00 SQ 0.48 0.55* 0.73* 0.66* 1.00 CL 0.08 0.46 0.17 0.19 0.18 1.00 CD 0.13 0.60* 0.29 0.30 0.26 0.73* 1.00 BA 0.11 0.13 0.19 0.17 0.78* 0.02 0.04 1.00 SV 0.49 0.97* 0.68* 0.64* 0.57* 0.57* 0.67* 0.15 1.00 CR 0.04 -0.57* 0.11 0.04 0.00 -0.43 -0.47 0.02 -0.56* 1.00 SC -0.02 0.07 -0.10 -0.08 -0.14 0.06 0.07 -0.05 0.07 -0.21 1.00 CPA 0.53* 0.87* 0.78* 0.70* 0.59* 0.27 0.41 0.14 0.84* -0.43 0.03 1.00 ∆DBH -0.40 0.54* 0.05 0.10 0.10 0.42 0.51* 0.02 0.53* -0.66* 0.12 0.43 1.00 ∆SQ -0.84* -0.11 -0.39 -0.31 -0.26 0.02 0.06 -0.06 -0.12 -0.31 0.06 -0.04 0.73* 1.00 ∆BA -0.48 0.45 -0.01 0.04 0.06 0.38 0.47 0.01 0.46 -0.66* 0.12 0.37 0.98* 0.78* 1.00 ∆SV -0.34 0.44 0.18 0.19 0.16 0.18 0.30 0.04 0.42 -0.47 0.07 0.58* 0.85* 0.77* 0.85* 1.00 AGE- Individual tree age, DBH- diameter at breast height, THT-total height, MHT-Merchantable height,SV- Stem volume, SC-Slenderness Coefficient, CPA-Crown Projection Area, CR-Crown Ratio,*- coefficient of correlation and marked correlations are significant at p< 0.05) 68 UNIVERSITY OF IBADAN LIBRARY Table 7: Correlation matrix for whole stand growth characteristics AGE ∆DBH THT MHT SC ∆SQ CL CD BA/ha ∆BA SV/ha ∆SV CR SC CPA/ha SI AGE 1.00 ∆DBH 0.85* 1.00 THT 0.81* 0.88* 1.00 MHT 0.78* 0.88* 0.99* 1.00 SC 0.82* 0.92* 0.98* 0.98* 1.00 ∆SQ -0.74* -0.86* -0.91* -0.95* -0.94* 1.00 CL 0.14 0.20 -0.08 -0.05 0.03 -0.18 1.00 CD 0.31 0.47 0.16 0.19 0.25 -0.36 0.87* 1.00 BA/ha -0.08 -0.15 -0.30 -0.33 -0.32 0.35 -0.07 -0.06 1.00 ∆BA 0.16 0.30 -0.15 -0.13 -0.02 -0.05 0.73* 0.78* 0.20 1.00 SV/ha 0.50* 0.43 0.39 0.35 0.35 -0.30 -0.11 0.03 0.74* 0.07 1.00 ∆SV 0.35 0.40 0.32 0.32 0.35 -0.35 0.22 0.26 -0.04 0.21 0.19 1.00 CR -0.74* -0.78* -0.97* -0.95* -0.92* 0.82* 0.29 0.04 0.31 0.33 -0.36 -0.25 1.00 SC -0.18 -0.24 0.21 0.20 0.09 -0.04 -0.61* -0.62* -0.34 -0.95* -0.16 -0.20 -0.37 1.00 CPA/ha -0.40 -0.34 -0.22 -0.11 -0.24 0.01 -0.11 -0.17 0.08 -0.25 -0.07 -0.23 0.18 0.27 1.00 SI 0.00 0.20 0.53* 0.53* 0.45 -0.42 -0.49 -0.33 -0.24 -0.67* 0.11 0.01 -0.61* 0.73* 0.20 1.00 AGE- Stand age, ∆DBH- Stem diameter growth at breast height (cm/year),THT-Mean total height,MHT-Mean merchantable height, SV- Stand 2 volume/ha, ∆BA-Basal area (m /year), BA- basal area/ha, SC-Slenderness coefficient, ∆CPA-Crown projection area/ha, CR- Crown ratio, SQ- Stem quality, ∆SQ-Stem quality (m/year), CL-Crown length, CD-Crown diameter,*- coefficient of correlation and marked correlations are significant at p< 0.05) 69 UNIVERSITY OF IBADAN LIBRARY The results of correlation analyses between diameter Weibull distribution parameters (a,b,c) and stand growth characteristics showed that location parameter (a) was highly and positively associated with stand age, diameter at breast height and tree total height while it was negatively associated with stand stem quality and crown ratio. Scale parameter (b) and shape parameter (c) had no association with any of the stand growth variables while sum of location and shape parameters (a+c) showed positive association with tree total height and quadratic mean diameter (Table 8). Similarly, stem quality distribution correlation results with stand growth variables showed that location parameter (a) was highly associated with stand age, total tree height and stand annual slenderness coefficient. Scale parameter (b) and shape parameter (c) however had no association with any of the stand growth characteristics. The sum of the location parameter and shape parameter (a+c) showed significant association with only tree total height, slenderness coefficient and logarithm of the inverse of age (Table 9). 70 UNIVERSITY OF IBADAN LIBRARY Table 8: Correlation matrix for diameter Weibull parameter and stand growth characteristics AGE DBH BA/ha THT ∆SQ ∆SV CR SI QMD a B c a+c AGE 1.00 DBH 0.81* 1.00 BA/ha -0.08 -0.04 1.00 THT 0.81* 0.72* -0.30 1.00 ∆SQ -0.74* -0.75* 0.35 -0.91* 1.00 ∆SV 0.35 0.41 -0.04 0.32 -0.35 1.00 CR -0.74* -0.58* 0.31 -0.97* 0.82* -0.25 1.00 SI 0.00 -0.04 -0.24 0.53* -0.42 0.01 -0.61* 1.00 QMD 0.80* 0.62* -0.22 0.96* -0.84* 0.27 -0.95* 0.58* 1.00 A 0.67* 0.92* -0.20 0.66* -0.72* 0.40 -0.53* -0.04 0.49 1.00 B 0.22 0.19 -0.03 0.15 -0.08 -0.01 -0.17 0.02 0.22 0.08 1.00 c 0.09 0.11 -0.02 0.04 0.01 -0.03 -0.07 -0.02 0.09 0.05 0.95* 1.00 a+c 0.01 -0.04 -0.24 0.53* -0.42 0.01 -0.61* 1.00 0.58* -0.04 0.02 -0.02 1.00 AGE- Stand age, DBH- Stand diameter growth at breast height,THT-Mean total height,∆SV- Stand volume/year, BA- basal area/ha, CR- Crown ratio,∆SQ-Stem quality (m/year), QMD-Quadratic mean diameter, a-Location parameter, b- Scale parameter, c- Shape parameter, a+c- combination of location and shape parameters, *- coefficient of correlation and marked correlations are significant at p< 0.05) 71 UNIVERSITY OF IBADAN LIBRARY Table 9: Correlation matrix for stem quality distribution Weibull parameters and stand growth characteristics AGE CR THT ∆SC ∆SQ SC LNA-1 SI a b c a+c AGE 1.00 CR -0.74* 1.00 THT 0.81* -0.97* 1.00 ∆SC 0.82* -0.92* 0.98* 1.00 ∆SQ -0.74* 0.82* -0.91* -0.94* 1.00 SC -0.18 -0.37 0.21 0.09 -0.04 1.00 LNA-1 0.78* -0.94* 0.94* 0.89* -0.82* 0.33 1.00 SI 0.00 -0.61* 0.53* 0.45 -0.42 0.73* 0.60* 1.00 A 0.67* -0.53* 0.66* 0.74* -0.72* -0.47 0.46 -0.04 1.00 B 0.22 -0.17 0.15 0.15 -0.08 -0.10 0.21 0.02 0.08 1.00 C 0.09 -0.07 0.04 0.05 0.01 -0.11 0.09 -0.02 0.05 0.95* 1.00 a+c 0.01 -0.61* 0.53* 0.45 -0.42 0.73* 0.60* 1.00 -0.04 0.02 -0.02 1.00 -1 AGE- Stand age, LNA Logarithm of inverse of age, THT-Mean total height, CR- Crown ratio,∆SC- Slenderness coefficient, ∆SQ-Stem quality (m/year),SI-Site Index, a-Location parameter, b- Scale parameter, c- Shape parameter, a+c- combination of location and shape parameters, *- coefficient of correlation and marked correlations are significant at p< 0.05) 72 UNIVERSITY OF IBADAN LIBRARY 4.5 GROWTH CHARACTERISTICS MODEL 4.5.1 Growth Characteristics Models among Canopy Layers The growth characteristic models among the four canopy layers (Dominant, Co- dominant, Intermediate and suppressed) are shown in Table 10 through Table13. Six major growth characteristics were chosen for the comparison among the canopy layers 2 and statistical fit indices such as coefficient of determination (R ), root mean square error (RMSE) and F-ratio were used in evaluating the predictability of the growth models. The growth models evaluated were diameter at breast height model, basal area model, stem volume model, stem quality model, total height model and crown ratio model. Table 10 2 showed that coefficient of determination (R ) for all the growth models evaluated ranged 2 between 0.502 and 0.99 while crown ratio (CR) growth model had the highest R value. From these fit statistics, the model clearly demonstrates the predictive ability of crown ratio from tree total height, crown projection area with age as a factor. The evaluation of the growth models among co-dominant canopy layer is shown in Table 11 with tree total 2 height model having the highest (R ) value and the least value found in the basal area growth model. These fit statistics show that the model possesses ability to predict tree height from crown projection area when age is factored into the model. 73 UNIVERSITY OF IBADAN LIBRARY Table 10: Estimated parameters and models statistics among the dominant canopy layer DOMINANT CANOPY LAYER GROWTH MODEL Equati Model 2 Model Form Model Type Parameter R F –Ratio P –Value on RMSE b 1 65. ∆DBH= b0Dbh exp(b2CR+ b3A) Diameter growth b0=0.0163 model b1=1.1088 b2=-1.7575 0.0104 0.709 - <0.0000 b3=-0.0718 b1 -1 66. ∆BA= b0BA exp(b2CR+ b3A ) Basal area growth b0=0.0852 model b1=0.1359 b2=-0.0106 0.0001 0.580 - <0.0000 b3=1.7021 -1 67. LNSV= b0+ b1LNDBH+ b2A Stem volume model b0=-3.6294 b1=0.8916 0.0288 0.928 1859.10 <0.0000 b2=10.1941 -1 68. LNSQ= b0+ b1LNTHT+ b2SC+b3A Stem quality model b0=0.9521 b1=0.3176 b2=-0.0586 0.0430 0.770 322.01 <0.0000 b3=-2.7166 -1 69. LNTHT= b0exp(b1A + b2LNSQ) Total height model b0=0.7748 b1=-0.6823 0.0051 0.502 - <0.0000 b2=0.5667 -1 70. LNCR= b0+ b1LNTHT+ b 2CPA+ b3A Crown ratio model b0=-3.5507 b1=0.6263 0.0146 0.983 5575.3 <0.0000 b2=0.1558 b3 =10.2339 74 UNIVERSITY OF IBADAN LIBRARY Table 11:Estimated parameters and models statistics among the Co-dominant canopy layer CO-DOMINANT CANOPY LAYER GROWTH MODEL Model 2 Equation Model Form Model Type Parameter R F –Ratio P –Value RMSE 71. b 1∆DBH= b0Dbh exp(b2CR+ b3A) Diameter b0=0.2096 growth model b1=0.9349 b2=0.1709 0.0014 0.986 - <0.0000 b3=-0.0416 72. b1∆BA= b0BA exp(b2CR+ b3A) Basal area b0=0.2168 growth model b1=-0.0325 b2=1.0953 0.0000 0.841 - <0.0000 b3=-0.0192 73. . b b b -1LNSV= 0+ 1LNDBH+ 2A Stem volume b0=-3.4506 model b1=0.7965 0.0317 0.943 6583.4 <0.0000 b2=9.1410 74. LNSQ= b0+ b -1 1LNTHT+ b2SC+ b3A Stem quality b0=0.8154 model b1=0.4042 b2=-0.0925 0.0384 0.848 1463.3 <0.0000 b3=-0.5443 75. -1LNTHT= b0 + b1CPA+ b2 A Total height b0=0.5872 model b1=0.5348 0.0068 0.996 1095.20 <0.0000 b2=0.0567 76. LNCR= b b -10+ 1CPA + b2 LNTHT+ b3A Crown ratio b0=-3.8225 model b1=-0.0749 0.0173 0.984 16564 <0.0000 b2=1.0987 b3 =9.3778 75 UNIVERSITY OF IBADAN LIBRARY The parameters of the growth characteristics models and the fit indices among intermediate canopy layer in Table 12 with tree total height growth model having the 2 highest value of coefficient of determination (R ) while the lest value was found in the basal area growth model. Correspondingly, the growth characteristics models and the fit indices used for model evaluation among the suppressed canopy layer showed that the 2 best fit model was found with total height model with the highest (R ) value (Table 13). These equations also have small standard error and well distributed residuals as indication of a good model fitting. These findings agree with the report of Siipilehto (2011) while evaluating the methods and applications for improving parameters prediction models for stand structures in Finland. The study emphasized that until the late ‟80s, stand variables such as mean age, mean diameter and mean height, total stem number, and basal area were considered adequate to characterize the entire growing stock while at the present time stand characteristics are assessed by tree species, and they are described separately for each storey. 76 UNIVERSITY OF IBADAN LIBRARY Table 12: Estimated parameters and models statistics among the intermediate canopy layer INTERMEDIATE CANOPY LAYER GROWTH MODEL Model 2 Equation Model Form Model Type Parameter R F –Ratio P –Value RMSE 77. -1LNDBH= b0+ b1LNSV+b2LNBA+ b3A Diameter b0=3.8288 growth model b1=1.0887 b2=0.0069 0.0172 0.949 1200.4 <0.0000 b3=-8.4126 78. -1LNBA= b0+b1LNDBH+b2SC+b3A Basal area b0=0.3362 growth model b1=1.5838 b2=-0.2446 0.0393 0.895 547.49 <0.0000 b3=-0.2917 79. -1LNSV=b0+b1LNDBH+b2A Stem volume b0=-3.4461 model b1=0.8616 0.0153 0.958 2234.1 <0.0000 b2=7.5461 80. LNSQ= b0+b -1 1LNTHT+b2SC+b3A Stem quality b0=0.7768 model b1=0.4592 b2=-0.0971 0.0359 0.649 119.13 <0.0000 b3=-2.5546 81. -1LNTHT=b0 +b1LNSQ+b2CPA+b3A Total height b0=0.5003 model b1=-0.0069 b2=0.6371 0.0085 0.990 6506.7 <0.0000 b3 =0.0131 82. -1LNCR=b0+b1CPA +b2A Crown ratio b0=-3.1922 model b1=0.6363 0.0085 0.994 16568 <0.0000 b2=7.6876 77 UNIVERSITY OF IBADAN LIBRARY Table 13: Estimated parameters and models statistics among the suppressed canopy layer SUPPRESSED CANOPY LAYER GROWTH MODEL Model Equation 2Model Form Model Type Parameter R F –Ratio P –Value RMSE 83. -1LNDBH= b0+ b1LNSV+b2A Diameter b0=3.2355 growth b1=0.7465 model 0.0440 0.815 673.02 <0.0000 b2=-7.0209 84. b b -1∆BA= 0+ 1CR+b 2A Basal area b0=0.0332 growth b1=0.0117 model 0.0007 0.883 0.0007 <0.0000 b2=0.0519 85. -1LNSV= b0+b1LNDBH+ b2LNBA+ b3A Stem b0=-3.4425 volume b1=0.7405 model b2=0.0331 0.0401 0.891 831.94 <0.0000 b3 =9.0749 86. LNSQ= b -10+b1LNTHT+b 2SC+b3A Stem quality b0=0.5033 model b1=0.5558 b2=-0.0202 0.1059 0.624 168.64 <0.0000 b3=-3.0814 87. LNTHT=b0 +b -1 1LNSQ+b2CPA+b3A Total height b0=0.4547 model b1=0.0032 b2=0.6757 0.0127 0.989 9464.40 <0.0000 b3 =0.1052 88. -1LNCR= b0+b1CPA +b2THT+b3A Crown ratio b0=-3.1922 model b1=0.6363 0.0169 0.985 6470.4 <0.0000 b2=7.6876 b3 =9.4314 78 UNIVERSITY OF IBADAN LIBRARY 4.5.2 Individual Tree Growth Models The growth characteristic models for individual tree level are shown in Table 14 and Table 15. The fit statistics used in evaluation of the growth models showed significant 2 relationship among the growth variables. The values of coefficient of determination (R ) ranged between 0.520 and 0.991; indicating that the growth models fitted to the individual tree data are suitable for the predictive models, and that each predictor variable fitted were appropriate for the explanatory dependent variables. The values of standard error of the models were also significantly small and thus indicate the goodness of fit for candidate models. The results of the models fitted to the individual tree growth data showed that many of individual growth models were non-linear predictive models while the remaining few yield models are linear (Tables 14 and 15). 79 UNIVERSITY OF IBADAN LIBRARY Table14: Estimated parameters and models statistics in the individual tree model equations INDIVIDUAL TREE MODELS GROWTH MODEL Model 2 Equation Model Form Model Type Parameter R F –Ratio P –Value RMSE b1 89. ∆DBH= b0Dbh exp(b2CR+b3A) Diameter growth b0=0.1366 model b1=0.9734 0.0011 0.985 - <0.0000 b2=0.0812 b3=-0.0418 b1 90. ∆BA= b0BA exp(b2CR+b3A) Basal area growth b 0=0.1561 model b 1=0.8882 0.0002 0.986 - <0.0000 b 2=-0.0574 b 3=-0.0442 b1 -1 91. ∆SQ= b0SQ exp(b2SC+b3A ) Stem quality model b 0=0.0164 b 1=0.0176 0.0004 0.991 - <0.0000 b 2=-0.0056 b 3=21.4309 b1 -1 92. ∆SV=b0SV exp(b2BA+b3A ) Stem volume model b 0=0.0221 b 1=0.9689 3.8800 0.987 - <0.0000 b 2=0.0102 b 3=21.3223 YIELD MODEL b1 93. LNSQ=b0THT exp(b2LNDBH+b3A) Stem quality model b 0=0.6475 b 1=0.4899 0.0024 0.593 - <0.0000 b 2=0.1333 b 3=0.0054 -1 94. LNSV=b0+b1LNDBH+b3A Stem volume model b0=-0.3766 b 1=1.2278 0.0456 0.949 15023.000 <0.0000 b 2=-0.1105 -1 95. BA= b0+b1DBH+b2CR+b3A Basal area model b 0=4.3854 b 1=0.1351 0.1822 0.631 903.580 <0.0000 b 2=0.9368 b 3=-15.4647 96. LNCR= b0+ b1A+ b2LNSQ+b3THT Crown ratio model b 0=-2.9279 b 1=-0.0178 0.0170 0.989 46142.000 <0.0000 b 2=-0.0541 b 3=1.0433 80 UNIVERSITY OF IBADAN LIBRARY Table 15: Estimated parameters and models statistics among in the individual tree model equations INDIVIDUAL TREE MODELS CONTINUES SUBCOMPONENT MODEL Model 2 Equation Model Form Model Type Parameter R F –Ratio P –Value RMSE 97. -1LNDBH= b 0exp(b 2A + b2THT+ b3BA) Diameter b 0=0.6211 model b 1=0.0851 0.0018 0.808 - <0.0000 b 2=0.6018 b 3=0.0278 98. -1LNBA= b 0exp(b1A + b2DBH) Basal area b 0=1.0777 model b 1=-4.1437 0.0049 0.570 - <0.0000 b 2=0.5232 99. -1LNTHT= b0exp(b1A + b2LNSQ) Total height b 0=0.6222 b 1=0.6629 0.0029 0.543 - <0.0000 β2=0.6889 81 UNIVERSITY OF IBADAN LIBRARY 4.5.3 Size Class Growth Models The results of size class growth models are presented in Table 16 and Table 17. The models fitted to size class data were classified into diameter distribution models and stem quality distribution models. These models were pedestaled on the probability density function (PDF) which was primarily based on Weibull distribution functions for both diameter and stem quality; giving the Weibull diameter distribution and Weibull stem quality distribution functions. The probability and cumulative distribution functions of the three-parameter Weibull distribution for a random variable Diameter are: f (Dbh,a,b,c) = = 0 (a ≤D≤∞) ……………. eqn. 100 (D< a) F(Dbh,a,b,c) = 1- ……………. eqn. 101 where: Dbh - diameter at breast height a - location b - scale parameter c - shape parameter According to Lei (2008), the above parameters of above equation were estimated from the tree diameter data of each set of diameter data by maximum likelihood estimation (MLE). The method of maximum likelihood is a commonly used procedure for the Weibull distribution in forestry because it has very desirable properties. Estimation of the parameters by maximum likelihood has been found to produce consistently better goodness-of-fit statistics compared to the previous methods, but it also puts the greatest demands on the computational resources (Cao and McCarty 2005). Consider the Weibull PDF given in equation 100 above, then the likelihood function (L) will be: 82 UNIVERSITY OF IBADAN LIBRARY L(Dbh1………..Dbhnj, b, c) = eqn.102 On taking the logarithms of equation 102, differentiating with respect to b and c respectively, and satisfying the equations b= eqn.103 c= eqn.104 The value of c has to be obtained from equation 104 by the use of standard iterative procedures (i.e. Newton-Raphson method) and then used in equation 104 to obtain b. Similarly, the stem quality probability distribution function (PDF) was obtained after the order: f (SQ,a,b,c) = = 0 (a ≤SQ≤∞) eqn. 105 (SQ< a) F(SQ,a,b,c) = 1- eqn. 106 Then, the Weibull distribution parameters were estimated using MLE function of equation 102 and 103 from stem quality data set. The prediction equations for the parameter for both diameter and stem distribution are shown is Table 16. Though the three Weibull parameters models were found significant in the two categories of the PDF, the scale parameter models (b) within the two classifications are highly found significant 2 with highest values of coefficient of determination (R ) and small standard error that reflect good fit models. The subcomponent models of class size models that may be essential for reasonable prediction of future estimates of Weibull parameters are shown in Table 17. 83 UNIVERSITY OF IBADAN LIBRARY Table 16: Estimated parameters and models statistics in the size class model equations SIZE CLASS MODEL Equation DIAMETER DISTRIBUTION Model P – 2Model Form Model Type Parameter R F –Ratio RMSE Value 107. LNa= b0+b1DBH+LNQMD Location b0=1.2931 parameter model b1= -0.0049 0.0306 0.643 27.007 <0.0000 b2=0.0577 108. LNb=b0+ b1LNa+ b2LNQMD Scale parameter b0=-1.0577 model b1=0.0263 0.0142 0.989 1315.300 <0.0000 b2=1.6059 109. LNa+c=b0+ b1DBH+ b2LNQMD Shape parameter b0=1.3209 model b1=-0.0048 0.0294 0.643 27.016 <0.0000 b 2=0.5513 STEM QUALITY DISTRIBUTION 110. LNa=b0+ b1LNTHT+ b2SC+ b -1 3LNA Location b 0=0.9559 parameter model b 1=0.0728 b 2=0.0023 0.0281 0.709 23.502 <0.0000 b 3=0.3933 111. LNb=b0+ b1LNTHT+ b b -1 2SC+ 3LNA Scale parameter b 0=-2.4708 model b 1=-0.2171 b 2=0.0001 0.0098 0.995 1855.900 <0.0000 b 3=4.9579 112. LNa+c=b0+ b -1 1LNTHT+ b2SC+ b3LNA Shape parameter b 0=0.9969 model b 1=0.0702 0.0269 0.709 23.527 <0.0000 b 2=0.0022 b 3=0.3769 84 UNIVERSITY OF IBADAN LIBRARY Table 17: Estimated parameters and models statistics in the size class model equations SIZE CLASS MODEL (SUBCOMPONENT) Equation Model Model 2Model Form Parameter R F –Ratio P –Value Type RMSE 113 SQ= b0+ b1LNTHT+ b2SC+ b3SI Stem b0=0.9969 quality b1=0.0702 growth b2=0.0022 0.4889 0.954 199.080 <0.0000 model b3=0.3769 114 LNSQ= β0+ b1LNTHT+ b 2SC+ b3LNAGE Stem b0=-0.9870 quality b1=24.9863 growth b2=-11.0344 0.0178 0.972 332.27 <0.0000 model b3=0.0405 115. LNQMD=b0+ b -1 1A Quadratic mean b 0=1.8023 0.018 0.981 1569.500 <0.0000 diameter b 1= -9.7158 model 116. LNCR=b0+ b1LNAGE+b2SI Mean b 0=-1.6987 crown ratio b 1= -4.4935 0.649 0.781 53.647 <0.0000 model b 2=0.0055 85 UNIVERSITY OF IBADAN LIBRARY 4.5.4 Whole Stand Growth Models The best adjudged models for the whole stand level are presented in Tables 18 and 19. The results showed the different relationships between the growth characteristics variables for both the growth and yield of Pinus caribaea in the whole stand level. The 2 coefficient of determination (R ) among the growth models ranged between 0.50 and 0.99 2 and the stem volume model been the measure of growth increment had the highest (R ) and small standard error; indicating its predictability of the stem volume by the candidate volume model in relation to the predictor variables (Table 18). Similarly, the predictive yield models obtained for the whole stand level are shown in Table 19. The values of 2 coefficient of determination (R ) ranged between 0.502 and 0.99 with 99.9% of the stem volume as yield been explained by the combination of basal area and age. The equations obtained for both growth and yield models at the whole stand level all have high indices 2 of fit such as high (R ), low standard error and well distributed residuals as indication of a good fitting. 86 UNIVERSITY OF IBADAN LIBRARY Table 18: Estimated parameters and models statistics in the whole stand model equations WHOLE STAND MODELS GROWTH MODEL Model 2 Equation Model Form Model Type Parameter R F –Ratio P –Value RMSE 117. LNSV=b0+ b -1 1SI+ b2A + b3LNBA Stem volume b0=-0.7759 growth model b1=0.00001 b2=0.0005 0.0002 0.999 3477.000 <0.0000 b3=0.9532 118. LNBA=b0+ b1LNSV+ b2CPA+ b3SI Basal area b0=0.5660 growth model b1=-0.2106 b2=0.0000 0.0082 0.944 53.647 <0.0000 b3=-0.0019 119. SI=b0+ b1LNTHT+ b2LNSV+ b3CPA Site index model b0=3.4060 b1=19.8549 b2=-1.5971 1.8955 0.500 9.675 <0.0000 b3=0.0001 120. DBH=b0+ b1LNBA+b2LNSV+b3CPA Diameter growth b0=0.1495 model b1=0.4331 b2=-0.0422 0.0139 0.925 25.471 <0.0000 b3=-9.0000 121. LNSQ= b0+ b1A+ b2N+ b3THT Stem quality b0=0.0811 model b1=0.0021 0.0154 0.711 23.826 <0.0000 b2=-0.0000 b3=0.0015 87 UNIVERSITY OF IBADAN LIBRARY Table 19: Estimated parameters and models statistics in the whole stand model equations WHOLE STAND MODEL CONTINUES Equation YIELD MODELS Model 2 Model Form Model Type Parameter R F –Ratio P –Value RMSE -1 122. LNSV=b0+ b 1A + b2LNBA Stem volume b0=2.4878 growth model b1=-0.7822 0.0416 0.928 192.160 <0.0000 b2=-4.2266 -1 123. LNBA=b0+ b1A + b2LNSV Basal area model b0=0.5421 b1=-0.1081 0.0094 0.925 184.650 <0.0000 b2=-0.2171 -1 124. LNSQ=b0THTexp(b1N+ b2A + 3CR) Stem quality b0=0.0175 model b1=-0.03542 0.0025 0.778 - <0.0000 b2=-8.4890 b3=4.2241 125. LNNUMTR=b0+ b1SC+ b2THT+ b3SI Number of b0=4.0316 stem/Hectare b1=-0.6173 0.1505 0.502 9.729 <0.0000 b2=-1.3743 b3=0.0212 126. LNCPA=b0+ b1LNTHT+ b2AGE Crown projection b0=5.3267 area b1=-2.2675 0.1907 0.541 17.668 <0.0000 b2=4.1116 127. LNCR=b0+ b1THT+ b2CPA+ b3LNA Mean crown ratio b0=-2.1379 b1=0.4891 0.0363 0.934 136.59 <0.0000 b2=-0.0609 b3=-4.8512 128. LNSV=b0+ b1LNBA+ b2AGE Stem volume b0=-0.7755 growth model b1=0.9526 0.0002 0.999 34114.00 <0.0000 b2=-0.0006 129. LNSQ=b0+ b1LNTHT+ b2LNAGE Mean stem quality b0=-0.2932 model b1=0.3105 0.0011 0.998 9984.80 <0.0000 b2=0.0105 -1 130. THT=b0+ b1SC+ b2A Mean height b0=14.0009 model b1=0.0931 1.3773 0.742 43.070 <0.0000 b2=-144.2350 88 UNIVERSITY OF IBADAN LIBRARY 4.6 SITE INDEX EQUATION AND CURVE FOR SITE QUALITY EVALUATION OF THE STUDY AREA The importance of site index and its curves expression can never be over-emphasized. The curves are extensively used by foresters for site quality description and evaluation as well as in estimating potential productivity of forest sites (Hägglund, 1981). The application of site index curves is based on the fact that there is an association between stand height and total volume production (Beamont, 1999) with plausible notion of where there is high quality sites, height growth is good (Bailey and Clutter, 1974; Clutter et al.,1983). Site index has traditionally been defined as the top height of a stand at a particular age (Clutter et al., 1983). According to Hägglund (1981) the top height is the −1 arithmetic mean height of the 100 trees ha with the greatest diameters. Heights of individual trees can be measured easily and the average height growth of the dominant trees is less affected by thinning operations (Bailey and Clutter, 1974; Clutter et al.,1983) and also less affected by stand density (Monserud, 1984).The values of the site indices computed for this study is shown in Table 20 below, while the values generated for dominant height within and between the stands are shown in Figs. 7 and 8. The expression of the empirical site index equation obtained and used in the study is given below: ………………..eqn.131 ………………..eqn.132 ………………..eqn.133 When A = Ai, Hd = SI Therefore: ………………..eqn.134 ………………..eqn.135 Hence ………………..eqn.136 ………………..eqn.137 89 UNIVERSITY OF IBADAN LIBRARY By integration; ………………...eqn.138 …………eqn.139 where SI = Site index A = Age (years) Ai = index age = 25 years for this study Hd= Dominant height (meter) Exp = exponential function ln = Natural logarithm 90 UNIVERSITY OF IBADAN LIBRARY Table 20: Site index equation, model parameter and computed site index (SI) according to sites in the study area Site index model Model parameter Site Average SI Dominant Height -1 lnHd =bo + b1A b0 = 4.211 Oluwa FR 41.327 3.7215 b1 = 23.495 2 R = 0.9848 Shasha FR 40.119 3.6919 SEE = 0.040 P- value = 0.0000 J4 FR 46.217 3.8333 Hd = dominant height, SI = site index, FR = Forest Reserve, R2 = coefficient of determination, SEE = standard error of the estimate, P-value = probability of significance, b0& b1 are model coefficients. 91 UNIVERSITY OF IBADAN LIBRARY 92 UNIVERSITY OF IBADAN LIBRARY Fig. 8: Site index curves forPinus caribaea in the three plantationstands of the study area 93 UNIVERSITY OF IBADAN LIBRARY 4.7 MODELS FOR OPTIMAL ROTATION AGE AMONG CANOPY LAYER The models for determination of the optimal rotation age in this study were based on the concept of forest growth and yield which defines the measure of the change in volume over an interval of time as well as the volume of timber in a forest at a specific point in time. According to Binkley et al. (1997), common growth and yield measures include the net increment in stem growth which is often expressed as current annual increment (CAI), the average increment across a given period of stand development, which is refer to as periodic annual increment (PAI) and the average or mean annual stem wood production per unit area up to age (A). The stem increments can be expressed in terms of 2 -1 -1 3 -1 -1 basal area (m ha yr ) and volume (m ha yr ) and since mean annual increment (MAI) measures the average annual productivity of a stand over the life of the stand; its then believed that the age at which the MAI reaches its maximum is the harvest age (rotation) which eventually maximizes the biological volume productivity of the stand over its lifestyle. The models for determination of optimal rotation ages among the four canopies layer are shown in Tables 21. The optimal rotation ages of each canopy layers were obtained based on the mathematical relationship through integration method between stem volume and age using the model: -1 LNSV = b0 + b1(A ) ………………………….. eqn.140 V= …………………..….eqn.141 Mean annual increment (MAI) mathematically as: MAI = ………………...……eqn.142 Integrating the MAI by age = 0 ………………………..….eqn. 143 -1 Recall that MAI = = v.A ……………………eqn.144 Substituting for V in equation 141 into equation 144 -1 MAI = .(A ) …………………..………eqn.145 94 UNIVERSITY OF IBADAN LIBRARY By integration using the power rule method, we have -2 -2 = -A . +A . ………….…..…………eqn.146 This then give -2 -1 A . {-1+b1A }=0 ………..……..…eqn.147 By elimination -1 -1 + b1A = 0 ………………….…eqn.148 -1 b1A =1 …….………………eqn.149 -1 A = = ………..…..………eqn.150 Thus, A = b1 ……………………………eqn.151 The optimal rotation age (rotation) - A = estimate of b1. Therefore, the optimal ages for the four canopy layers as estimated above is shown in Tables 21 and 22. Similarly, the stem volume curves for the determination of optimal rotation age were generated for each canopy layer from the models listed in Table 23. The optimal rotation age were estimated using empirical model coefficients while the stem volume curves determined from the optimal rotation age models are presented in Figure 9. Though the curves show sigmoidal trends of growth curves of biological entity, the points of descend of a matured stands were not achieved in all the stands evaluated. The residual plots of the optimal rotation age models under different canopy layers are shown in Figures 10 -14. A critical examination of the residual plots revealed that the normality assumption applies for the optimal age models following their evenly distribution along the fitted lines. 95 UNIVERSITY OF IBADAN LIBRARY Table 21: Optimal rotation age models for different canopy layers in Pinus caribaea in the study area 2 Equation Model Canopy layer Number Model Estimated R RMSE Coefficient parameter -1 152 LNSV = b0 + b1(A ) Pooled data 1592 b0 0.517 b1 -35.218 0.282 0.819 -1 153 LNSV = b0 + b1(A ) Suppressed 309 b0 -0.0198 b1 -25.1529 0.240 0.575 -1 154 LNSV = b0 + b1(A ) Intermediate 197 b0 -0.4076 b1 -10.5308 0.051 0.384 -1 155 LNSV = b0 + b1(A ) Co-dominant 794 b0 -0.200 b1 -17.057 0.239 0.434 -1 156 LNSV = b0 + b1(A ) Dominant 272 b0 1.3479 b1 -31.6305 0.469 0.001 A-Stand Age , SV- Tree volume 96 UNIVERSITY OF IBADAN LIBRARY Table 22: Optimal age‟s models under different canopy layers in the study area using empirical model coefficients S/N Canopy Layer Model Coefficient Estimated Parameter Optimal Rotation Age b0 0.517 1 Pooled data b1 -35.218 35 years b0 -0.0198 2 Suppressed b1 -25.1529 25 years b0 -0.4076 3 Intermediate b1 -10.5308 11years b0 -0.200 4 Co-dominant b1 -17.057 17years b0 1.3479 5 Dominant b1 -31.6305 32years 97 UNIVERSITY OF IBADAN LIBRARY Table 23: Rotation age, yield (volume) and relative growth for the canopy layer Rotation age Volume at Mean annual Relative 3 (years) harvest(m /ha) yield growth Canopy layer 3 (m /ha/year) (ranking) Pooled data 35 15.33 0.44 3 Suppressed 25 8.96 0.36 5 Intermediate 11 6.38 0.58 2 Co-dominant 17 7.50 0.44 3 Dominant 32 35.81 1.12 1 98 UNIVERSITY OF IBADAN LIBRARY 99 UNIVERSITY OF IBADAN LIBRARY 100 UNIVERSITY OF IBADAN LIBRARY 101 UNIVERSITY OF IBADAN LIBRARY 102 UNIVERSITY OF IBADAN LIBRARY 103 UNIVERSITY OF IBADAN LIBRARY 104 UNIVERSITY OF IBADAN LIBRARY 4.8 Volume projection of Pinus caribaea in the study area Volume projection for the planning period of 25 years at 5 years interval for the eight stands that constituted the study area is shown in Table 24. The table presents the plausible projected volume ( 3 -1m ha ) in each stand per unit area. The model for determining optimal rotation age in the pooled data (Equation 122) was used to project the future volume at interval of 5 years for planning period of 25 years. There was progressive increment in the expected volume per hectare per year across the study area. This shows that Pinus caribaea stand is expected to progress in the productivity in terms of volume expected as the year progresses. The series of projected volume curves of Pinus caribaea for the planning period of the 25years at 5 years interval are shown in Fig.15 (1974 – 1984 stands) and Fig.16 (1991 -1996 stands). This was equally observed in the optimal rotation age curve used to determine the volume of pine among the canopy layer categorization. 105 UNIVERSITY OF IBADAN LIBRARY Table 24: Projected volume of Pinus caribaea for the planning period of 25 years at interval of 5 years 3 -1Pinus caribaea projected volume (m ha ) for period of 25 years Stand V1 V2 V3 V4 V5 1996 36.03 51.24 64.80 76.64 86.91 1993 45.34 59.59 72.10 82.97 92.42 1991 51.24 64.80 76.64 86.91 95.84 1990 54.10 67.31 78.81 88.80 97.49 1984 69.74 80.92 90.63 99.09 106.49 1976 86.91 95.84 103.64 110.50 116.55 1975 88.80 97.49 105.08 111.77 117.68 1974 90.63 99.09 106.49 113.01 118.78 TOTAL 522.79 616.28 698.19 769.69 832.16 V1 –V5- represent projected volume at 5-years interval for each stand 106 UNIVERSITY OF IBADAN LIBRARY Fig. 15: Projected volume of Pinus caribaea for the planning period of 25 years at interval of 5years in age series 1974-1984 107 UNIVERSITY OF IBADAN LIBRARY Fig. 16: Projected volume of Pinus caribaea for the planning period of 25 years at interval of 5years in age series 1990 -1996 108 UNIVERSITY OF IBADAN LIBRARY 4.9 Models Evaluation and validation The summaries of the model validation for the best adjudged models among the individual stand, whole stand and size class models fitted to the data collected from the study area are shown in Tables 25-27. The results of the validation as shown in the tables indicated no significance difference between the observed and predicted values of the growth, yield and stem quality variables among individual, whole stand and size class respectively. However, model evaluation based on goodness of fit criteria methods was used for growth and yield models among canopy layers and models for determination of optimal rotation age. The goodness of fit criteria used included coefficient of 2 determination (R ), root mean square error (RMSE) and probability (P-value) of level of 2 significance. The R values of all the models adjudged the best candidate models in both canopy layer (growth and yield models) and optimal rotation age models were significantly high with low RMSEs. The probability (p-values) of level of significance for all these models also showed that were all less than 0.05 (<0.0000) for these categories of models. The residual plots between predicted and observed values also show that the best adjudged models fit well into the data and met assumptions of the models. 109 UNIVERSITY OF IBADAN LIBRARY Table 25: Model validation of the best adjudged models among individual growth variable Mean Mean Model observed Predicted N t p-value Remark value value Growth models 0.9734 ∆DBH=0.01366DBH 0.0673 0.0654 478 2.147 0.352 Ns 0.8882 ∆BA=0.0.1561BA 0.0095 0.0089 478 4.346 0.169 Ns 1.0176 ∆SQ=0.0164SQ 0.0392 0.0387 478 3.521 0.281 Ns 0.0063 0.0065 478 5.118 0.112 Ns 0.9689 ∆SV=0.0221SV Yield models -1 LnSV=-0.3766+1.2278lnDBH-0.1101A 2.0445 2.0531 478 1.982 0.914 Ns -1 BA=4.3854+0.1351DBH+0.9368CR-15.4647A 113.5057 112.9160 478 8.834 0.136 Ns LnCR=-2.9279-0.0178A+0.0541lnSQ+1.0433lnTHT -2.2239 -2.3412 478 1.673 0.846 Ns 110 UNIVERSITY OF IBADAN LIBRARY Table 26: Model validation of the best adjudged models among size class growth variable Mean Mean Model observed Predicted N T p-value Remark value value Diameter distribution 1.3548 1.3526 7 0.3328 0.3750 Ns Lna=1.2931-0.0049DBH+0.5735lnQMD 0.1319 0.1327 7 0.4694 0.3216 Ns Lnb=-1.0577+0.0263lna+1.6059lnQMD 0.8800 0.8766 7 0.9723 0.1840 Ns Lna+c=1.3209-0.0048DBH+0.5513lnQMD Stem quality distribution -1 1.3548 1.3565 7 0.5092 0.3140 Ns Lna=0.9559+0.0728lnTHT+0.0023SC+0.393lnA 0.1319 0.1342 7 1.4653 0.0970 Ns -1 Lnb=-2.4708-0.2171THT+0.0001SC+4.9579lnA -1 -0.8800 -0.8792 7 0.2918 0.3900 Ns Lna+c=0.9969+0.0702lnTHT+0.022SC+0.3769lnA 111 UNIVERSITY OF IBADAN LIBRARY Table 27: Model validation of the best adjudged models among whole stand growth variable Mean Mean Model observed Predicted N T p-value Remark value value Growth models 4.4129 4.4077 7 0.3555 0.367 Ns -1 LnSV=-0.7759+0.0001SI+0.0005A +0.9532lnBA LnBA=0.5660-0.2106lnSV+0.0001CPA+0.00019SI 1.2655 1.2684 7 0.4482 0.335 Ns LnSQ=0.0811+0.0021A-0.00001N+0.0015THT 1.2710 1.2730 7 1.4110 0.104 Ns Yield models 3.0950 3.0950 7 0.9950 0.179 Ns -1 LnSV=2.4848-0.7822A -4.2266lnBA -1 LnBA=0.5421-0.1081A -0.2191lnSV 0.9434 0.9434 7 0.9870 0.181 Ns -1 LnSQ=-0.2932+0.3105lnTHT+0.0105lnA 1.2695 1.2695 7 0.8570 0.213 Ns 112 UNIVERSITY OF IBADAN LIBRARY CHAPTER FIVE 5.0 DISCUSSION 5.1 GROWTH CHARACTERISTICS ESTIMATE Changes over time in the structure of forest resources are largely driven by stand dynamics as well as timber removals and changes in land use. Importantly, tree growth is an important facet of stand dynamics and the information about growth can be used to determine the presence of any unusual spatial or temporal patterns in growth rates or the occurrence of balance between growth and mortality adequately enough to sustain a forest ecosystem (Bechtold, 2003). Vanclay (1995) justified the relevance and implications of models for investigation of forest management alternatives for sustainable management. Hence, this study focused essentially on exploration and development of growth characteristics models and their implications on the yield (volume) of Pinus caribaea in Southwestern Nigeria. The study revealed significant variations among growth characteristics variables which is similar to findings of earlier studies on growth characteristics (Evans, 1992; Xu and Harrington, 1998; Onyekwelu, 2003); who reported stunning variations among growth characteristics of tropical area grown plantation species. The study as part of agreement with their findings encountered four distinct canopy layers (dominant, co-dominant, intermediate and suppressed). One outstanding distinction of the variations of growth characteristics was the sequential variation among the canopy layer which coincidentally conforms to reports of past studies (Dupuy and Mille, 1993; Akindele and Abayomi, 1993; Onyekwelu, 2001). The findings from the results of the study showed that dominant canopy layers had highest values of the estimates of total height, stem volume, stem quality, basal area and diameter at breast height. This was also in consonant with similar studies on other plantation grown species (Nilsson and Abrektson, 1993; Fonwebon et al.,1994; Onifade, 1998). The highest 113 UNIVERSITY OF IBADAN LIBRARY estimate of crown ratio was however found within the intermediate canopy layer and the highest value of slenderness coefficient was found within suppressed canopy layer. These also agree with the earlier reports (Assman, 1970; Ruha and Varmola, 1997; Xu and Harrington, 1998; Varmola and Salminen, 2004; Huuskonen and Hynynen, 2006) on the growth characteristics variations among the canopy layers. According to their results, the crown ratio young pine stands varied considerably depending on the stand density which reflect element of competition. Nilsson and Gemmel (1993) found out that young pine reacted strongly to competition (stand density) when the reaction to competition was assessed as the number of current stands. The study also revealed significant statistical relationships and associations between growth variables of Pinus caribaea which indicate a reasonable ability of all the growth parameters evaluated to predict the desired dependent variables. For example, coefficient 2 of determination (R ) value between relationship of merchantable volume and stump diameter was significantly high with low standard error estimate, which indicates reasonable goodness of fit model. This observation agrees with the earlier reports on studies of relationship among growth characteristics in tropical rainforest area plantation grown species (Osho, 1983; Akindele, 2003). 5.2 GROWTH CHARACTERISTICS MODELS 5.2.1 Canopy layer growth models The results of canopy layers growth models provide one of the outstanding innovation of this study. The study unlike several studies on individual and whole stand modeling studies observed distinctions in growth models among the canopy layers. The models developed for these categorizations were both linear and nonlinear models with high levels of significant relationships among the growth variables within the canopy layers (Tables 10-13). It was evident from the results of growth models within dominant canopy layer that there were diameter, basal area and stem volume increments increase significantly with crown ratio and age; while stem volume increased with diameter at breast height and age and total height increased with crown projection area and age. The results of the study among co-dominant canopy layer revealed higher significant 114 UNIVERSITY OF IBADAN LIBRARY relationships of diameter at breast height, basal area and stem volume with increases in crown ratio and age. Similar trends were observed among intermediate and suppressed canopy layers which depicted distinct variations in the growth variables and models developed for their future predictions. These results agreed extensively with earlier studies on modeling canopy classification among plantation species (Weisberg et al., 2003; Kerns and Ohmann, 2004; Korhonen et al., 2007; Suchar and Crookson, 2010). 5.2.2 Individual growth models This study has shown that all the individual tree models were significantly suitable for prediction purposes following their high satisfaction of goodness of fit. These models as revealed in the study were both linear and nonlinear but demonstrated models with non- existence of problem of multicollinearity (multicollinearity problem results when Xs of regression model becomes more highly correlated and it becomes more and more difficult to determine which X is actually producing the effect of Y). It was evident in this study that all individual models provide good fit and can easily be used for predicting the future growth values (Tables 14 and 15). The results were consistent with many other studies (Cao, 2000; Fang and Bailey, 2001; Akindele, 2003; Akindele, 2005). This study also showed noteworthy contributions of crown ratio and age of the individual tree as factors to growth disparity among trees. The crown ratio factor was identified with growth models only while age of tree was majorly factored in for both growth and yield models within this categorization. This pattern of observation was however at variance with Prevosto et al.(2000) and Adesoye (2002) who reported that competition index was one unique independent variable that featured among all individual model fitted to Nauclea diderrichii data from Omo Forest Reserve, Nigeria and Mid-elevation Scots pine growth on a Volcanic substrate respectively. This study thus purported the possibility of fitting other growth related variables for Pinus caribaea plantation in southwestern Nigeria. 115 UNIVERSITY OF IBADAN LIBRARY 5.2.3 Size class growth models The size class models evaluated in this study was based on Weibull probability density functions (PDF) for both diameter and stem quality distributions using maximum likelihood estimation (MLE). Though several methods have been proposed to estimate the parameters of Weibull PDF distribution in forestry, MLE is generally considered the best as it is asymptotically the most efficient method, and thus it is the most frequently used method to estimate parameters of Weibull PDF distributions (Zarnoch and Dell, 1985; Shiver, 1988; Cao and McCarty, 2006; Lei, 2006). The results of the size class models developed in this study for both diameter and stem quality distribution fitted significantly to the data. The location (a), scale (b) and shape (c) parameters revealed plausible Weibull parameters that can readily predict stem diameter and stem quality. Though location parameter and sum of location and shape parameters significantly related to quadratic mean diameter; the level of significant relationship between scale 2 parameter and quadratic mean diameter was high (R = 0.989). This result was consistent with other studies on the evaluation of Weibull PDF distributions (Adesoye, 2002; Cao and McCarty, 2006; Cao, 2006). The Weibull parameter for the stem quality distribution also showed similar results of significant relationship between location parameter with the sum of location and shape parameters on height and stem age. The results of goodness 2 of fit (R ) for scale parameter with the same independent variables gave higher 2 significant relationship (R = 0.995). These results agree with many other studies (Bailey et al., 1989; Al-Fawzan Mohammad, 2000; Cao, 2004; Akinnagbe and Akindele, 2006); and justified their potential validity for reasonable predictive diameter and stem quality equations for future projections. 5.2.4 Whole stand growth models Vanclay (1994) defined stand growth models as abstractions of the natural dynamics of a forest stand, which may encompasses growth, mortality and other changes in stand composition and structure. Population parameters such as stocking (number of trees per 116 UNIVERSITY OF IBADAN LIBRARY unit area), plantation age, site index, stand basal area per hectare, number of trees per hectare (Clutter et al., 1992), standing volume are used to predict the growth or yield of the whole forest. The whole stand models developed in this study were principally multiple linear models of population parameters which was consistent with findings of earlier studies on stand growth models (Akindele 1990; Mohren and Burkhart, 1994; Onyekwelu, 1995; Soares et al., 1995; Adesoye, 2002;); and in agreement with their investigations, these models demonstrated significant relationships among the stand variables and thus guaranteed their usefulness for future projections among the Pinus stands in the study area. The study has shown among the whole stand growth models that stem volume growth increased significantly with site index, age and basal area per hectare while the basal area growth also increased with site index, crown projection area and stem volume growth. Stem quality however increased reasonably with number of stem, age and stem total heights. Similarly, the results of yield models among the whole stand data produced comparable trends with growth models which made the results and the pattern in both whole growth and yield models agreed with earlier studies on Pinus species (Short III and Burkhart, 1992; Valentine et al.,1994; Oliver and Larson, 1996; Meldahl et al.,1998). The significant relationships among these stand growth variables and the credible evaluation of the models justified the potentials of these models. Adesoye (2002) reported that reasonable whole stand growth models are useful for predicting both current and future yield which often times are measured in terms of stem volume and basal area. This study thus projected future yield ( in terms of volume per hectare) of Pinus caribaea in the study with adjudged best candidate model (Equation 127) for yield projection and predicted expected volume per hectare from each stand at different planning period of 25 years at 5 years interval (Table 23). This would thus represent the quantity of wood that are probably be available in each stand of Pinus caribaea through the proposed management planning model of 25 years. This view was equally shared and emphasized by other authors on future yield prediction for management options (Clutter et al., 1992; Akindele and Abayomi, 1993; Onifade, 1998; Adesoye, 2002). 117 UNIVERSITY OF IBADAN LIBRARY 5.2.5 Optimal rotation age models The optimal rotation age models developed in this study was based on the estimate computed from the mean annual increment (MAI) or yield often expressed in volume per hectare. This was computed from the growth equations when MAI is maximized and the results of the study showed variations among the canopy layers. Intermediate canopy had the least rotation age while the dominant canopy had the highest rotation age (Table 20). The variability among the canopy layers agreed with earlier studies on optimal rotation age (Fry and Poole, 1980; Lamprecht, 1986; McDade et al.,1994). Petit and Montagnini (2004) reported that variation among canopy layers is peculiarly related with fast growing species when he compared growth equations and rotation ages of ten native tree species in mixed and pure plantations in the humid neotropics. The study also recorded rotation ages and expected merchantable volumes to be yielded being computed from the optimal rotation models of each canopy layer evaluated; and at these various rotations ages, the stand within the canopy layers attain merchantable sizes that can be harvested (Table 21). The ranking among canopy layers showed that dominant canopy layer had the best relative growth from the concept of rotation ages and expected volume (Table 22). This investigation was in consonant with results of other studies on growth modeling and rotation ages among plantation grown species (Butterfield, 1993; Petit and Montagnini, 2004). This observation is invariably significant in solving the questions of productivity within different canopy layers using modeling options from the concept of rotation ages. Importantly, this study revealed pristine and novel information on the possibility of modeling canopy layers‟ rotation ages for determining productivity of any plantation grown species; particularly of Pinus caribaea in southwestern Nigeria. As can be seen from these investigations, canopy rotation age models categorization proffer good both silvicultural and yield results in terms of provision of satisfactory information about productivity of Pinus caribaea within each canopy layer which would undoubtedly offer plausible potentials of determining above-ground biomass alongside with yield 3 (merchantable volume per hectare/year-m /ha/yr) per layer component. This would tremendously inform the forest managers and policy makers about various options for allowable cut among these canopy components with possible methods of felling systems 118 UNIVERSITY OF IBADAN LIBRARY for both sustained yield and sustainable management of Pinus caribaea plantations in southwestern and other ecological zones of Nigeria. This study of canopy categorization has also dwelt apparently into the concept of hierarchical models in architectural modeling conceptualization; where ecosystems can be modeled at many different hierarchical levels. According to Maguire (2009), the phenomenon been modeled or simulated has a context represented by the next higher level of ecosystem organization as well as driving mechanisms represented by the next lower level of ecosystem organization. In this study, the level at which mechanisms are represented in models of canopy layers depends on the variations about the growth attributes identified and modeled in this study and this obvious discovery may possibly suggest further investigation into integrated systems for modeling stand dynamics and wood quality among these canopy facets. 5.3 SITE QUALITY EVALUATION The linearised site index equation found suitable for this study was of the order of Schumacher (1939) and had been used and supported by Akindele (1991) as suitable site index equation suitable for any tropically grown plantation species. The anamorphic site index curves produced for the comparison of the three sites and plots within the individual stands were somewhat similar but with distinctive variations at the two levels of comparisons (Figs 7 and 8). The results of site quality evaluation in this study revealed significant variations in the site index equations and curves between the three study sites (J4 - Pine plantation, Shasha Forest Reserve Pine plantation and Oluwa Forest Reserve Pine plantation) with J4 Forest Reserve pine plantation having the highest site index among the three sites of the study area. This is in agreement with previous observations on site index study with possible variations among the site quality classes which ultimately describe the productivity of the categories of site worked in the study (Goudia, 1984; Hann and John, 1986; Carmean et al., 1989; Johansson, 1995; Wang et al., 2008; Waring et al.,2006). Akindele (1991) reported that for many exotic species in Nigeria, the leading factors that may resulted in such good growth seem to be the climate and relative good soil. Essentially, the study of Huebschmann and Martin (1996) was in 119 UNIVERSITY OF IBADAN LIBRARY consonant with the trend of findings in this study which emphasized the essence of site index as being most importantly used in determining which stands to manage and that the stands with high site indexes produce merchantable timber in a shorter time period than do stands with low indexes such that the former are more economical to manage. Site index concept remains a concomitant concept on the evaluation of site quality both in the tropical and temperate regions of the world. Waring et al. (2002) gave a reasonable results on the assessment of site index and forest growth capacity across the pacific and inland Northwest USA with a MODIS satellite- derived vegetation index with significant site equations of best fit indexes which similarly agrees with the findings in this study. Still on the better observation of the J4 - Forest Reserve site index curve, Mehtätalo (2004) observed that the development of some growth characteristics models and site curves explanation of the site by site index concept of a shade-tolerant (dominant) tree species depends on mean tree size in the stand rather than on stand age. His study was also supported by Mehtätalo (2005) who observed that site properties affect the development rate of a forest stand; such that stands on poor sites develop more slowly and for longer than stands on rich sites. These revelations were similar to the observations in J4-Forest Reserve, Shasha Forest Reserve and Oluwa Forest Reserve with J4 having the highest site index and thus with greater possibility of highest merchantable timber production over Shasha and Oluwa Forest Reserve. On the factor of soil properties differentiation, the study of Johansson (1995) on Norway Spruce on farmland with different soil types indicated similar results as it aligned with the report of Johansson (1995) who worked on European Aspen growing forestland of different soils in Sweden. However, Wang et al. (2008), reported that the tendency for a predictor age to be derived, the closer must be the base age among the plantation species, the higher the accuracy that would likely be obtained when he studied pine plantation of Taiwan using base age of 25 years. This site index curves produced for this study was on similar threshold of base age of 25 years, and was in consonant with the previous studies (Johansson, 1995; 1996; Swenson et al., 2005; Wang et al., 2008; Johansson, 2012). Again, the base age of 25 years used for the development of the site index curves in this study was very suitable for any site quality study on Pinus caribaea since the base age is 120 UNIVERSITY OF IBADAN LIBRARY essential and always chosen to extrapolate rotation age of many tropical tree species (Curtis et al., 1974; Onyekwelu and Fuwape, 1998; Teshome and Petty, 2000). The results of the study showing pine plantation at J4 Forest Reserve having the highest height growth site curves over Shasha and Oluwa Forest Reserve pine plantations was in consonant with the study of Clutter et al.(1983) when he reported that site index curves of high height growth was an indication of a good site quality. Thus, the best site quality was found to be at J4 Forest Reserve whereas the poorest was presumably was at Oluwa Forest Reserve pine plantation. This revelation about J4 Forest Reserve corresponds with the study of Onyekwelu (2005) on site index curves for site quality assessment of Nauclea diderrichi monoculture plantation in Omo-J4 Forest Reserve, with several classes of sites considered to be best for the species and the species growing on better site of high potential of higher volume production. Unarguable, the J4 Forest Reserve pine plantation was monoculture, and the study suggests that the J4 Forest Reserve site invariably would produce better volume (yield) of Pinus caribaea with the highest site index curves of height growth than any other pine plantation observed in this study. The plausible good of J4 Forest Reserve site quality as revealed by the results of site index curves could be relevant in projection for possible large-scale establishment of more pine plantations around J4 Forest Reserve areas. The results could also be used as a guide in making reasonable management decisions on such established plantation. 5.4 APPLICATIONS OF GROWTH AND YIELD MODELS FOR MANAGEMENT OPTIONS There are many potential applications of growth characteristic models and yield studies of Pinus caribaea plantations in southwestern Nigeria. As it has been extensively justified, the statistical expeditions of the study can be applied with data normally available from stand inventories in the region which serve as baseline information about the possibilities inherent in Pinus caribaea plantations in Nigeria. The models categorically explored different levels of model types ranging from linear to nonlinear equations as well as probability density functions (PDF) for modeling pertinent 121 UNIVERSITY OF IBADAN LIBRARY distributions. This may be extremely interesting, considering the need for implementation and generalization of silvicultural practices in the area of study. Many of these principles and results agreed with several studies on reasonable growth modeling and yield predictions (Alder, 1979; Álvarez-González et al., 2002, 2004). The study significantly revealed that growth modeling projects and pictures credible yield projections which is often expressed in terms of product classes or log quality grade, and very vital tool in management information for harvesting and reasonable decision making (Vanclay, 1994). The combined information on size class distribution, individual tree, whole stand growth and canopy layer models categorization enable much more realistic evaluations of alternative silvicultural regimes in terms of both volume yield and sustainable management in the study area. Among notables in this study was the development of curves for determining stem volume curve with optimal rotation ages among the identified canopy layers. These curves are useful tools for the correct management of forest stands and contribute to estimation of the timing of intermediate and final cuts. It is well known that the interception between volume MAI and CAI curves indicates the biological rotation age for a given stand more so when MAI is maximized. All the best adjudged predictive models presented in this study can be directly used for both current and future predictions and for optimizing timber management planning and in evaluating alternative management regimes at various levels of the Pinus caribaea plantations in the study area. These situations, in which planning can be carried out independently for each stand and canopy layer identified , will be the most typical in the region taking into account the place of southwestern geopolitical region in Nigeria Forestry management and administration. In this case, where stable patterns of cogent decisions are important, planning must be coordinated for all stands in the forest being considered and the information given by the model must be included in a forest level optimization model (Clutter et al., 1983; Vanclay and Sknovsgard, 1997; Fox et al. 2001). 122 UNIVERSITY OF IBADAN LIBRARY As part of significant contributions of forest growth models which attempt to quantify the growth of a forest, the several models developed in this study would be relevant in predicting the future status of a Pinus caribaea plantations and the nature of probable harvesting techniques from the plantation forest, and this would help vigorously for considering alternative cultivation and silvicultural alternatives capable of ensuring sustainable management. Therefore the array of growth and yield models developed can be considered as a potential tool for sustainable management with pragmatic wider objectives that has environmental and socioeconomic synergies. 123 UNIVERSITY OF IBADAN LIBRARY CHAPTER SIX 6.0 CONCLUSION AND RECOMMENDATIONS 6.1 CONCLUSION Modeling generally is not only a method to bridge the gap between science and management, it can also help to understand its causes for possible recognition, conceptualization of problem and mathematical resolution of perceived gap or problem for future planning and prediction. This study has investigated the growth characteristics models and their applications to yield studies of Pinus caribaea in Southwestern Nigeria. This quantitative study explored several models fitted to data from individual, size class, whole stand levels as well as models among the canopy layers. The tests of relationships and associations between the growth characteristics within various levels of Pinus caribaea stands showed high significances at P<0.05 level of significance with higher 2 values of coefficient of determination (R ). Critical evaluation and validation of the growth and yield models developed produced reasonable estimates of the models that had stringent compliance with criteria for goodness fit. The results on diameter distribution and stem quality distribution using Weibull probability density functions (PDF) in this study have shown that the three Weibull parameters (location (a) Scale (b) and shape (c) ) are adequate projection both for current and future diameter and stem quality distributions alongside other size class growth attributes. Growth and yield models developed and validated under individual, whole stand and canopy layers provided estimates of good fit models and several models of growth and yield characteristics adjudged as the best candidate models for these various levels. The expected volume projection obtained for 25 years management planning period of 5 years intervals showed uniform progression in volume expected from the entire stand of Pinus caribaea plantations within the period of projection. This significantly indicates a possible trend of progression along the proposed years of planning. The implications of 124 UNIVERSITY OF IBADAN LIBRARY this trend also ensure progression in the number of tree to compensate for the increasing volume expected along the planning period. This study has therefore shown effects of variation among growth attributes of Pinus caribaea plantation in Southwestern Nigeria and possibility of progressive productivity in the yield (volume). The potential revelation about Weibull parameters suitable for both current and future prediction of diameter distribution and stem quality ensures the validity of the study on the possibility of boosting further investigations on the relationships between growth attributes and other stand dynamics. This would in turn proffer reliable information for forest managers, modelers and policy makers on effective and sustainable management of Pinus caribaea plantations in the Southwestern region of Nigeria. As the study is providing a baseline data on Pinus caribaea plantations in southwestern Nigeria, this would provide laudable information and veritable database on sustainable management options being the first quantitative study on growth characteristics models for Pinus caribaea in Nigeria. Thus, the information that is being provided on growth characteristics and yield studies are relevant for effective management of Pinus caribaea in the study area and other Pinus caribaea plantations in Nigeria Thereby helping in critical projection of the timber production potentials of the pine plantations in the study area and the country (Nigeria) at large using empirical modeling methods. The study has proffered opportunity to have reasonable classification of estimates of growth attributes among the Pinus stands for effectual silvicultural treatments among the canopy layers. Taking reference from dominant canopy layer with highest estimate of stem volume and with probable highest predicted volume across the projected planning period, the timber productivity potentials of this species are made known. With the investigation on expected volume for 5 years planning period, changes on site productivity over successive rotation ages of the species can be properly managed across the study sites. 125 UNIVERSITY OF IBADAN LIBRARY 6.2 RECOMMENDATIONS Indeed, information on growth attributes and yield potentials from Pinus caribaea plantations in the study area has provided reliable and reasonable estimates of growth and yield models. Thus the following recommendations are made: 1. There is need for regular and proper monitoring of integrated inventory activities of Pinus caribaea plantations in other parts of the country for reasonable comparative studies for relationship between growth attributes and prediction models across the regions. 2. The development of optimal productivity potentials identified in the study necessitates adequate management of the Pinus caribaea in the study area and other pine plantations in Nigeria. 3. Though, there has not been a recorded facts on the Pinus caribaea timber conversion and utilization in Nigeria, the knowledge of expected volume and yield productivity demands an urgent investigations into the preservative and durability potentials should there be any move for its timber conversion. 4. There is also urgent need of incorporating the information on growth attributes and yield productivity potential with realistic economic parameters that would ensure good economic analysis of the future yield and expected productivity. 126 UNIVERSITY OF IBADAN LIBRARY REFERENCES Abayomi, J.O. 1984. A yield model for teak plantation in southern Nigeria. Paper presented at the 14th Annual Conference of the Forestry Association of Nigeria, Port Harcourt, Nigeria, 3-8 December. Acharjee, S. 2006. Stochastic and deterministic techniques for computational design of deformation process. Ph.D dissertation, Faculty of the Graduate School of Cornell University. Adegbehin, J.O. 1985. Growth prediction in some plantation of exotic tree species in Northern Guinea and Derived Savanna zones of Nigeria. Unpublished Ph.D Thesis. University of Ibadan. Adesoye, P.O. 2002. Integrated system of forest stand models for Naclea diderrichi (De Wild & Th. Dur) in Omo Forest Reserve, Nigeria. Unpublished Ph.D Thesis. Department of Forest Resources Management, University of Ibadan. Akindele, S. O. 2005. Volume functions for common timber species of Nigeria's tropical rain forests.ITTO Technical Document. Technical Report prepared for the International Tropical Timber Organisation (ITTO). 85p. Akindele, S. O. 2003. Volume prediction from stump diameters of Gmelina arborea (Roxb) trees in Akure forest reserve, Nigeria. Nigerian Journal of Forestry, Vol. 33 (2): 116 – 123. Akindele, S.O and J.O. Abayomi 1993. Stem distribution in a permament sample plot of Nauclea diderrichi (de wild) in South-western Nigeria. In Vanclay et al. (eds.) 1993. Growth and Yield estimation from successive forest inventories. Proceedings of IUFRO conference, Copenhagen, Denmark, June 1993. Pp 188- 193. Akindele, S.O. 1991. Development of a site index equation for teak plantation in south-western Nigeria. Journal of Tropical Forest Science 4 (2): 162-169. Akindele, S. O.1990. Site quality assessment and yield equations for teak plantations in the dry forest area of Nigeria. Ph. D. Thesis. University of Ibadan, Ibadan, Nigeria. Akinnagbe, A. and Akindele, S.O. 2006.Modeling stem diameter distribution in a permanent sample plot in Akure Forest Reserve, Nigeria. Nigerian Journal of Forestry 33(2) 103-107. Al-fawzan Mohammad, 2000. Method for estimating the parameters of the Weibull distribution. (Unpublished.) Alder, D., 1991. Data processing for the Budongo Forest inventory. Uganda Forestry Rehabilitation Project internal report. Unpublished, 48 pp. 127 UNIVERSITY OF IBADAN LIBRARY Alder, D. and Synnott, T.J., 1992. Permanent sample plot techniques for mixed tropical forest. Oxford Forestry Institute, Tropical Forestry Paper 25. 124 p. Alder, D., 1995. Growth modeling for mixed tropical forests. Oxford Forestry Institute, Tropical Forestry Papers 30. 231 p. Alder, D., 1979. A distance-independent tree model for exotic conifer plantations in east Africa. For. Sci. 25:59–71 Álvarez-González J.G., Castedo-Dorado F., Ruiz González A.D., López Sánchez C.A., and Gadow K.V. 2004. A two-step mortality model for even-aged stands of Pinus radiata D. Don in Galicia (Northwestern Spain). Ann. For. Sci. 61: 439–448. Álvarez-González, Schrö der J, Rodríguez Soalleiro R, Ruíz González A. 2002. Modeling the effect of thinnings on the diameter distribution of even-aged maritime pine stands. For Ecol Manage 165: 57-65. th Avery, I.E.and Burkhart, H.E. 1994. Forest Measurement. 4 Ed. McGraw-Hill. Int. N.Y. 408pp. Assmann, E.1970. The principles of forest yield studies. Pergamon press, Oxford. 506pp. Bada S.O. 1977. “A Comparative Study of the Growth of Obeche (Triplochiton Scleroxylon K. Shum)” M. Phil Dissertation, University of Ibadan, Department of Forest Resource Management, Ibadan, Nigeria, 145pp. Bailey, R.L and Clutter, J. L 1974. Base age in variant polymorphic site curves. Forest Science. 20: 155-159. Bailey, R. L. and Dell, T. R. 1973. Quantifying diameter distributions with the Weibull function. Forest Science. 19: 97-104. Bailey, R.L., T.M. Burgan, and E. J. Jokela. 1989. Fertilized mid-rotation aged slash pine plantations-Stand structure and yield prediction models. South. J. Appl. For. 13:76;80. Bechtold, 2003. Tree growth: FIA- forest inventory and analysis growth and change estimation. Fact sheet series. Beetson, T., M. Nester and J.K. Vanclay, 1992. Enhancing a permanent sample plot system in natural forests. Forest Sci. 30:731-743. Binkley, D., A.M. O‟Connell, and K.V. Sankaran. 1997. Stand Growth: Patterns and Controls. Chapter 12 in: Management of soil, water, and nutrients in tropical plantation forests (E.K.S. Nambiar and A. Brown, eds). ACIAR Monograph 43, Canberra, p. 419-442. 128 UNIVERSITY OF IBADAN LIBRARY Bliss, C. I. and Reinker, K.A. 1964. A lognormal approach to diameter distributions in even-aged stands. Forest Science.10: 350-360. Bredenkamp B.V., Gregoire T.G., 1988. A forestry application of Schnute‟s generalized growth function. Forest Science. 34: 790–797. Bruner, H.D. and Moser, J.W. 1973. A Markov chain approach to the prediction of diameter distribution in uneven-aged forest stands. Canadian Journal of Forest Research. 3(3) 409-417 Bunnell, F.L., 1989. Alchemy and uncertainty: What good are models? USDA For. Serv., Gen. Tech. Rep. PNW-GTR-232. Buongiorno, J. and Hsien Chih Lu. 1990. Economic stocking and cutting cycle in a regulated selection forest. Forest Ecology and management. 32: 203-216. Buongiorno, J. and Michie, B.R. 1980. A matrix model of uneven-aged forest management. Forest Science. 26(4). 609-625. Buongiorno, J. and Gilles, J.K. 1987. Forest management and Economics. A primer in Quantitative Methods. Macmillan Pub. Co. NY 277pp. Butterfield, R., 1993. Tropical timber species growth in the Atlantic lowlands of Costa Rica and wood variation of two native species, Ph.D. dissertation. North Carolina State University, Raleigh, p. 76. Cao, Q.V. 2000. Prediction of annual diameter growth and survival for individual trees from periodic measurements. For. Sci. 46:127–131. Cao, Q.V. 2004. Predicting parameters of a Weibull function for modeling diameter distribution. For. Sci. 50: 682;685. Cao, Q.V. 2006. Predictions of individual tree and whole stand attributes for loblolly pine plantations. For. Ecol. Manag. 236: 342;347. Cao, Q.V., and S. M. McCarty. 2006. New methods for estimating parameters of Weibull functions to characterize future diameter distributions in forest stands. P. 338;340 in Proc. of the South. Silvic. Res. Conf. USDA For. Serv. Gen. Tech. Rep. SRS;92. Campbell, D.G., 1989. Quantitative inventory of tropical forests. In: D.G. Campbell and H.D. Hammond (eds) Floristic Inventory of Tropical Countries. New York Botanic Garden, Bronx, NY. P. 523-533. Carmean, W.H., Hahn,J.T. and Jacobs, R.D. 1989. Site index curves for forest species in the eastern United States. Gen. Ten. Rep. NC- 128. St. Paul, MN. U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station. 142p. 129 UNIVERSITY OF IBADAN LIBRARY Centro Agronómico Tropical de Investigación y Enseñanza. 1994. Pino caribe (Pinus caribaea var. hondurensis) (Barr. y Golf.) Pinaceae, unárbol de uso móltiple. San José, Costa Rica: Centro Agronómico Tropical de Investigación y Enseñanza, Proyecto madeleña. 6 p. Chijioke, E. 0. 1988. Soil factors and growth of Gmelina arborea in Omo Forest Reserve. Forest Ecol. Management, 23:245-251. Cieszewski C.J., 2001. Three methods of deriving advanced dynamic site equations demonstrated on inland Douglas fir site curves. Canadian Journal of Forest Research. 31: 165–173. Cieszewski C.J., and bella I.E., 1992. Towards optimal design of nonlinear regression models. In: Rennolls K., Gertner G., Proceedings of a IUFRO S4.11 Conference held on 10–14 September 1991 at the University of Greenwich, London. Cieszewski C.J., and Bella I.E., 1993. Modelling density related lodgepole pine height growth, using Czarnowskis stand dynamics theory. Canadian Journal of Forest Research 23: 2499–2506. Cieszewski C.J., and Bailey R.L., 2000. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes. Forest Science 46: 116–126. Clutter, J.L., Fortson, J.C., Pienaar, L.V., rister, G.H. and Bailey, R. L. 1983. Timber Management: A quantitative approach. Wiley , N.Y. 333p. Clutter, J.L.1963. Compatible growth and yield models for loblolly pine. For. Sci. 9:354- 371. Clutter, J.L., Fortson, J.C., Pienaar, L.V., Brister, G.H. and Bailey, R.L. 1992 Timber management: a quantitative approach. Krieger publishing Co., Florida. Curtis, R. O., Demars, D. J. and Herman, F. R. 1974. Which dependent variable in site index-height-age regression? Forest Science 20: 74–87. Dauda,T.O.,Ojo,L.O. and Nokoe, S.K . 2004. Unexplained relationship of height- diameter of three species in a tropical forest. Global Nest: The International Journal. Vol 6:3. Pp196-204. Deluis,M., Raventos, J., Cortina, J. Moro, M. J., and Bellot, J. 1997.Assessing components of a competition index to predict growth in an even-aged Pinus nigra stand. New Forest,15,223-242. Dike, M.C. 1992. Tree regeneration, recruitment and mortality in Nigeria Tropical Moist Forests. Ph.D thesis, University of Ibadan, Nigeria, p. 235. 130 UNIVERSITY OF IBADAN LIBRARY Draper, N. R. and Smith, H.1966. Applied Regression Analysis. John Wiley and Sons, New York. 407pp. Dupuy, D. and G. Mille 1993. Timber plantations in the humid tropics of Africa. FAO Forestry paper 98. FAO, Rome, 190pp. Emerhi, E. A., Ekeke, B. A. and Oyebade, B. A. 2008.Biodegrading effects of some rot fungi on Pinus caribaea wood. African Journal of Biotechnology Vol. 7 (10), pp. 1512-1515. nd Evans, J.1992. Plantation forestry in the tropics. 2 edition. Oxford, U.K, Clarendon press. 403pp. Evans, J., 1998. The suitability of wood production in plantation forestry. Unasylva 192 (49), 47–52. Euler, D.L. and A.E. Epp. 2000. A New Foundation for Ontario Forest Policy for the 21st Century. In: A. H. Perera, D.L. Euler, and I.D. Thompson, editors. Ecology of a Managed Terrestrial Landscape: Patterns and Processes of Forest Landscapes in Ontario. UBC Press, Vancouver, BC. pp. 276-294. Fang, Z. and R.L. Bailey. 2001. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments. For. Sci. 47: 287–300. Fenger, M. 1996. Implementing biodiversity conservation through the British Columbia forest practices code. Forest Ecology and Management 85: 67–77. Fonweban, J.N., Dondjan, J.P. and T.N. Chapajong 1994. Growth and quality response of Bilinga (Nauclea diderrichi Merril) to spacing. New Forests 8: 387-395. Ford-Robertson, F.C. (ed.), 1977. Terminology of Forest Science Technology Practice and Products (with Addendum Number One by R.K. Winters, ed.). Society of American Foresters, Washington DC. 370 p. Fox J.C., Ades P.K. and Bi, H., 2001. Stochastic structure and individual-tree growth models. For Ecol Manage 154, 261-276. Frange, D. 2005. A comparison of stochastic and deterministic modeling using Meso RD on the Mini- System in E.coli. MSc. Thesis, Department of information Technology, Uppsala University, Sweden. Fries, J., Burkhat, H.E and Max, T.A.1978. Growth models for long-term forecasting of timber yields. Publication F.W.S.-1-78, School of Forestry and Wildlife Resources. Blacksburg, U.S.A. 349pp. Fry, G., Poole, B., 1980. Evaluation of planting stock quality several years after planting (a discussion). N.Z.J. For. Sci. 10, 299–300. 131 UNIVERSITY OF IBADAN LIBRARY Gadow, K.V., 1983. Fitting distributions in Pinus patula stands. South African Forestry Journal. Pp20 -29. García, O., 1994. The state-space approach in growth modelling. Can. J. For. Res., 24: 1894-1903 Gertner, G., 1987. A procedure to evaluate sampling schemes for improving already calibrated models. Forest Sci. 33:632-643. Goudia, J.W. 1984. Height growth and site index curves for lodgepole pine and white spruce and interim managed stand yield tables for lodgepole pine in British Columbia. Research branch, Ministry of Forests. British Columbia. Final Report, FY 1983-1984. 75pp. Goulding, C.J., 1979. Validation of growth models used in forest management. N. Z. J. For. 24:108-124. Green, P.E. 1976. Mathematical tools for applied multivariate analysis. Academic Press, New York. 376pp. Gregoire, T.G. and Reynolds, M.R., 1988. Accuracy testing and estimation alternatives. For. Sci. 34:302–320. Gringrich, S.F. 1967. Measuring and evaluating stocking and stand density in upland hardwood forests in the Central States. Forest Sci.13:38-55. Gustafson, E.J., Shifley, S.R., Mladenoff, D.J., Nimerfro, K.K, and He, H.S. 2000. Spatial simulation of forest succession and harvesting using LANDIS. Canadian Journal of Forest Resources. 30:32-43. Hann, D.W. and John, A.S. 1986. Dominant – height growth and site index for Douglas fir and Ponderosa pine in southwestern Oregon. Forest Research Laboratory, Oregon State University, Carvallis. Research Bulletin 59.13pp. Haugh, M. 2010. Introduction to Stochastic Calculus: IEORE4707: Financial Engineering; Continuous-Time Models. Hegyi,F.1974. A simulation model for managing jackpine stands. In: Growth models for Tree and stands imulation, Fries, J.(ed.).Royalcoll of Forestry, Stockholm:74-90. Hilt, D.E. and Teck, R.M., 1988. Individual-tree diameter model for northern New England. In: A.R. Ek, S.R. Shifley and T.E. Burk (Editors), Forest Growth Modelling and Prediction: Proc. of the IUFRO Conference, Publ. SAF-87 12, Society of American Forestry, pp. 86-93. Huang S., Titus S.J., Wiens D.P., 1992. Comparison of nonlinear height-diameter functions for major Alberta tree species. Canadian Journal of Forest Research 22: 1297–1304. 132 UNIVERSITY OF IBADAN LIBRARY Huebschmann, M. and Martin, J. 1996. Estimating and interpreting site index. G3361 Lake States Woodlands. University of Wisconsin Report Paper. 4p. Husch, B., Miller, C.I., and T.W. Beers. 1982. Forest Mensuration. John Wiley and Sons, New York, 402pp. Husch, B., Beers, T. W. and Kershaw, J. A. (2003) Forest Mensuration. John Wiley & Sons, 443p Huuskonen, S. and Hynynen, J. 2006. Timing and intensity of precommercial thinning and their effects on the first commercial thinning in Scots pine stands. Silva Fennica 40(4): 645–662. Hynynen, J. 1995. Predicting tree crown ratio for unthinned and thinned Scots pine stands. Canadian Journal of Forest Research. 25: 57–62. Isichei, A.O. 1995. Omo biosphere reserve, current status, utilization of biological resources and sustainable management (Nigeria). Working Paper No.11; UNESCO (South-South Cooperation Programme) Paris France. 48pp. Iyamabo D.E, Jackson J.K, Ojo G.O.A 1972. Pinus trials in savannah areas of Nigeria Research paper (savannah series) No. 11. Federal Department of Forest Research Ibadan, p. 33. Johansson. T. 1995. Site index curves for Norway spruce plantations on farmland with different soil types. Studia Forestulia Suecica 198. 19 pp. Johansson, T. 1996. Site index curves for European aspen (Populus tremula L.) growing on forest land of different soils in Sweden. Silva Fennica 30(4): 437-458. Johansson, T.2012. Site Index Curves for Young Hybrid Larch Growing on Former Farmland in Sweden. Forests. Vol. (3) 723-735 Keay, R.W. 1959. (3rd edition) An outline of Nigerian vegetation. Lagos: Federal Ministry of Information. Keay, R.W. J. 1989. Trees of Nigeria. Clarendon Press, Oxford, 475pp. Kerns , B.K., and J.L. Ohmann. 2004. Evaluation and prediction of shrub cover in coastal Oregon forests (USA). Ecol. Indic. 4:83–98. Ker, J.W. and Smith, J.H., 1957. Advantages ofthe parabolic expression of height- diameter relationships. For. Chron., 31: 235-246. Kio, P.R.O. 1978. Stand Development in Naturally Regenerated Forest in South- Western Nigeria”. Ph.D. Dissertation. University of Ibadan, department of Forest Resources Management, Ibadan, Nigeria. 133 UNIVERSITY OF IBADAN LIBRARY Koenig, A.and Venegas Tovar, L. 1978. Ensayos conPinus caribaea en las Gaviotas (Vichada).Bogotá: Proy, Investigación y Desarrollo Indu-Forestal. [Not paged]. Korhonen , L., K.T. Korhonen ,P.S Tenberg, M. Maltamo, and M. Rautiainen . 2007. Local models for forest canopy cover with beta regression. Silva Fennica. 41(4):671– 685. Kurz, W.A., S.J.Beukema, W., Klennaer, J.A., J.A. Greenouju, D.C.F. Robinson, A.D. Sharpe and T.M Webb. 2000. TELSA: the toll for Exploratory Landscape Scenario Analyses.Computers and Electronics in Agriculture 27: 227-242. Laarman, J.G. and R. A. Sedjo. 1992. Global Forests: Issues for Six Billion People. McGraw Hill, Inc. NY. 337 pp. Lamprecht, H., 1986. Silviculture in the Tropics. GTZ, Eschborn, p. 296. Lemay, V.M. and P.L. Marshall. 1990. Forest mensuration. Commentaries on Forestry 238 for Guided Independennce Studies. UBC Access/Guided Independence Studies, The University of British Columbia, Vancouver, B.C. 207pp. Landsberg, J.J., 1986. Physiological Ecology of Forest Production. Academic Press, London. Lei Y.C., 1998. Modelling forest growth and yield of Eucalyptus globulus Labill. in Central-interior Portugal. [Ph.D.Thesis.] UTAD, Vila Real, Portugal: 155. Lei, Y and Zhang, S.Y. 2006. Comparison and selection of growth models using the Schnute model. Journal of Forest 52(2) 166-196. Lei, Y. 2008.Evaluation of three methods for estimating the Weibull distribution n parameters of Chinese pine (Pinus tabulaeformis). Journal of Forest Science 54(12): 566- 571. Leslie, P.H. 1945. On the use of matrices in certain population mathematics. Biometrika 33: 183-212. Leslie, P.H. 1948. Some further notes on the use of matrices in population mathematics. Biometrika 33: 213-245. Leuschner,W.A. 1984. Introduction to Forest Resources Management. John Wiley & Sons Inc.N.Y. 269pp. Liu, J. and Ashton, P.S. 1995. Individual-based simulation models for forest succession and management. Forest Ecology and Management. 73: 157-175. Londo, Andrew J., and Stephen G. Dicke. 2006. Measuring Survival and Planting Quality in New Pine Plantations. Southern Regional Extension. Forestry. SREF-FM-001. 134 UNIVERSITY OF IBADAN LIBRARY Maguire, D.A. 2009. Why mechanisms should be in the eye of the beholder: Notes from the over ground .In: Dykstra, D.P.; Monserud, R.A., Tech. Eds. Forest growth and timber quality: Crown models and simulation methods for sustainable forest management. Proceedings of an international conference. Gen. Tech. Rep. PNW- GTR-791. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. pp. 1–13. Mäkelä, A., 1992. Process-oriented growth and yield models: Recent advances and future prospects. In T. Preuhsler (ed.) Research on Growth and Yield with emphasis on Mixed Stands. Proc. S4.01 "Mensuration, Growth and Yield" sessions at IUFRO Centennial Meeting, Berlin, 31 Aug.–4 Sept. 1992. Bayerische Forstliche Versuchs- und Forschungsanstalt, Freising, Germany, pp. 85–96. Mariaux, A., 1981. Past efforts in measuring age and annual growth in tropical trees. In: F.H. Bormann and G. Berlyn (eds) Age and Growth Rate of Tropical Trees: New Directions for Research. Proc. of Workshop on Age and Growth rate Determination for Tropical Trees, held at Harvard Forest, Petersham, Ma., 1-3 April 1980. Yale Univ. Sch. For. and Env. Studies. Bulletin 94. P. 20-30. McDade, L.A., Bawa, K.S., Hespenheide, H., Hartshorn, G., 1994. La Selva. Ecology and Natural History of a Neotropical Rain Forest. University of Chicago Press, p. 486. McMurtrie, R.E, Rook, D.A. and Kelliher, F.M., 1990. Modelling the yield of Pinus radiata on a site limited by water and nitrogen. For. Ecol. Manage.30:381–413. Meldahl, R. S., Kush, J. S., Rayamajhi, J. N., and Farrar, R. M. 1998. Productivity of natural stands of Longleaf pine in relation to competition and climatic factors. In: The productivity and sustainability of southern forest ecosystems in changing environment (Eds: Mickler, S. F., Fox, S.,). Springer-Verlag New York, Inc. 892 pp. Mendoza, G.A. and Gumpal, E.C., 1987. Growth projection of a selectively cutover forest based on residual inventory. For. Ecol. Manage. 20:253–263. Mengin-Lecreuix, P. 1990. Simulation de la croissance d‟un peuplemen de foret dense: Le cas de la foret de Yapo (Cote d‟ivoire). Internal research report, CTFt, Paris. 55pp. Mehtätalo, L. 2005. Height-diameter models for Scots pine and birch in Finland. Silva Fennica 39(1): 55–66. Mehtätalo, L. 2004. A longitudinal height-diameter model for Norway spruce in Finland. Canadian Journal of Forest Research 34(1): 131–140. Mitchell, K.J., 1988. SYLVER: Modelling the impact of silviculture on yield, lumber value, and economic return. For. Chron. 64:127–131. 135 UNIVERSITY OF IBADAN LIBRARY Michie, B.R. and Buongiorno, J., 1984. Estimation of a matrix model of forest growth from re-measured permanent plots. For. Ecol. Manage. 8:127–135. Mohren, G.M.J. and Burkhart, H.E. (1994) Contrasts between biologically-based process models and management-oriented growth and yield models. Forest Ecology and Management 69, 1-5. Munro,D.D.1974.Forest Growth Models - A Prognosis. In: Fries (Ed.)Growth Models for Tree and Stand Simulation, Royal College of Forestry of Sweden, Res. Note No.30.Pp.7-21. Nelson, T. C. 1964. Diameter distribution and growth of loblolly pine. Forest Sci.10:105- 115 Nieto, V.M. and Rodriguez, J. 2002. Pinus caribaea. Morelet. In: Vozzo, J.A. (Editor). Tropical tree seed manual. USDA. Forest Service publications, s.l., United States. Pp.609-611. Nigh, G.D. and Kayahara, G. 2000. Site index conversion equation for Western Redcedar and Western Hemlock. Northwest Science. Vol 74(2) 146-150. Nilsson, U. and Gemmel, P. 1993. Changes in growth and allocation of growth in young Pinus sylvestris and Picea abies due to the competiton. Scandinavian Journal of Forest Research 8: 213–222. Nilsson, U. and A. Albrektson 1993. Productivity of needles and allocation of growth in young Scots pine of different competitive status. For. Ecol. Manage. 62: 173- 187. Nunes, L, J. Tome and Tome, M. 2010. Stability of pure even-aged conifer stands in Portugal. In: Domingo, L., Margarida, T. Margarida, L. and Soares, P. (Editors).IUFRO Conference: Mixed and pure forests in a changing world, 6-8 October 2010,University of Tras-os-Montese Alto Duoro Vila real Portugal. Nwoboshi, L.C. 1982. Tropical Silviculture- Principles and Techniques. Department of Forest Resources Management, University of Ibadan, Ibadan. 333pp. Okali, D.U.U. and Ola-Adams, B.A. 1987. Tree population changes in treated rain forest at Omo Forest Reserve, Nigeria. Journal of Tropical Ecology. 3,291-313. Okojie, J.A., 1981. Selecting an appropriate method of estimating the parameters for describing stem diameter distribution in even-aged plantations. Nig. Jour. For. 11(2): 17-24. Oliver, C.D. and Larson, B.C., 1996. Forest stand dynamics. John Wiley and Sons, Toronto.424 pp. 136 UNIVERSITY OF IBADAN LIBRARY Omiyale, O. and Joyce, P.M. 1982. A yield model for unthinned Sitka Spruce (Picea sitchnsis Bong.) plantations in Ireland. Irish Forestry 39(2) 75-93. Onifade, O.A. 1998. Growth functions of Gmelina arborea in Omo forest reserve Nigeria. Unpublished M.Sc. dissertation. Dept. of Forest Resources Management, University of Ibadan, Nigeria. Onyekwelu, J. C. 2005. Site index curves for site quality assessment of Naucleadiderrichii monoculture plantations in Omo Forest Reserve, Nigeria. Timber. Journal of Tropical Forest Science 17(4): 532--542 Onyekwelu, J.C., El Kateb, H., Stimm, B. and Mosandl, R. 2003: Growth characteristics of Nauclea diderrichii (De Wild.) Merr. in unthinned plantations in south-western Nigeria. In: Waldbau – weltweit. Beiträge zur internationalen Waldbauforschung (Mosandl,R.; El Kateb,H.; Stimm,B. (eds)). Forstliche Forschungsberichte Munich, Nr. 192/2003, pp. 147-163. Onyelwelu, J.C. 2001. Growth characteristics and management scenarios for plantation- grown Gmelina arborea and Nauclea diderrichii in south-western Nigeria. Heieronymus Verlag, Munich, 196pp. Onyekwelu,J.C. 1995. Growth and yield studies for Gmelina arborea (Roxb) plantation in Oluwa Forest Reserve, Nigeria. Unpublished M.Tech dissertation. Department of Forestry and Wood Technology, Federal University of Technology, Akure, Nigeria. 105p. Onyekwelu, J. C. and Fuwape, J. A. 1998. Site index equation for Gmelina arborea pulpwood plantations in Oluwa Forest Reserve, Nigeria. Journal of Tropical Forest Science 10(3): 337–345. Oreskes, N., Shrader-Frechette, K. and Belitz, K., 1994. Verification, validation and confirmation of numerical models in the earth sciences. Science 263:641-645. P. 62-81. Osho, J. S. A. 1983. Volume prediction from stump diameter for teak (Tectona grandis L.f.) in Onigambari Forest Reserve. Nigerian Journal of Forestry 13 (1&2): 53- 56. Osho, J.S.A. 1988. Tree population dynamics in a tropical moist forest of Southwestern Nigeria. PhD Thesis, University of Ibadan, Nigeria. 308pp. Osho, J.S.A. 1989. A Computer Programme for the estimation of the parameter of a Weibull distribution for characterizing Diameter distributions in forest stands. Nig. Jour. of For 19(1&2) 18-21. Palmberg, C. 1989. Research needs in forest tree breeding and improvement in developing countries. Agroforestry Systems 9: 29-35. 137 UNIVERSITY OF IBADAN LIBRARY Petit, B. and Montagnini, F. 2004. Growth equations and rotation ages of ten native tree species in mixed and pure plantations in the humid neotropics. Forest Ecology Management 199. 243-257. Philip, M.S, 1994. Measuring Trees and Forests, Second Edition. CAB international, Wallingford, UK. 336pp. Prevosto, B.T, Curt, J. Gueugnot and P. Coquillard 2000. Modelling mid-elevation Scots pine growth on a Volcanic substrate. Forest Ecology and Management 131:223- 237. Reineke, L.H., 1933. Perfecting a stand density index for even-aged stands. J. Agric. Res. 46:627–638. Richards T.J. 1959. A flexible growth function for empirical use. Journal of Experimental Botany, 10: 290–300. Ruha, T. and Varmola, M. 1997. Precommercial thinning in naturally regenerated Scots pine stands in northern Finland. Silva Fennica. 31(4): 401–415. Schumacher, F.X. 1939. A new growth curve and its application to timber yield studies. Journal of Forestry, 37. 819-820. Schnute J., 1981. A versatile growth model with statistically stable parameters. Canadian Journal of Fisheries and Aquatic Sciences. 38: 1128–1140. Schmelz, D. V. and A. A. Lindsey. 1965. Size-class structure of old-growth forests in Indiana. Forest Sci. 11:258-264. Shiver B.D., 1988. Sample size and estimation methods for the Weibull distribution for unthinned slash pine plantation diameter distribution. Forest Science 34: 809– 814. Short III, E.A., and Burkhart, H.. 1992. Prediction crown-height increment for thinned and unthinned loblolly pine plantations. For. Sci. 38: 594-610. Shugart H. H., 1984. A theory of forest dynamics. The ecological implications of forest succession models. Springer, New York, 278 p. Sievanen, R., Burk, T.E. and Ek, A.R., 1988. Construction of a stand growth model utilizing photosynthesis and respiration relationships in individual trees. Can. J. For. Res. 18:1027-1035. Siipilehto, J. 2011. Methods and applications for improving parameter prediction models for stand structures in Finland. Dissertationes Forestales 124. 56 p. 138 UNIVERSITY OF IBADAN LIBRARY Sironen, S., Kangas, A., Maltamo, M. and Kangas, J. 2001. Estimating individual tree growth with the k-nearest neighbour and k-Most Similar Neighbour methods. Silva Fennica 35(4): 453–467. Smith, J.L. and Burkhart, H.E., 1984. A simulation study assessing the effect of sampling for predictor variable values on estimates of yield. Can. J. For. Res. 14:326–330. Smyth, A. J. and Montgomery, R.F. 1962. Soils and land-use in central western Nigeria. Government Printer, Ibadan. Nigeria. 265 pp. Soares, P., M. Tomé, J.P. Skovsgaard and J.K. Vanclay, 1995. Evaluating a growth model for forest management using continuous forest inventory data. Forest Ecology and Management. 71:251-266. Suchar , V.A., and N.L. Crookston . 2010. Understory cover and biomass indices predictions for forest ecosystems of the Northwestern United States. Ecol. Indic.10:602– 609. Sullivan, A.D. and Clutter, J.L., 1972. A simultaneous growth and yield model forloblolly pine. For. Sci. 18:76–86. Swenson, J.J., Waring, R.H., Fan, W., Coops, N., 2005. Predicting site index with a physiologically based growth model across Oregon, USA. Can. J. For. Res. 35, 1697–1707. Teshome, T. and Petty, J. A. 2000. Site index equation for Cupressus lusitanica stands in Munessa, Ethiopia. Forest Ecology and Management 126: 339–347. Trujillo Navarrete, E. 1984. Información básica ytratamientos pregerminativos en semillas forestales. Santafé de Bogotá, Colombia: Ministerio de Agricultura, Instituto de Recursos Naturales. 35 p. Ushers, M.B. 1966. A matrix approach to the management of renewable resources, with species reference to selection forests. Journal of Applied Ecology 3(2) 355-367. Valentine, H.T., Ludlow, A.R., and Furnival, G.M., 1994. Modeling crown rise in even- aged stands of Stika spruce or loblolly pine. For. Ecol. Manag. 69: 189-197. Van Horn, R.L., 1971. Validation of simulation results. Manage. Sci. 17:247-258. Vanclay, J.K., 1988. PLATIPUS Physiology: Design of a plantation growth andconversion simulator incorporating silviculture and wood quality. In A.R. Ek, S.R. Shifley and T.E. Burk (eds) Forest Growth Modelling and Prediction. Proc. IUFRO Conf., 23–27 Aug. 1987, Minneapolis, MN. USDA For. Serv., Gen. Tech. Rep. NC-120, pp. 998–1005. Vanclay, J.K., 1989. Modelling selection harvesting in tropical rain forests. J. Tropical Forest Science 1:280–294 139 UNIVERSITY OF IBADAN LIBRARY Vanclay, J.K., 1990. Design and implementation of a state-of-the-art inventory and forecasting system for indigenous forests. In: Global Natural Resource Monitoring and Assessments: Preparing for the 21st century, Proceedings of the international conference and workshop, 24-30 September 1989, Venice, Italy. P. 1072-1078. Vanclay, J.K., 1991. Data requirements for developing growth models for tropical moist forests. Commonw. For. Res. 70:248-271. Vanclay, J.K., 1992. Mortality functions for north Queensland rainforests. Journal of Tropical Forest Science 4:15-36. Vanclay, J.K., 1994. Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests. CAB International, Wallingford, U.K. xvii+. 312 p. Vanclay J.K. 1995. Growth models for tropical forests: a synthesis of models and methods. Forest Science 41: 7-42 Vanclay, J.K. and J.P. Skovsgaard, 1997. Evaluating forest growth models. Ecological Modeling 98:1-12. Varmola and Salminen, H. 2004. Timing and intensity of precommercial thinning in Pinus sylvestris stands. Scandinavian Journal of Forest Research 19: 142–151. Venegas Tovar, L. 1982. Ensayos de procedencias de Pinus caribaea Morelet en los Llanos Orientales de Colombia - Sur América. (Instituto de Recursos Naturales. Investigaciones fore-stales; No. 6). Traducción del informe presentado como trabajo voluntario al XVII Congreso Mundial de IUFRO, Division II; 1981 September 6-17; Kioto, Japan. Bogotá, Colombia: Instituto de Recursos Naturales. 9 p. Von Gadow, K. 1983. Fitting distributions in Pinus patula stands. Suid-Afrik. Bosboutydskrif. 126: 20 –29. Wang DH, Tang SC, Hsieh HC, Chung CH. 2008. Site index curve for Taiwania plantations in the Liukuei area. Taiwan J. For. Sci. 23(4):335-49. Waring, R. H., Milner, K.S., Jolly, W.M., Phillips, L., McWethy, D. 2006. Assessment of site index and forest growth capacity across the Pacific and Inland Northwest U.S.A. with a MODIS satellite-derived vegetation index. Forest Ecology and Management (228) 285–291. Waring, R.H., Coops, N. C., Ohmann, J.L. , Sarr, D.A. , 2002. Interpreting woody plant richness from seasonal ratios of photosynthesis. Ecology 83, 2964–2970. West, D.C., Shugart, H.H. and Botkin, B.B., 1981. Forest succession: Concepts and Applications. (Spinger, Berlin, 1981). 140 UNIVERSITY OF IBADAN LIBRARY West, P.W., 1981. Simulation of diameter growth and mortality in regrowth eucalypt forest of southern Tasmania. For. Sci. 27:603–616. Weisberg , P.J., C. Hadorn , and H. Bugmann . 2003. Predicting understory vegetation cover from overstory attributes in two temperate mountain forests. Forstwissenschaft. Centralblatt.122:273–286. Wong, S.M. 1983. Seed biology of Acacia mangium, Albizia falcataria, Eucalyptus spp., Gmelina arborea, Maesopsis eminii, Pinus caribaea and Tectona grandis. Malaysian Forester. 46(1): 26-45. World Bank, 1992. Federal Republic of Nigeria. Forest Sector Review. Confidential Report No. 10744-UNI, 87pp. Xu, M. and T.B. Harrington. 1998. Foliage biomass distribution of loblolly pine as affected by tree dominance, crown size and stand characteristics. Can. J. For. Res. 28: 887-892. Zarnoch, S.J.and Dell T.R., 1985.An evaluation of percentile and maximum likelihood estimators of Weibull parameters. Forest Science.31:260–268. 141 UNIVERSITY OF IBADAN LIBRARY Appendix 1: Data for individual tree CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1 Oluw1974 1 1 37 50.5 52.4 44.5 28.9 19.3 17.3 15.3 2.6 3.2 D 0.505 0.524 0.445 0.289 0.200296 2.604696 0.134715 38.21782 8.042477 2 Oluw1974 1 2 37 20.3 22.3 18.4 16.3 15.4 13.2 11.2 2.5 2.8 C 0.203 0.223 0.184 0.163 0.032365 0.365829 0.162338 75.86207 6.157522 3 Oluw1974 1 3 37 20 22.1 18.1 16 14.9 12.9 10.9 2.5 2.8 C 0.2 0.221 0.181 0.16 0.031416 0.346983 0.167785 74.5 6.157522 4 Oluw1974 1 4 37 25.2 27.2 23.4 21.6 15.8 13.8 11.8 2.5 2.8 C 0.252 0.272 0.234 0.216 0.049876 0.613574 0.158228 62.69841 6.157522 5 Oluw1974 1 5 37 23.5 26.4 21.5 19.5 14.8 12.9 10.9 2.5 2.8 C 0.235 0.264 0.215 0.195 0.043374 0.494122 0.168919 62.97872 6.157522 6 Oluw1974 1 6 37 13.3 16.4 11.2 9.3 12.4 10.2 8.2 2.4 2.6 S 0.133 0.164 0.112 0.093 0.013893 0.114453 0.193548 93.23308 5.309292 7 Oluw1974 1 7 37 33 36.2 28.1 26.1 18.8 16.8 14.8 2.5 2.8 C 0.33 0.362 0.281 0.261 0.08553 1.132564 0.132979 56.9697 6.157522 8 Oluw1974 1 8 37 26.9 28.8 24.8 20.9 16.4 14.2 12.2 2.5 2.8 C 0.269 0.288 0.248 0.209 0.056832 0.692656 0.152439 60.96654 6.157522 9 Oluw1974 1 9 37 29.2 34.1 25.2 22.1 16.8 14.8 12.8 2.5 2.8 C 0.292 0.341 0.252 0.221 0.066966 0.812003 0.14881 57.53425 6.157522 10 Oluw1974 1 10 37 53 55.6 49.8 29.9 17.6 18.4 16.4 2.6 3.2 D 0.53 0.556 0.498 0.299 0.220618 3.349223 0.147727 33.20755 8.042477 11 Oluw1974 1 11 37 40 42.4 38.3 28.4 18.2 16.2 14.1 2.6 3.1 D 0.4 0.424 0.383 0.284 0.125664 1.796526 0.142857 45.5 7.547676 12 Oluw1974 1 12 37 23 26.6 19.2 17.4 14.8 12.8 10.8 2.5 2.8 C 0.23 0.266 0.192 0.174 0.041548 0.416346 0.168919 64.34783 6.157522 13 Oluw1974 1 13 37 28 32.4 26.1 24 16.4 14.2 12.2 2.5 2.8 C 0.28 0.324 0.261 0.24 0.061575 0.808679 0.152439 58.57143 6.157522 14 Oluw1974 1 14 37 45 47.6 42.1 29.4 18.8 16.8 14.8 2.6 2.9 D 0.45 0.476 0.421 0.294 0.159043 2.247443 0.138298 41.77778 6.605199 15 Oluw1974 1 15 37 33 36.2 30.3 24.3 16.6 14.6 12.4 2.5 2.8 C 0.33 0.362 0.303 0.243 0.08553 1.065131 0.150602 50.30303 6.157522 16 Oluw1974 1 16 37 44.2 46.2 40.3 26.3 18.2 16.2 14.2 2.6 2.9 D 0.442 0.462 0.403 0.263 0.153439 1.976904 0.142857 41.17647 6.605199 17 Oluw1974 1 17 37 21 26.1 19.1 17.4 15.6 13.4 11.4 2.5 2.8 C 0.21 0.261 0.191 0.174 0.034636 0.428553 0.160256 74.28571 6.157522 18 Oluw1974 1 18 37 28 33.4 24.2 21.1 16.4 14.4 12.2 2.5 2.8 C 0.28 0.334 0.242 0.211 0.061575 0.73576 0.152439 58.57143 6.157522 19 Oluw1974 1 19 37 29.3 32.4 27.4 24.2 16.8 14.8 12.8 2.5 2.8 C 0.293 0.324 0.274 0.242 0.067426 0.898612 0.14881 57.33788 6.157522 20 Oluw1974 1 20 37 29.4 32.6 27.4 24.4 16.6 14.6 12.8 2.5 2.8 C 0.294 0.326 0.274 0.244 0.067887 0.890811 0.150602 56.46259 6.157522 21 Oluw1974 1 21 37 44 48.2 41.4 28.6 14.8 12.8 10.8 2.5 2.8 C 0.44 0.482 0.414 0.286 0.152053 1.67502 0.168919 33.63636 6.157522 22 Oluw1974 1 22 37 20 24.2 18.4 16.1 14.9 12.8 10.6 2.5 2.8 C 0.2 0.242 0.184 0.161 0.031416 0.368461 0.167785 74.5 6.157522 23 Oluw1974 2 1 37 21 24.2 19.6 17.4 14.8 12.8 10.8 2.5 2.8 C 0.21 0.242 0.196 0.174 0.034636 0.406319 0.168919 70.47619 6.157522 24 Oluw1974 2 2 37 28 32.4 26.4 24.1 15.8 13.8 11.4 2.5 2.8 C 0.28 0.324 0.264 0.241 0.061575 0.798149 0.158228 56.42857 6.157522 25 Oluw1974 2 3 37 47 49.6 42.5 28.5 18.6 16.8 14.8 2.5 2.8 C 0.47 0.496 0.425 0.285 0.173494 2.308501 0.134409 39.57447 6.157522 26 Oluw1974 2 4 37 23.2 26.1 20.1 18.2 14.8 12.9 10.9 2.5 2.8 C 0.232 0.261 0.201 0.182 0.042273 0.443848 0.168919 63.7931 6.157522 27 Oluw1974 2 5 37 20.6 24.4 18.5 16.6 14.4 12.4 10.4 2.5 2.8 C 0.206 0.244 0.185 0.166 0.033329 0.363574 0.173611 69.90291 6.157522 28 Oluw1974 2 6 37 32.2 36.2 26.4 24.2 15.8 13.8 11.8 2.6 2.9 D 0.322 0.362 0.264 0.242 0.081433 0.846111 0.164557 49.06832 6.605199 29 Oluw1974 2 7 37 23 26.4 20.1 18 14.7 12.9 10.7 2.5 2.8 C 0.23 0.264 0.201 0.18 0.041548 0.445285 0.170068 63.91304 6.157522 30 Oluw1974 2 8 37 25.4 27.4 21.4 19.4 14.6 12.8 10.8 2.5 2.8 C 0.254 0.274 0.214 0.194 0.050671 0.495779 0.171233 57.48031 6.157522 142 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 31 Oluw1974 2 9 37 51.5 52.8 48.4 29.5 19.8 18.8 16.9 2.6 3.3 D 0.515 0.528 0.484 0.295 0.208307 3.20616 0.131313 38.4466 8.552986 32 Oluw1974 2 10 37 45 47.8 42 28.8 19.4 17.8 15.4 2.6 3.2 D 0.45 0.478 0.42 0.288 0.159043 2.36969 0.134021 43.11111 8.042477 33 Oluw1974 2 11 37 39.5 42.4 36.5 29.6 18.4 16.4 14.4 2.6 3 D 0.395 0.424 0.365 0.296 0.122542 1.718031 0.141304 46.58228 7.068583 34 Oluw1974 2 12 37 38.6 40.6 34.5 29.6 17.8 15.8 13.6 2.6 3 D 0.386 0.406 0.345 0.296 0.117021 1.506802 0.146067 46.11399 7.068583 35 Oluw1974 3 1 37 21.2 24.2 19.2 17.3 14.8 12.4 10.2 2.5 2.8 C 0.212 0.242 0.192 0.173 0.035299 0.382982 0.168919 69.81132 6.157522 36 Oluw1974 3 2 37 52.1 55.6 49.2 29.1 19.5 18.3 16.3 2.6 3.2 D 0.521 0.556 0.492 0.291 0.213189 3.262797 0.133333 37.42802 8.042477 37 Oluw1974 3 3 37 19.5 23.6 17.6 15.5 12.8 10.4 8.4 2.4 2.6 S 0.195 0.236 0.176 0.155 0.029865 0.277206 0.1875 65.64103 5.309292 38 Oluw1974 3 4 37 41.4 44.6 28.4 29.4 18.4 16.4 14.2 2.5 2.8 C 0.414 0.446 0.284 0.294 0.134614 1.305176 0.13587 44.44444 6.157522 39 Oluw1974 3 5 37 44.8 46.8 40.6 29.8 18.8 16.8 14.9 2.6 2.9 D 0.448 0.468 0.406 0.298 0.157633 2.126922 0.138298 41.96429 6.605199 40 Oluw1974 3 6 37 46.1 48.2 42.8 29.9 19.1 17.2 15.2 2.6 2.9 D 0.461 0.482 0.428 0.299 0.166914 2.374092 0.136126 41.43167 6.605199 41 Oluw1974 3 7 37 51.4 54.4 46.2 28.8 19.6 18.4 16.4 2.6 2.9 D 0.514 0.544 0.462 0.288 0.207499 2.968919 0.132653 38.1323 6.605199 42 Oluw1974 3 8 37 24 26.2 21.2 18.6 14.6 12.6 10.6 2.5 2.8 C 0.24 0.262 0.212 0.186 0.045239 0.466789 0.171233 60.83333 6.157522 43 Oluw1974 3 9 37 42.4 44.5 38.2 28.4 18.8 16.8 14.4 2.6 2.9 D 0.424 0.445 0.382 0.284 0.141196 1.896466 0.138298 44.33962 6.605199 44 Oluw1974 3 10 37 17.5 21.4 15.6 13.5 13.6 11.6 9.6 2.6 2.6 S 0.175 0.214 0.156 0.135 0.024053 0.245022 0.191176 77.71429 5.309292 45 Oluw1974 3 11 37 23 27.4 20.1 18.4 15.6 13.4 11.2 2.5 2.8 C 0.23 0.274 0.201 0.184 0.041548 0.474535 0.160256 67.82609 6.157522 46 Oluw1974 4 1 37 57.7 59.6 52.7 29.4 19.8 18.8 16.8 2.6 3.2 D 0.577 0.596 0.527 0.294 0.261482 3.820737 0.131313 34.31542 8.042477 47 Oluw1974 4 2 37 24.8 26.8 22.6 20.8 14.9 12.4 10.4 2.5 2.8 C 0.248 0.268 0.226 0.208 0.048305 0.518423 0.167785 60.08065 6.157522 48 Oluw1974 4 3 37 21.5 34.4 19.5 17.5 14.2 12.2 10.2 2.5 2.8 C 0.215 0.344 0.195 0.175 0.036305 0.480787 0.176056 66.04651 6.157522 49 Oluw1974 4 4 37 26.6 28.5 24.5 22.4 14.8 12.8 10.8 2.5 2.8 C 0.266 0.285 0.245 0.224 0.055572 0.622456 0.168919 55.6391 6.157522 50 Oluw1974 4 5 37 34.5 56.4 30.4 24.5 18.2 16.2 14.2 2.6 2.9 D 0.345 0.564 0.304 0.245 0.093482 1.585734 0.142857 52.75362 6.605199 51 Oluw1974 4 6 37 34.5 36.4 30.3 24.5 18.4 16.4 14.4 2.6 2.9 D 0.345 0.364 0.303 0.245 0.093482 1.201661 0.141304 53.33333 6.605199 52 Oluw1974 4 7 37 37.8 39.8 35.8 26.4 19.1 17.1 15 2.6 2.9 D 0.378 0.398 0.358 0.264 0.112221 1.658097 0.136126 50.5291 6.605199 53 Oluw1974 4 8 37 43.7 45.6 41.6 29.7 17.4 15.4 15.4 2.6 3.1 D 0.437 0.456 0.416 0.297 0.149987 1.992409 0.149425 39.81693 7.547676 54 Oluw1974 4 9 37 34.8 36.9 30.4 28.4 18.8 16.8 14.4 2.6 2.9 D 0.348 0.369 0.304 0.284 0.095115 1.289739 0.138298 54.02299 6.605199 55 Oluw1974 4 10 37 44.4 46.2 41.8 28.8 19.4 17.4 15.2 2.6 2.9 D 0.444 0.462 0.418 0.288 0.15483 2.266913 0.134021 43.69369 6.605199 56 Oluw1974 4 11 37 34 38.2 30.1 26.4 18.2 16.2 14.1 2.6 2.9 D 0.34 0.382 0.301 0.264 0.090792 1.225743 0.142857 53.52941 6.605199 57 Oluw1974 4 12 37 32.9 36.4 28.6 24.8 17.8 15.8 13.8 2.6 2.9 D 0.329 0.364 0.286 0.248 0.085012 1.077921 0.146067 54.10334 6.605199 58 Oluw1974 4 13 37 20.5 36.8 18.5 16.4 14 12 10 2.5 2.8 C 0.205 0.368 0.185 0.164 0.033006 0.470014 0.178571 68.29268 6.157522 143 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 59 Oluw1974 4 14 37 35.4 38.9 30.4 26.2 18.8 16.8 14.8 2.6 2.9 D 0.354 0.389 0.304 0.262 0.098423 1.296662 0.138298 53.10734 6.605199 60 Oluw1974 5 1 37 42 44.1 38.2 28.4 18 16 14 2.6 2.9 D 0.42 0.441 0.382 0.284 0.138544 1.798736 0.144444 42.85714 6.605199 61 Oluw1974 5 2 37 44.2 46.2 40.4 29.2 18.8 16.8 14.8 2.6 2.9 D 0.442 0.462 0.404 0.292 0.153439 2.092616 0.138298 42.53394 6.605199 62 Oluw1974 5 3 37 40 42 36.2 26.2 17 15.6 13.6 2.6 2.9 D 0.4 0.42 0.362 0.262 0.125664 1.570774 0.152941 42.5 6.605199 63 Oluw1974 5 4 37 54.2 56.2 51.4 29.8 19.8 18.4 16.4 2.6 3.2 D 0.542 0.562 0.514 0.298 0.230722 3.519938 0.131313 36.53137 8.042477 64 Oluw1974 5 5 37 48.5 52.1 46.5 28.9 19.4 17.4 15.4 2.6 3.1 D 0.485 0.521 0.465 0.289 0.184745 2.778424 0.134021 40 7.547676 65 Oluw1974 5 6 37 38 41.6 36.4 28.8 18.6 16.6 14.6 2.6 2.9 D 0.38 0.416 0.364 0.288 0.113411 1.707892 0.139785 48.94737 6.605199 66 Oluw1974 6 1 37 33.5 35.6 28.8 24.2 18.2 16.2 14.2 2.6 2 D 0.335 0.356 0.288 0.242 0.088141 1.096498 0.142857 54.32836 3.141593 67 Oluw1974 6 2 37 36.3 39.4 32.4 27.3 18.8 18.8 14.8 2.6 2.9 D 0.363 0.394 0.324 0.273 0.103491 1.59878 0.138298 51.79063 6.605199 68 Oluw1974 6 3 37 24.9 28.6 22.8 20.8 14.8 12.8 16.8 2.5 2.8 C 0.249 0.286 0.228 0.208 0.048695 0.55794 0.168919 59.43775 6.157522 69 Oluw1974 6 4 37 50.5 52.5 48.5 29.8 19.8 18.2 16.2 2.6 3.1 D 0.505 0.525 0.485 0.298 0.200296 3.109782 0.131313 39.20792 7.547676 70 Oluw1974 6 5 37 35.2 38.2 32.2 25.6 18.4 16.4 14.4 2.6 2.9 D 0.352 0.382 0.322 0.256 0.097314 1.344289 0.141304 52.27273 6.605199 71 Oluw1974 6 6 37 46.4 48.4 42.2 29.8 18.8 16.9 14.9 2.6 2.9 D 0.464 0.484 0.422 0.298 0.169093 2.290508 0.138298 40.51724 6.605199 72 Oluw1974 6 7 37 31.6 33.8 28.6 23.6 18.2 16.1 14.1 2.6 2.9 D 0.316 0.338 0.286 0.236 0.078427 1.047681 0.142857 57.59494 6.605199 73 Oluw1974 6 8 37 35.5 37.5 33.5 28.5 18.6 16.6 14.6 2.6 2.9 D 0.355 0.375 0.335 0.285 0.09898 1.457496 0.139785 52.39437 6.605199 74 Oluw1974 6 9 37 38.2 42.2 36.2 29.2 17.4 15.4 13.4 2.6 2.9 D 0.382 0.422 0.362 0.292 0.114608 1.587534 0.149425 45.54974 6.605199 75 Oluw1974 6 10 37 45.5 47.6 42.5 29.8 18.8 16.8 14.8 2.6 3.1 D 0.455 0.476 0.425 0.298 0.162597 2.282417 0.138298 41.31868 7.547676 76 Oluw1974 6 11 37 24.2 26.2 22.6 20.4 14.8 12.4 10.2 2.5 2.8 C 0.242 0.262 0.226 0.204 0.045996 0.510587 0.168919 61.15702 6.157522 77 Oluw1974 6 12 37 30.5 34.6 28.4 24.5 17.4 15.4 13.4 2.5 2.8 C 0.305 0.346 0.284 0.245 0.073062 1.012695 0.143678 57.04918 6.157522 78 Oluw1974 6 13 37 47.5 49.6 42.5 29.5 18.2 16.2 14.2 2.6 2.9 D 0.475 0.496 0.425 0.295 0.177205 2.238354 0.142857 38.31579 6.605199 79 Oluw1974 6 14 37 23.1 26.2 21.2 19.1 14.4 12.4 10.4 2.5 2.8 C 0.231 0.262 0.212 0.191 0.04191 0.462439 0.173611 62.33766 6.157522 80 Oluw1974 6 15 37 38 42.1 36.1 28.4 18.2 16.2 14.1 2.6 2.9 D 0.38 0.421 0.361 0.284 0.113411 1.652312 0.142857 47.89474 6.605199 81 Oluw1974 7 1 37 31 32.1 28.2 24.1 16.8 12.8 12.8 2.5 2.8 C 0.31 0.321 0.282 0.241 0.075477 0.802937 0.14881 54.19355 6.157522 82 Oluw1974 7 2 37 42.1 44.1 38.1 26.2 18.2 14.2 14.2 2.6 2.9 D 0.421 0.441 0.381 0.262 0.139205 1.568377 0.142857 43.2304 6.605199 83 Oluw1974 7 3 37 50 52.1 43.2 28.8 19.6 18.6 16.6 2.6 3.1 D 0.5 0.521 0.432 0.288 0.19635 2.680353 0.132653 39.2 7.547676 84 Oluw1974 7 4 37 20 24.2 18.1 16 14.5 12.5 18.5 2.5 2.8 C 0.2 0.242 0.181 0.16 0.031416 0.352133 0.172414 72.5 6.157522 85 Oluw1974 7 5 37 37.5 39.6 34.6 27.8 18.6 16.6 14.6 2.6 2.9 D 0.375 0.396 0.346 0.278 0.110447 1.549224 0.139785 49.6 6.605199 86 Oluw1974 7 6 37 25 32.6 26.4 24.2 15.4 13.4 11.4 2.5 2.8 C 0.25 0.326 0.264 0.242 0.049087 0.778141 0.162338 61.6 6.157522 144 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 87 Oluw1974 7 7 37 55.5 57.5 52.4 29.9 19.8 18.8 16.8 2.6 3.2 D 0.555 0.575 0.524 0.299 0.241922 3.73648 0.131313 35.67568 8.042477 88 Oluw1974 7 8 37 21.8 24.8 18.6 16.8 14.8 12.8 10.8 2.5 2.8 C 0.218 0.248 0.186 0.168 0.037325 0.382205 0.168919 67.88991 6.157522 89 Oluw1974 7 9 37 32 36.2 28.4 24.2 16.6 14.6 12.6 2.5 2.8 C 0.32 0.362 0.284 0.242 0.080425 0.978945 0.150602 51.875 6.157522 90 Oluw1974 8 1 37 48.1 48.2 42.1 28.2 19.2 17.2 15.1 2.6 2.9 D 0.481 0.482 0.421 0.282 0.181711 2.298332 0.135417 39.91684 6.605199 91 Oluw1974 8 2 37 41 44.1 38.2 24.1 18.2 16.2 14.2 2.6 2.9 D 0.41 0.441 0.382 0.241 0.132025 1.773348 0.142857 44.39024 6.605199 92 Oluw1974 8 3 37 50 52.1 48.1 29.8 19.8 18.6 16.6 2.6 3.1 D 0.5 0.521 0.481 0.298 0.19635 3.130311 0.131313 39.6 7.547676 93 Oluw1974 8 4 37 34.8 36.8 30.2 28.4 16.8 14.8 12.8 2.6 2.9 D 0.348 0.368 0.302 0.284 0.095115 1.125379 0.154762 48.27586 6.605199 94 Oluw1974 8 5 37 20.5 24.5 18.5 16.4 14.8 12.8 10.8 2.5 2.8 C 0.205 0.245 0.185 0.164 0.033006 0.375016 0.168919 72.19512 6.157522 95 Oluw1974 8 6 37 49.5 52.6 44.6 28.8 17.8 15.8 13.8 2.6 2.9 D 0.495 0.526 0.446 0.288 0.192442 2.389376 0.146067 35.9596 6.605199 96 Oluw1974 8 7 37 28 32.2 26.2 24.6 14.4 12.4 10.8 2.5 2.8 C 0.28 0.322 0.262 0.246 0.061575 0.712202 0.173611 51.42857 6.157522 97 Oluw1974 8 8 37 40.5 44.2 38.5 26.5 16.8 14.8 12.8 2.6 2.9 D 0.405 0.442 0.385 0.265 0.128825 1.663164 0.154762 41.48148 6.605199 98 Oluw1974 8 9 37 51 52.4 48.2 28.9 19.8 18.4 16.4 2.6 3.1 D 0.51 0.524 0.482 0.289 0.204282 3.100756 0.131313 38.82353 7.547676 99 Oluw1974 8 10 37 28.1 32.6 24.1 24.2 16.8 14.8 12.8 2.5 2.8 C 0.281 0.326 0.241 0.242 0.062016 0.769432 0.14881 59.78648 6.157522 100 Oluw1974 8 11 37 43.9 46.8 38.8 27.9 18.8 16.8 14 2.6 2.9 D 0.439 0.468 0.388 0.279 0.151363 1.977094 0.138298 42.8246 6.605199 101 Oluw1975 9 1 36 32.2 36.4 28.2 24.4 16.8 14.6 12.6 2.6 2.9 D 0.322 0.364 0.282 0.244 0.081433 0.974924 0.154762 52.17391 6.605199 102 Oluw1975 9 2 36 44 48.6 40.1 28.6 18.6 16.8 14.8 2.6 3.2 D 0.44 0.486 0.401 0.286 0.152053 2.11378 0.139785 42.27273 8.042477 103 Oluw1975 9 3 36 39.5 42.4 36.5 26.8 18.2 16.2 14.1 2.6 2.9 D 0.395 0.424 0.365 0.268 0.122542 1.663591 0.142857 46.07595 6.605199 104 Oluw1975 9 4 36 40.4 44.6 38.4 28.2 18.4 16.4 14.4 2.6 3.1 D 0.404 0.446 0.384 0.282 0.12819 1.86395 0.141304 45.54455 7.547676 105 Oluw1975 9 5 36 47.5 51.2 44.5 28.8 18.6 16.8 14.9 2.6 3.2 D 0.475 0.512 0.445 0.288 0.177205 2.500807 0.139785 39.15789 8.042477 106 Oluw1975 9 6 36 58 61.2 48.2 29.9 20.4 18.4 16.2 2.6 3.2 D 0.58 0.612 0.482 0.299 0.264208 3.355697 0.127451 35.17241 8.042477 107 Oluw1975 9 7 36 51.1 54.4 46.1 28.9 19.6 17.4 15.4 2.6 3.2 D 0.511 0.544 0.461 0.289 0.205084 2.80047 0.132653 38.35616 8.042477 108 Oluw1975 10 1 36 30.1 32.4 28.6 24.2 19.2 17.4 15.2 2.5 2.9 C 0.301 0.324 0.286 0.242 0.071158 1.1177 0.130208 63.78738 6.605199 109 Oluw1975 10 2 36 36 38.4 32.1 26.4 19.4 17.6 15.4 2.6 2.9 D 0.36 0.384 0.321 0.264 0.101788 1.44984 0.134021 53.88889 6.605199 110 Oluw1975 10 3 36 30 34.6 28.4 24.1 18.6 16.8 14.8 2.5 2.8 C 0.3 0.346 0.284 0.241 0.070686 1.100483 0.134409 62 6.157522 111 Oluw1975 10 4 36 34 38.4 32.1 26.2 18.4 14.8 12.6 2.6 2.9 D 0.34 0.384 0.321 0.262 0.090792 1.217146 0.141304 54.11765 6.605199 112 Oluw1975 10 5 36 24 28.2 22.4 20.1 18.2 16.2 14.2 2.5 2.8 C 0.24 0.282 0.224 0.201 0.045239 0.679918 0.137363 75.83333 6.157522 113 Oluw1975 10 6 36 34.9 36.8 30.2 28.4 15.8 13.8 11.8 2.6 2.9 D 0.349 0.368 0.302 0.284 0.095662 1.04934 0.164557 45.27221 6.605199 114 Oluw1975 10 7 36 32.8 34.1 28.8 24.6 14.4 12.6 10.6 2.6 2.9 D 0.328 0.341 0.288 0.246 0.084496 0.838808 0.180556 43.90244 6.605199 145 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 115 Oluw1975 10 8 36 36.5 39.4 34.2 28.5 18.2 16.4 14.8 2.6 2.9 D 0.365 0.394 0.342 0.285 0.104635 1.511996 0.142857 49.86301 6.605199 116 Oluw1975 10 9 36 29.5 32.5 26.5 22.8 14.8 12.8 10.8 2.5 2.8 C 0.295 0.325 0.265 0.228 0.068349 0.734729 0.168919 50.16949 6.157522 117 Oluw1975 10 10 36 21.5 24.6 18.4 16.5 16.4 14.6 12.4 2.5 2.8 C 0.215 0.246 0.184 0.165 0.036305 0.426499 0.152439 76.27907 6.157522 118 Oluw1975 10 11 36 48.3 52.4 42.3 29.4 19.8 18.4 16.6 2.6 3.2 D 0.483 0.524 0.423 0.294 0.183225 2.593358 0.131313 40.99379 8.042477 119 Oluw1975 11 1 36 54.5 56.2 51.4 29.4 18.6 16.6 14.6 2.6 3.4 D 0.545 0.562 0.514 0.294 0.233283 3.170451 0.139785 34.12844 9.079203 120 Oluw1975 11 2 36 47 51.4 44.1 28.8 17.5 15.4 13.4 2.6 3.1 D 0.47 0.514 0.441 0.288 0.173494 2.267966 0.148571 37.23404 7.547676 121 Oluw1975 11 3 36 26.4 28.2 24.4 22.6 14.8 12.6 10.6 2.6 2.9 C 0.264 0.282 0.244 0.226 0.054739 0.608183 0.175676 56.06061 6.605199 122 Oluw1975 11 4 36 54.2 56.1 50.2 28.8 18.4 16.6 14.5 2.6 3.2 D 0.542 0.561 0.502 0.288 0.230722 3.054453 0.141304 33.94834 8.042477 123 Oluw1975 11 5 36 50.5 54.4 48.4 29.5 18.5 16.4 14.2 2.6 3.2 D 0.505 0.544 0.484 0.295 0.200296 2.833684 0.140541 36.63366 8.042477 124 Oluw1975 12 1 36 44.7 48.6 40.2 29.4 18.6 16.4 14.2 2.6 2.9 D 0.447 0.486 0.402 0.294 0.15693 2.080309 0.139785 41.61074 6.605199 125 Oluw1975 12 2 36 17.3 19.8 15.2 13.3 12.4 10.4 8.4 2.4 2.6 S 0.173 0.198 0.152 0.133 0.023506 0.203263 0.193548 71.6763 5.309292 126 Oluw1975 12 3 36 41.2 48.1 40 23.2 18.2 16.1 14 2.6 2.9 D 0.412 0.481 0.4 0.232 0.133317 1.949814 0.142857 44.17476 6.605199 127 Oluw1975 12 4 36 32.4 36.6 28.4 26.4 17.6 15.6 13.6 2.6 2.9 D 0.324 0.366 0.284 0.264 0.082448 1.074674 0.147727 54.32099 6.605199 128 Oluw1975 12 5 36 23 26.2 20.6 18.6 16.8 14.4 12.4 2.5 2.8 C 0.23 0.262 0.206 0.186 0.041548 0.514563 0.14881 73.04348 6.157522 129 Oluw1975 12 6 36 27.7 29.6 25.5 21.4 16.8 14.8 12.8 2.5 2.6 C 0.277 0.296 0.255 0.214 0.060263 0.762357 0.14881 60.64982 5.309292 130 Oluw1975 12 7 36 33.2 35.4 28.8 26.2 18.2 16.2 14.2 2.6 2.9 D 0.332 0.354 0.288 0.262 0.08657 1.114863 0.142857 54.81928 6.605199 131 Oluw1975 12 8 36 20.5 24.5 18.4 16.5 14.6 12.8 10.8 2.8 2.8 C 0.205 0.245 0.184 0.165 0.033006 0.373094 0.191781 71.21951 6.157522 132 Oluw1975 12 9 36 24.4 28.6 20.2 18.4 16.8 14.8 12.8 2.5 2.8 C 0.244 0.286 0.202 0.184 0.046759 0.540255 0.14881 68.85246 6.157522 133 Oluw1975 12 10 36 25.2 29.4 21.3 19.2 16.8 14.4 12.6 2.5 2.8 C 0.252 0.294 0.213 0.192 0.049876 0.574489 0.14881 66.66667 6.157522 134 Oluw1975 12 11 36 29 32.2 26.4 24.2 16.6 14.6 12.8 2.5 2.8 C 0.29 0.322 0.264 0.242 0.066052 0.842872 0.150602 57.24138 6.157522 135 Oluw1975 12 12 36 18.5 24.6 16.4 14.5 14.8 12.4 10.2 2.5 2.8 C 0.185 0.246 0.164 0.145 0.02688 0.306979 0.168919 80 6.157522 136 Oluw1975 12 13 36 22.5 26.4 20.5 18.5 15.6 13.6 11.8 2.5 2.8 C 0.225 0.264 0.205 0.185 0.039761 0.484262 0.160256 69.33333 6.157522 137 Oluw1975 12 14 36 23.1 27.4 19.2 17.6 16.4 14.4 12.2 2.5 2.8 C 0.231 0.274 0.192 0.176 0.04191 0.477851 0.152439 70.99567 6.157522 138 Oluw1975 13 1 36 27.7 29.6 25.4 21.2 16.8 14.8 12.4 2.5 2.8 C 0.277 0.296 0.254 0.212 0.060263 0.756762 0.14881 60.64982 6.157522 139 Oluw1975 13 2 36 25.1 27.2 19.1 17.4 15.6 13.8 16.8 2.5 2.8 C 0.251 0.272 0.191 0.174 0.049481 0.451936 0.160256 62.15139 6.157522 140 Oluw1975 13 3 36 51.7 54.6 44.8 28.9 19.6 17.6 15.8 2.6 3.2 D 0.517 0.546 0.448 0.289 0.209928 2.728784 0.132653 37.91103 8.042477 141 Oluw1975 13 4 36 46.4 48.8 42.2 26.4 18.5 16.8 14.6 2.6 3.1 D 0.464 0.488 0.422 0.264 0.169093 2.243484 0.140541 39.87069 7.547676 142 Oluw1975 13 5 36 21.5 26.4 19.5 17.5 16.6 14.6 12.8 2.5 2.8 C 0.215 0.264 0.195 0.175 0.036305 0.482411 0.150602 77.2093 6.157522 146 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 143 Oluw1975 13 6 36 31.6 34.6 28.5 24.6 18.4 16.4 14.2 2.6 2.9 D 0.316 0.346 0.285 0.246 0.078427 1.084395 0.141304 58.22785 6.605199 144 Oluw1975 13 7 36 23.3 26.4 21.4 19.3 14.6 12.6 10.8 2.5 2.8 C 0.233 0.264 0.214 0.193 0.042638 0.47852 0.171233 62.66094 6.157522 145 Oluw1975 13 8 36 24.9 26.8 21.6 18.8 14.8 12.8 10.9 2.5 2.8 C 0.249 0.268 0.216 0.188 0.048695 0.492253 0.168919 59.43775 6.157522 146 Oluw1975 13 9 36 15.5 18.6 13.6 11.5 12.6 10.6 8.7 2.4 2.6 S 0.155 0.186 0.136 0.115 0.018869 0.169009 0.190476 81.29032 5.309292 147 Oluw1975 13 10 36 37 39.2 32.4 26.4 18.8 16.8 14.8 2.6 2.9 D 0.37 0.392 0.324 0.264 0.107521 1.414611 0.138298 50.81081 6.605199 148 Oluw1975 13 11 36 40 44.1 38.2 28.8 19.6 17.6 15.6 2.6 3.1 D 0.4 0.441 0.382 0.288 0.125664 1.98388 0.132653 49 7.547676 149 Oluw1975 13 12 36 20 24.4 18.2 16.4 14.8 12.8 10.8 2.5 2.8 C 0.2 0.244 0.182 0.164 0.031416 0.366817 0.168919 74 6.157522 150 Oluw1975 13 13 36 52.3 56.2 48.1 29.8 19.8 18.6 16.8 2.6 3.2 D 0.523 0.562 0.481 0.298 0.214829 3.238421 0.131313 37.85851 8.042477 151 Oluw1975 13 14 36 42.4 46.5 38.4 20.4 18.4 16.3 14.3 2.6 3.1 D 0.424 0.465 0.384 0.204 0.141196 1.808633 0.141304 43.39623 7.547676 152 Oluw1975 14 1 36 42.6 44.4 40.2 29.8 19.4 17.4 15.2 2.6 3.1 D 0.426 0.444 0.402 0.298 0.142531 2.123585 0.134021 45.53991 7.547676 153 Oluw1975 14 2 36 37 39.1 34.3 26.4 18.8 16.6 14.8 2.6 2.9 D 0.37 0.391 0.343 0.264 0.107521 1.50622 0.138298 50.81081 6.605199 154 Oluw1975 14 3 36 19 22.6 17.2 15.1 14.4 12.4 10.2 2.4 2.6 S 0.19 0.226 0.172 0.151 0.028353 0.311992 0.166667 75.78947 5.309292 155 Oluw1975 14 4 36 26.9 28.4 24.5 22.3 16.2 14.2 12.2 2.5 2.8 C 0.269 0.284 0.245 0.223 0.056832 0.688648 0.154321 60.22305 6.157522 156 Oluw1975 14 5 36 22.5 26.6 20.4 18.5 14.4 12.4 10.4 2.5 2.8 C 0.225 0.266 0.204 0.185 0.039761 0.440598 0.173611 64 6.157522 157 Oluw1975 14 6 36 17.3 19.6 15.3 13.4 14.4 12.2 10.2 2.4 2.6 S 0.173 0.196 0.153 0.134 0.023506 0.239559 0.166667 83.23699 5.309292 158 Oluw1975 14 7 36 45.2 47.3 41.2 28.8 18.8 16.8 14.8 2.6 3.2 D 0.452 0.473 0.412 0.288 0.16046 2.167555 0.138298 41.59292 8.042477 159 Oluw1975 14 8 36 18 24.2 16.1 14 13.6 11.8 9.6 2.4 2.8 S 0.18 0.242 0.161 0.14 0.025447 0.280885 0.176471 75.55556 6.157522 160 Oluw1975 14 9 36 31.2 34.2 26.8 24.2 15.8 13.8 11.8 2.6 2.9 D 0.312 0.342 0.268 0.242 0.076454 0.836053 0.164557 50.64103 6.605199 161 Oluw1975 14 10 36 35.1 37.1 32.4 26.8 17.6 15.8 13.8 2.6 2.9 D 0.351 0.371 0.324 0.268 0.096762 1.301671 0.147727 50.14245 6.605199 162 Oluw1975 14 11 36 20.5 22.6 18.4 16.5 14.6 12.6 10.6 2.5 2.8 C 0.205 0.226 0.184 0.165 0.033006 0.352504 0.171233 71.21951 6.157522 163 Oluw1975 14 12 36 53.7 56.2 50.6 29.7 20.4 18.2 16.1 2.6 3.2 D 0.537 0.562 0.506 0.297 0.226484 3.4025 0.127451 37.98883 8.042477 164 Oluw1975 15 1 36 51 52.4 48.2 28.9 19.6 17.6 15.6 2.6 3.2 D 0.51 0.524 0.482 0.289 0.204282 2.965941 0.132653 38.43137 8.042477 165 Oluw1975 15 2 36 41.5 44.6 38.4 27.8 18.4 16.2 14.2 2.6 3.1 D 0.415 0.446 0.384 0.278 0.135265 1.836469 0.141304 44.33735 7.547676 166 Oluw1975 15 3 36 50.5 52.2 42.4 29.8 19.2 17.2 15.2 2.6 3.2 D 0.505 0.522 0.424 0.298 0.200296 2.432475 0.135417 38.0198 8.042477 167 Oluw1975 15 4 36 37.7 39.6 34.6 26.4 19.4 17.4 15.4 2.6 2.9 D 0.377 0.396 0.346 0.264 0.111628 1.606603 0.134021 51.45889 6.605199 168 Oluw1975 15 5 36 27.7 34.4 25.6 22.8 15.6 13.6 11.6 2.5 2.8 C 0.277 0.344 0.256 0.228 0.060263 0.769888 0.160256 56.31769 6.157522 169 Oluw1975 15 6 36 42.3 46.6 38.4 26.8 18.4 16.4 14.4 2.6 3.1 D 0.423 0.466 0.384 0.268 0.140531 1.886577 0.141304 43.49882 7.547676 170 Oluw1975 15 7 36 47.8 49.4 44.8 29.4 18.6 16.6 14.8 2.6 3.2 D 0.478 0.494 0.448 0.294 0.179451 2.462561 0.139785 38.91213 8.042477 147 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 171 Oluw1975 15 8 36 26.8 29.6 24.6 22.8 16.6 14.6 12.6 2.5 2.8 C 0.268 0.296 0.246 0.228 0.05641 0.729412 0.150602 61.9403 6.157522 172 Oluw1975 15 9 36 40.3 42.3 38.4 26.6 17.8 15.8 13.8 2.6 3.1 D 0.403 0.423 0.384 0.266 0.127556 1.736285 0.146067 44.16873 7.547676 173 Oluw1975 15 10 36 41.4 44.8 36.6 29.4 18.2 16.2 14.2 2.6 3.1 D 0.414 0.448 0.366 0.294 0.134614 1.745157 0.142857 43.96135 7.547676 174 Oluw1975 16 1 36 30.9 32.8 28.6 24.6 16.8 14.6 12.6 2.6 2.9 D 0.309 0.328 0.286 0.246 0.074991 0.946555 0.154762 54.36893 6.605199 175 Oluw1975 16 2 36 41.8 44.8 36.4 28.9 18.6 16.8 14.6 2.6 3.1 D 0.418 0.448 0.364 0.289 0.137228 1.790539 0.139785 44.49761 7.547676 176 Oluw1975 16 3 36 47 50.2 44.6 29.8 19.2 17.2 15.2 2.6 3.1 D 0.47 0.502 0.446 0.298 0.173494 2.558738 0.135417 40.85106 7.547676 177 Oluw1975 16 4 36 18 22.4 16.2 14.1 12.4 10.4 8.2 2.4 2.6 S 0.18 0.224 0.162 0.141 0.025447 0.238282 0.193548 68.88889 5.309292 178 Oluw1975 16 5 36 21.5 25.6 19.4 16.8 14.6 12.6 10.6 2.5 2.8 C 0.215 0.256 0.194 0.168 0.036305 0.402939 0.171233 67.90698 6.157522 179 Oluw1975 16 6 36 32 34.6 28.6 24.8 17.8 15.6 13.4 2.5 2.8 C 0.32 0.346 0.286 0.248 0.080425 1.038179 0.140449 55.625 6.157522 180 Oluw1975 16 7 36 39 42.1 36.4 27.6 18.2 16.2 14.2 2.6 2.9 D 0.39 0.421 0.364 0.276 0.119459 1.661261 0.142857 46.66667 6.605199 181 Oluw1975 16 8 36 28.8 32.6 26.6 24.4 15.8 13.8 11.8 2.5 2.8 C 0.288 0.326 0.266 0.244 0.065144 0.810784 0.158228 54.86111 6.157522 182 Oluw1975 16 9 36 49.2 52.4 46.1 28.9 18.8 16.8 14.9 2.6 2.9 D 0.492 0.524 0.461 0.289 0.190117 2.656929 0.138298 38.21138 6.605199 183 Oluw1976 17 1 35 35.5 37.6 32.4 22.2 20.5 18.4 16.6 2.6 2.9 D 0.355 0.376 0.324 0.222 0.09898 1.470577 0.126829 57.74648 6.605199 184 Oluw1976 17 2 35 35 37.8 31.8 22.4 20.2 18.2 16.4 2.6 2.9 D 0.35 0.378 0.318 0.224 0.096211 1.423602 0.128713 57.71429 6.605199 185 Oluw1976 17 3 35 10 12.8 8.6 6.2 15.2 13.6 11.8 2.4 2.6 S 0.1 0.128 0.086 0.062 0.007854 0.088677 0.157895 152 5.309292 186 Oluw1976 17 4 35 17 19.8 15.4 12.4 17.2 14.8 12.4 2.5 2.8 C 0.17 0.198 0.154 0.124 0.022698 0.28952 0.145349 101.1765 6.157522 187 Oluw1976 17 5 35 14.5 16.6 12.2 10.5 14.6 12.3 10.6 2.5 2.8 C 0.145 0.166 0.122 0.105 0.016513 0.157975 0.171233 100.6897 6.157522 188 Oluw1976 17 6 35 42.5 44.8 38.4 26.1 22.8 20.5 18.4 2.6 3.1 D 0.425 0.448 0.384 0.261 0.141863 2.304136 0.114035 53.64706 7.547676 189 Oluw1976 17 7 35 19.5 21.6 16.8 14.2 17.8 15.6 13.2 2.5 2.8 C 0.195 0.216 0.168 0.142 0.029865 0.366986 0.140449 91.28205 6.157522 190 Oluw1976 17 8 35 18.5 22.2 16.4 14.1 16.6 14.8 12.6 2.5 2.8 C 0.185 0.222 0.164 0.141 0.02688 0.342419 0.150602 89.72973 6.157522 191 Oluw1976 17 9 35 16.3 18.4 14.2 12.4 15.8 13.4 11.2 2.5 2.8 C 0.163 0.184 0.142 0.124 0.020867 0.227831 0.158228 96.93252 6.157522 192 Oluw1976 17 10 35 30.9 32.8 28.4 20.6 18.6 16.8 14.9 2.5 2.9 D 0.309 0.328 0.284 0.206 0.074991 1.039398 0.134409 60.19417 6.605199 193 Oluw1976 17 11 35 25.9 27.8 22.6 18.4 16.4 14.8 12.6 2.5 2.8 C 0.259 0.278 0.226 0.184 0.052685 0.611115 0.152439 63.32046 6.157522 194 Oluw1976 17 12 35 21.2 24.2 18.4 16.8 17.2 14.4 12.2 2.5 2.8 C 0.212 0.242 0.184 0.168 0.035299 0.41886 0.145349 81.13208 6.157522 195 Oluw1976 17 13 35 33.3 36.4 28.6 24.6 18.4 15.6 13.8 2.6 2.9 D 0.333 0.364 0.286 0.246 0.087092 1.062259 0.141304 55.25526 6.605199 196 Oluw1976 17 14 35 34.5 36.8 28.8 24.6 18.6 13.8 11.9 2.6 2.9 D 0.345 0.368 0.288 0.246 0.093482 0.953275 0.139785 53.91304 6.605199 197 Oluw1976 17 15 35 26 28.2 24.1 20.2 16.4 14.6 12.8 2.6 2.9 D 0.26 0.282 0.241 0.202 0.053093 0.673966 0.158537 63.07692 6.605199 198 Oluw1976 17 16 35 26.7 28.8 24.2 20.4 16.2 14.2 12.4 2.6 2.9 D 0.267 0.288 0.242 0.204 0.05599 0.666958 0.160494 60.67416 6.605199 148 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 199 Oluw1976 17 17 35 18.5 22.4 16.4 12.8 14.8 12.6 10.4 2.5 2.8 C 0.185 0.224 0.164 0.128 0.02688 0.287222 0.168919 80 6.157522 200 Oluw1976 17 18 35 27.5 30.2 25.2 20.5 16.4 14.3 12.6 2.6 2.9 D 0.275 0.302 0.252 0.205 0.059396 0.724871 0.158537 59.63636 6.605199 201 Oluw1976 17 19 35 41 42.6 36.4 28.4 18.8 16.6 14.8 2.6 3.1 D 0.41 0.426 0.364 0.284 0.132025 1.721217 0.138298 45.85366 7.547676 202 Oluw1976 17 20 35 35 38.8 28.9 24.2 17.6 15.8 13.9 2.6 2.9 D 0.35 0.388 0.289 0.242 0.096211 1.123438 0.147727 50.28571 6.605199 203 Oluw1976 17 22 35 32.7 34.8 28.4 22.8 16.6 14.8 12.2 2.6 2.9 D 0.327 0.348 0.284 0.228 0.083982 0.960351 0.156627 50.76453 6.605199 204 Oluw1976 18 1 35 21.5 23.6 18.8 17.2 15.6 13.8 11.7 2.5 2.8 C 0.215 0.236 0.188 0.172 0.036305 0.409435 0.160256 72.55814 6.157522 205 Oluw1976 18 2 35 17.4 20.4 15.6 13.4 18.4 16.2 8.8 2.5 2.8 C 0.174 0.204 0.156 0.134 0.023779 0.332752 0.13587 105.7471 6.157522 206 Oluw1976 18 3 35 30 32.6 26.4 21.4 18.6 16.4 14.2 2.6 2.9 D 0.3 0.326 0.264 0.214 0.070686 0.924942 0.139785 62 6.605199 207 Oluw1976 18 4 35 45 47.4 42.2 28.6 16.6 14.8 12.6 2.6 3.1 D 0.45 0.474 0.422 0.286 0.159043 1.973752 0.156627 36.88889 7.547676 208 Oluw1976 18 5 35 49 52.1 44.4 28.8 18.6 16.8 14.9 2.6 3.1 D 0.49 0.521 0.444 0.288 0.188574 2.513432 0.139785 37.95918 7.547676 209 Oluw1976 18 6 35 22.5 24.6 18.5 16.4 12.6 10.8 8.6 2.5 2.8 C 0.225 0.246 0.185 0.164 0.039761 0.317114 0.198413 56 6.157522 210 Oluw1976 18 7 35 20.3 22.4 18.6 16.3 14.8 12.6 10.6 2.5 2.8 C 0.203 0.224 0.186 0.163 0.032365 0.35482 0.168919 72.9064 6.157522 211 Oluw1976 18 8 35 18 22.6 16.4 14.2 13.8 11.6 9.4 2.4 2.6 S 0.18 0.226 0.164 0.142 0.025447 0.271533 0.173913 76.66667 5.309292 212 Oluw1976 18 9 35 25.1 27.4 22.6 18.4 15.6 13.8 11.8 2.5 2.8 C 0.251 0.274 0.226 0.184 0.049481 0.565834 0.160256 62.15139 6.157522 213 Oluw1976 18 10 35 24.1 26.4 20.6 16.8 14.8 12.8 10.6 2.5 2.8 C 0.241 0.264 0.206 0.168 0.045617 0.448475 0.168919 61.41079 6.157522 214 Oluw1976 18 11 35 21 24.2 18.6 14.4 13.8 11.4 9.1 2.5 2.8 C 0.21 0.242 0.186 0.144 0.034636 0.32484 0.181159 65.71429 6.157522 215 Oluw1976 18 12 35 27.8 29.6 23.8 18.4 14.6 12.8 10.9 2.6 3 D 0.278 0.296 0.238 0.184 0.060699 0.58316 0.178082 52.51799 7.068583 216 Oluw1976 18 13 35 42.4 44.2 38.4 28.8 18.8 16.6 14.8 2.6 3.1 D 0.424 0.442 0.384 0.288 0.141196 1.886394 0.138298 44.33962 7.547676 217 Oluw1976 18 14 35 26.4 28.6 24.2 20.4 14.8 12.6 10.8 2.6 2.9 D 0.264 0.286 0.242 0.204 0.054739 0.589915 0.175676 56.06061 6.605199 218 Oluw1976 19 1 35 21.9 23.8 18.8 14.4 15.6 13.8 11.6 2.5 2.8 C 0.219 0.238 0.188 0.144 0.037668 0.395164 0.160256 71.23288 6.157522 219 Oluw1976 19 2 35 21.1 23.4 18.4 14.2 14.6 12.5 10.2 2.5 2.8 C 0.211 0.234 0.184 0.142 0.034967 0.344175 0.171233 69.19431 6.157522 220 Oluw1976 19 3 35 30.4 32.5 28.6 24.8 16.8 14.6 12.8 2.6 2.9 D 0.304 0.325 0.286 0.248 0.072583 0.944699 0.154762 55.26316 6.605199 221 Oluw1976 19 4 35 20 23.6 18.4 16.2 14.8 12.8 10.4 2.5 2.8 C 0.2 0.236 0.184 0.162 0.031416 0.364197 0.168919 74 6.157522 222 Oluw1976 19 5 35 36.5 38.6 32.4 28.4 18.8 16.4 14.6 2.6 2.9 D 0.365 0.386 0.324 0.284 0.104635 1.394438 0.138298 51.50685 6.605199 223 Oluw1976 19 6 35 37.7 39.8 33.6 28.8 18.4 16.6 14.4 2.6 2.9 D 0.377 0.398 0.336 0.288 0.111628 1.505696 0.141304 48.80637 6.605199 224 Oluw1976 19 7 35 27.2 29.4 24.8 21.3 17.8 15.4 13.8 2.6 2.9 D 0.272 0.294 0.248 0.213 0.058107 0.761632 0.146067 65.44118 6.605199 225 Oluw1976 19 8 35 43 46.2 38.8 29.4 18.4 16.8 14.8 2.6 3.1 D 0.43 0.462 0.388 0.294 0.14522 1.983725 0.141304 42.7907 7.547676 226 Oluw1976 19 10 35 17 21.4 15.2 13.8 12.6 10.8 8.9 2.4 2.6 S 0.17 0.214 0.152 0.138 0.022698 0.222315 0.190476 74.11765 5.309292 227 Oluw1976 19 12 35 38.2 42.4 36.4 29.4 18.6 16.8 14.6 2.6 2.9 D 0.382 0.424 0.364 0.294 0.114608 1.750926 0.139785 48.6911 6.605199 149 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 228 Oluw1976 19 13 35 31.6 33.4 28.2 24.4 18.4 16.4 14.1 2.6 2.9 D 0.316 0.334 0.282 0.244 0.078427 1.050167 0.141304 58.22785 6.605199 229 Oluw1976 19 14 35 12 14.8 10.2 8.1 14.6 12.8 10.4 2.5 2.8 C 0.12 0.148 0.102 0.081 0.01131 0.117422 0.171233 121.6667 6.157522 230 Oluw1976 19 16 35 31.6 33.4 28.2 24.4 17.8 15.6 13.8 2.6 2.9 D 0.316 0.334 0.282 0.244 0.078427 0.998939 0.146067 56.32911 6.605199 231 Oluw1976 19 17 35 24.7 28.4 22.4 18.9 14.8 12.4 10.6 2.5 2.8 C 0.247 0.284 0.224 0.189 0.047916 0.514672 0.168919 59.91903 6.157522 232 Oluw1976 20 1 35 31.5 33.8 28.4 24.2 18.6 16.4 14.2 2.6 2.9 D 0.315 0.338 0.284 0.242 0.077931 1.063571 0.139785 59.04762 6.605199 233 Oluw1976 20 2 35 17 20.4 15.4 13.2 12.6 10.8 8.6 2.4 2.6 S 0.17 0.204 0.154 0.132 0.022698 0.217577 0.190476 74.11765 5.309292 234 Oluw1976 20 3 35 26.7 28.8 24.6 22.6 16.6 14.8 12.6 2.5 2.8 C 0.267 0.288 0.246 0.226 0.05599 0.728593 0.150602 62.17228 6.157522 235 Oluw1976 20 4 35 44.6 48.2 41.4 28.8 18.6 16.8 14.8 2.6 3.2 D 0.446 0.482 0.414 0.288 0.156228 2.200989 0.139785 41.70404 8.042477 236 Oluw1976 20 5 35 12.1 16.2 10.2 8.6 11.8 9.6 7.2 2.4 2.6 S 0.121 0.162 0.102 0.086 0.011499 0.094569 0.20339 97.52066 5.309292 237 Oluw1976 20 6 35 13.8 15.9 11.2 9.6 11.6 9.4 7.2 2.4 2.6 S 0.138 0.159 0.112 0.096 0.014957 0.104186 0.206897 84.05797 5.309292 238 Oluw1976 20 7 35 36.3 38.6 34.2 28.2 16.8 14.7 12.8 2.6 2.9 D 0.363 0.386 0.342 0.282 0.103491 1.339984 0.154762 46.28099 6.605199 239 Oluw1976 20 8 35 18.7 21.4 16.6 14.7 12.4 10.6 8.4 2.4 2.6 S 0.187 0.214 0.166 0.147 0.027465 0.246467 0.193548 66.31016 5.309292 240 Oluw1976 20 9 35 21.2 24.2 18.4 15.4 14.6 12.8 10.6 2.5 2.8 C 0.212 0.242 0.184 0.154 0.035299 0.364767 0.171233 68.86792 6.157522 241 Oluw1976 20 10 35 33 36.4 30.2 27.8 17.6 15.5 13.6 2.6 2.9 D 0.33 0.364 0.302 0.278 0.08553 1.165824 0.147727 53.33333 6.605199 242 Oluw1976 20 11 35 28 32.4 25.8 23.4 16.8 14.2 12.1 2.5 2.8 C 0.28 0.324 0.258 0.234 0.061575 0.791816 0.14881 60 6.157522 243 Oluw1976 20 12 35 16.5 18.8 14.4 12.2 14.6 12.8 10.9 2.5 2.8 C 0.165 0.188 0.144 0.122 0.021382 0.223132 0.171233 88.48485 6.157522 244 Oluw1976 20 13 35 14 16.4 12.2 10.1 12.8 10.6 8.8 2.4 2.6 S 0.14 0.164 0.122 0.101 0.015394 0.134082 0.1875 91.42857 5.309292 245 Oluw1976 20 14 35 26.4 28.8 22.8 18.4 19.2 15.6 13.4 2.6 2.8 C 0.264 0.288 0.228 0.184 0.054739 0.663122 0.135417 72.72727 6.157522 246 Oluw1976 20 15 35 20.5 22.6 18.2 16.1 16.6 14.8 12.4 2.5 2.8 C 0.205 0.226 0.182 0.161 0.033006 0.405854 0.150602 80.97561 6.157522 247 Oluw1976 20 16 35 31.3 33.4 28.4 22.6 18.8 16.4 14.6 2.6 2.9 D 0.313 0.334 0.284 0.226 0.076945 1.041726 0.138298 60.0639 6.605199 248 Oluw1976 20 17 35 21.5 23.6 18.5 16.4 14.6 12.8 10.4 2.5 2.8 C 0.215 0.236 0.185 0.164 0.036305 0.367762 0.171233 67.90698 6.157522 249 Oluw1976 20 18 35 11 13.2 9.2 7.1 12.6 10.8 8.9 2.4 2.6 S 0.11 0.132 0.092 0.071 0.009503 0.079622 0.190476 114.5455 5.309292 250 Oluw1976 20 19 35 16 19.4 14.1 12.2 14.9 12.8 10.4 2.5 2.8 C 0.16 0.194 0.141 0.122 0.020106 0.221242 0.167785 93.125 6.157522 251 Oluw1976 20 20 35 14.9 16.8 12.4 10.8 12.6 10.6 8.9 2.4 2.6 S 0.149 0.168 0.124 0.108 0.017437 0.140685 0.190476 84.56376 5.309292 252 Oluw1976 20 21 35 30 32.4 28.4 24.44 16.6 14.8 12.4 2.6 2.9 D 0.3 0.324 0.284 0.2444 0.070686 0.944115 0.156627 55.33333 6.605199 253 Oluw1976 20 22 35 9.2 11.4 7.1 5.2 12.8 10.6 8 2.4 2.6 S 0.092 0.114 0.071 0.052 0.006648 0.049763 0.1875 139.1304 5.309292 254 Oluw1976 20 23 35 13.1 15.3 11.4 9.2 11.6 9.5 7.2 2.4 2.6 S 0.131 0.153 0.114 0.092 0.013478 0.10428 0.206897 88.54962 5.309292 255 Oluw1976 20 24 35 15.4 19.2 13.4 11.2 12.8 10.8 8.4 2.4 2.6 S 0.154 0.192 0.134 0.112 0.018627 0.171388 0.1875 83.11688 5.309292 150 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 256 Oluw1976 20 25 35 14.5 18.4 12.5 10.6 12.6 10.6 8.1 2.4 2.6 S 0.145 0.184 0.125 0.106 0.016513 0.149288 0.190476 86.89655 5.309292 257 Oluw1976 20 26 35 18 22.1 16.1 14.2 12.8 10.4 8.6 2.4 2.6 S 0.18 0.221 0.161 0.142 0.025447 0.235091 0.1875 71.11111 5.309292 258 Oluw1976 20 27 35 25.1 27.8 23.6 20.1 14.8 12.6 10.8 2.5 2.8 C 0.251 0.278 0.236 0.201 0.049481 0.561548 0.168919 58.96414 6.157522 259 Oluw1976 20 28 35 26.3 28.8 24.2 21.4 14.6 12.8 10.9 2.5 2.8 C 0.263 0.288 0.242 0.214 0.054325 0.608206 0.171233 55.51331 6.157522 260 Oluw1976 20 29 35 21.1 24.2 19.2 17.1 14.6 12.6 10.6 2.5 2.8 C 0.211 0.242 0.192 0.171 0.034967 0.388024 0.171233 69.19431 6.157522 261 Oluw1976 20 30 35 19.2 23.4 17.2 15.2 11.4 9.8 7.4 2.4 2.6 S 0.192 0.234 0.172 0.152 0.028953 0.251684 0.210526 59.375 5.309292 262 Oluw1976 20 31 35 16.7 18.8 14.4 12.2 11.5 9.8 7.8 2.4 2.6 S 0.167 0.188 0.144 0.122 0.021904 0.170835 0.208696 68.86228 5.309292 263 Oluw1976 20 32 35 15.2 19.4 13.1 10.3 12.2 10.4 8.1 2.4 2.6 S 0.152 0.194 0.131 0.103 0.018146 0.159128 0.196721 80.26316 5.309292 264 Oluw1976 20 33 35 24.4 28.6 20.6 18.4 12.8 10.6 10.8 2.5 2.8 C 0.244 0.286 0.206 0.184 0.046759 0.395997 0.195313 52.45902 6.157522 265 Oluw1976 20 34 35 48.5 50.2 42.4 30.5 18.9 16.8 14.9 2.6 3.2 D 0.485 0.502 0.424 0.305 0.184745 2.340151 0.137566 38.96907 8.042477 266 Oluw1976 20 35 35 25.7 27.8 23.4 21.7 16.3 14.5 12.2 2.5 2.8 C 0.257 0.278 0.234 0.217 0.051875 0.651783 0.153374 63.42412 6.157522 267 Oluw1976 20 36 35 20.6 22.4 18.4 14.8 12.8 10.6 8.4 2.4 2.6 S 0.206 0.224 0.184 0.148 0.033329 0.287919 0.1875 62.13592 5.309292 268 Oluw1976 20 37 35 38.1 39.4 32.6 28.1 15.8 13.8 11.8 2.5 2.8 C 0.381 0.394 0.326 0.281 0.114009 1.190972 0.158228 41.46982 6.157522 269 Oluw1976 21 1 35 26.2 28.4 24.1 20.8 15.6 13.8 11.8 2.5 2.8 C 0.262 0.284 0.241 0.208 0.053913 0.643525 0.160256 59.54198 6.157522 270 Oluw1976 21 2 35 18.4 22.6 16.4 14.2 13.4 11.2 9.1 2.4 2.6 S 0.184 0.226 0.164 0.142 0.02659 0.26217 0.179104 72.82609 5.309292 271 Oluw1976 21 3 35 25.5 27.8 23.4 21.4 16.8 14.4 12.2 2.5 2.8 C 0.255 0.278 0.234 0.214 0.051071 0.644851 0.14881 65.88235 6.157522 272 Oluw1976 21 4 35 13.5 15.6 11.4 9.6 11.6 9.8 7.8 2.4 2.6 S 0.135 0.156 0.114 0.096 0.014314 0.109727 0.206897 85.92593 5.309292 273 Oluw1976 21 5 35 18 22.1 16.2 14.4 12.8 10.4 8.2 2.4 2.6 S 0.18 0.221 0.162 0.144 0.025447 0.237629 0.1875 71.11111 5.309292 274 Oluw1976 21 6 35 16.5 19.4 14.4 12.2 12.6 10.3 8.1 2.4 2.6 S 0.165 0.194 0.144 0.122 0.021382 0.182642 0.190476 76.36364 5.309292 275 Oluw1976 21 7 35 18.3 21.6 16.2 14.2 11.6 9.8 7.8 2.5 2.8 C 0.183 0.216 0.162 0.142 0.026302 0.220383 0.215517 63.38798 6.157522 276 Oluw1976 21 9 35 38.5 41.6 36.4 28.8 16.6 14.8 12.4 2.6 2.9 D 0.385 0.416 0.364 0.288 0.116416 1.522699 0.156627 43.11688 6.605199 277 Oluw1976 21 10 35 18 22.2 16.1 14.2 12.6 10.8 8.2 2.5 2.8 C 0.18 0.222 0.161 0.142 0.025447 0.24476 0.198413 70 6.157522 278 Oluw1976 21 11 35 14 18.2 12.2 10.1 11.8 9.9 7.6 2.4 2.6 S 0.14 0.182 0.122 0.101 0.015394 0.133298 0.20339 84.28571 5.309292 279 Oluw1976 21 12 35 29.5 33.4 26.4 22.5 14.8 12.6 10.4 2.5 2.8 C 0.295 0.334 0.264 0.225 0.068349 0.7273 0.168919 50.16949 6.157522 280 Oluw1976 21 13 35 24.5 26.6 22.3 20.4 14.6 12.4 10.1 2.5 2.8 C 0.245 0.266 0.223 0.204 0.047144 0.505269 0.171233 59.59184 6.157522 281 Oluw1976 21 14 35 39.5 42.6 36.8 28.1 18.4 16.6 14.8 2.6 2.9 D 0.395 0.426 0.368 0.281 0.122542 1.742983 0.141304 46.58228 6.605199 282 Oluw1976 21 15 35 13 16.4 11.2 9 11.5 9.6 7.8 2.4 2.6 S 0.13 0.164 0.112 0.09 0.013273 0.10703 0.208696 88.46154 5.309292 151 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 283 Oluw1976 21 16 35 22.5 26.1 20.4 18.5 14.6 12.8 10.4 2.5 2.8 C 0.225 0.261 0.204 0.185 0.039761 0.450395 0.171233 64.88889 6.157522 284 Oluw1976 21 17 35 27.6 29.6 25.4 23.6 14.8 12.9 10.8 2.5 2.8 C 0.276 0.296 0.254 0.236 0.059828 0.677766 0.168919 53.62319 6.157522 285 Oluw1976 21 18 35 38.2 40.1 36.4 28.8 16.6 14.8 12.9 2.6 2.9 D 0.382 0.401 0.364 0.288 0.114608 1.498957 0.156627 43.4555 6.605199 286 Oluw1976 21 19 35 14.6 16.8 12.4 10.4 12.5 10.4 8.1 2.4 2.6 S 0.146 0.168 0.124 0.104 0.016742 0.136876 0.192 85.61644 5.309292 287 Oluw1976 21 20 35 23.9 25.8 21.4 19.8 14.8 12.6 10.2 2.5 2.8 C 0.239 0.258 0.214 0.198 0.044863 0.476579 0.168919 61.92469 6.157522 288 Oluw1976 21 21 35 11.2 13.4 9.1 7.8 11.6 9.8 7.8 2.4 2.6 S 0.112 0.134 0.091 0.078 0.009852 0.073331 0.206897 103.5714 5.309292 289 Oluw1976 21 22 35 14.6 18.2 12.4 10.2 12.4 10.6 8.2 2.4 2.6 S 0.146 0.182 0.124 0.102 0.016742 0.145736 0.193548 84.93151 5.309292 290 Oluw1976 21 23 35 32.2 34.6 28.2 24.1 16.8 14.6 12.2 2.6 2.9 D 0.322 0.346 0.282 0.241 0.081433 0.947719 0.154762 52.17391 6.605199 291 Oluw1976 21 24 35 16.3 18.8 14.2 12.2 12.8 10.4 0.2 2.4 2.6 S 0.163 0.188 0.142 0.122 0.020867 0.17818 0.1875 78.52761 5.309292 292 Oluw1976 21 25 35 24.3 26.6 28.8 18.4 14.6 12.6 10.2 2.5 2.8 C 0.243 0.266 0.288 0.184 0.046377 0.719751 0.171233 60.0823 6.157522 293 Oluw1976 21 26 35 29.7 32.8 27.4 23.6 14.6 12.8 10.8 2.5 2.8 C 0.297 0.328 0.274 0.236 0.069279 0.776742 0.171233 49.15825 6.157522 294 Oluw1976 21 27 35 24.2 28.6 22.6 20.2 13.8 11.6 9.9 2.5 2.8 C 0.242 0.286 0.226 0.202 0.045996 0.496383 0.181159 57.02479 6.157522 295 Oluw1976 21 28 35 27.3 30.2 24.8 21.4 14.6 12.8 10.9 2.5 2.8 C 0.273 0.302 0.248 0.214 0.058535 0.641749 0.171233 53.47985 6.157522 296 Oluw1976 21 29 35 26.5 28.4 24.2 20.1 14.8 12.6 10.8 2.5 2.8 C 0.265 0.284 0.242 0.201 0.055155 0.586031 0.168919 55.84906 6.157522 297 Oluw1976 21 30 35 12.6 14.6 10.4 8.8 12.8 10.4 8.1 2.4 2.6 S 0.126 0.146 0.104 0.088 0.012469 0.098459 0.1875 101.5873 5.309292 298 Oluw1976 21 31 35 31.1 33.4 27.6 24.2 16.6 14.8 12.4 2.6 2.9 D 0.311 0.334 0.276 0.242 0.075964 0.919884 0.156627 53.37621 6.605199 299 Oluw1976 21 32 35 12.1 14.4 10.6 8.9 11.6 9.5 7.2 2.4 2.6 S 0.121 0.144 0.106 0.089 0.011499 0.091526 0.206897 95.86777 5.309292 300 Oluw1976 22 1 35 20.1 22.4 18.2 16.1 14.6 12.4 10.2 2.5 2.8 C 0.201 0.224 0.182 0.161 0.031731 0.338579 0.171233 72.63682 6.157522 301 Oluw1976 22 2 35 22.8 24.3 20.6 18.8 14.8 12.6 10.4 2.5 2.8 C 0.228 0.243 0.206 0.188 0.040828 0.435651 0.168919 64.91228 6.157522 302 Oluw1976 22 3 35 17 19.2 15.2 13.1 13.8 11.6 9.6 2.5 2.8 C 0.17 0.192 0.152 0.131 0.022698 0.222361 0.181159 81.17647 6.157522 303 Oluw1976 22 4 35 23.6 26.4 20.2 18.2 14.6 12.8 10.8 2.5 2.8 C 0.236 0.264 0.202 0.182 0.043744 0.445748 0.171233 61.86441 6.157522 304 Oluw1976 22 5 35 23.1 26.2 20.1 18.2 14.6 12.8 10.6 2.5 2.8 C 0.231 0.262 0.201 0.182 0.04191 0.441284 0.171233 63.20346 6.157522 305 Oluw1976 22 7 35 12.5 15.4 10.2 8.5 12.6 10.8 8.4 2.4 2.6 S 0.125 0.154 0.102 0.085 0.012272 0.102575 0.190476 100.8 5.309292 306 Oluw1976 22 8 35 25.6 27.8 22.4 20.6 14.8 12.9 10.8 2.5 2.8 C 0.256 0.278 0.224 0.206 0.051472 0.54107 0.168919 57.8125 6.157522 307 Oluw1976 22 9 35 16.8 19.4 14.8 12.8 13.4 11.6 9.8 2.4 2.6 S 0.168 0.194 0.148 0.128 0.022167 0.215065 0.179104 79.7619 5.309292 308 Oluw1976 22 10 35 24.7 28.6 22.6 18.8 14.6 12.8 10.9 2.5 2.8 C 0.247 0.286 0.226 0.188 0.047916 0.538585 0.171233 59.10931 6.157522 309 Oluw1976 22 11 35 26.5 30.2 24.4 20.4 15.8 13.4 11.2 2.5 2.8 C 0.265 0.302 0.244 0.204 0.055155 0.650692 0.158228 59.62264 6.157522 310 Oluw1976 22 12 35 25.2 27.4 22.5 18.4 14.6 12.8 10.9 2.5 2.8 C 0.252 0.274 0.225 0.184 0.049876 0.521809 0.171233 57.93651 6.157522 152 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 311 Oluw1976 22 13 35 15.5 18.6 13.8 11.5 13.4 11.2 9.1 2.4 2.6 S 0.155 0.186 0.138 0.115 0.018869 0.181789 0.179104 86.45161 5.309292 312 Oluw1976 22 14 35 28 32.2 24.8 22.4 14.8 12.4 10.2 2.5 2.8 C 0.28 0.322 0.248 0.224 0.061575 0.649061 0.168919 52.85714 6.157522 313 Oluw1976 22 15 35 30.6 34.4 26.6 24.6 15.6 13.8 11.9 2.6 2.9 D 0.306 0.344 0.266 0.246 0.073542 0.83434 0.166667 50.98039 6.605199 314 Oluw1976 22 17 35 27 29.4 25.4 22.4 14.8 12.6 10.8 2.5 2.8 C 0.27 0.294 0.254 0.224 0.057256 0.650953 0.168919 54.81481 6.157522 315 Oluw1976 22 18 35 42.4 44.8 36.8 28.8 18.6 16.4 14.2 2.6 3.2 D 0.424 0.448 0.368 0.288 0.141196 1.771811 0.139785 43.86792 8.042477 316 Oluw1976 22 19 35 23 26.2 20.4 18.1 15.6 13.4 10.2 2.5 2.8 C 0.23 0.262 0.204 0.181 0.041548 0.469857 0.160256 67.82609 6.157522 317 Oluw1976 22 20 35 33 36.4 28.6 24.4 16.8 14.6 12.8 2.6 2.9 D 0.33 0.364 0.286 0.244 0.08553 0.992292 0.154762 50.90909 6.605199 318 Oluw1976 22 21 35 26.6 28.8 24.4 22.8 14.4 12.6 10.8 2.5 2.8 C 0.266 0.288 0.244 0.228 0.055572 0.615321 0.173611 54.13534 6.157522 319 Oluw1976 22 22 35 23.5 27.4 20.6 18.4 15.4 13.4 11.2 2.5 2.8 C 0.235 0.274 0.206 0.184 0.043374 0.488813 0.162338 65.53191 6.157522 320 Oluw1976 22 23 35 20.3 22.5 18.3 16.2 13.6 11.8 9.6 2.5 2.8 C 0.203 0.225 0.183 0.162 0.032365 0.325644 0.183824 66.99507 6.157522 321 Oluw1976 22 24 35 27 29.6 25.1 23.1 14.8 12.8 10.9 2.5 2.8 C 0.27 0.296 0.251 0.231 0.057256 0.658446 0.168919 54.81481 6.157522 322 Oluw1976 22 25 35 16.6 18.8 14.4 12.2 13.6 11.4 9.6 2.5 2.8 C 0.166 0.188 0.144 0.122 0.021642 0.198727 0.183824 81.92771 6.157522 323 Oluw1976 22 26 35 27.4 30.2 25.6 23.4 14.8 12.8 10.8 2.5 2.8 C 0.274 0.302 0.256 0.234 0.058965 0.683785 0.168919 54.0146 6.157522 324 Oluw1976 22 27 35 43.2 45.4 38.9 28.4 18.4 16.2 14.1 2.6 3.1 D 0.432 0.454 0.389 0.284 0.146574 1.891672 0.141304 42.59259 7.547676 325 Oluw1976 22 28 35 20.9 22.8 18.8 16.6 14.6 12.6 10.4 2.5 2.8 C 0.209 0.228 0.188 0.166 0.034307 0.364365 0.171233 69.85646 6.157522 326 Oluw1976 22 29 35 17.5 19.6 15.6 13.4 13.6 11.4 9.2 2.4 2.6 S 0.175 0.196 0.156 0.134 0.024053 0.229384 0.176471 77.71429 5.309292 327 Oluw1976 23 1 35 33 36.2 30.8 24.6 16.8 14.8 12.6 2.6 2.9 D 0.33 0.362 0.308 0.246 0.08553 1.106238 0.154762 50.90909 6.605199 328 Oluw1976 23 2 35 27.3 29.4 24.2 21.3 14.6 12.8 10.4 2.5 2.8 C 0.273 0.294 0.242 0.213 0.058535 0.613341 0.171233 53.47985 6.157522 329 Oluw1976 23 3 35 36.8 28.6 34.2 26.4 17.6 15.6 13.4 2.6 2.9 D 0.368 0.286 0.342 0.264 0.106362 1.26473 0.147727 47.82609 6.605199 330 Oluw1976 23 4 35 30.2 32.2 28.1 22.4 14.8 12.8 10.9 2.5 2.8 C 0.302 0.322 0.281 0.224 0.071631 0.786997 0.168919 49.00662 6.157522 331 Oluw1976 23 5 35 36.5 38.4 32.4 24.8 16.9 14.9 12.9 2.6 2.9 D 0.365 0.384 0.324 0.248 0.104635 1.22654 0.153846 46.30137 6.605199 332 Oluw1976 23 6 35 29.5 31.5 27.6 22.4 14.6 12.6 10.8 2.5 2.8 C 0.295 0.315 0.276 0.224 0.068349 0.748972 0.171233 49.49153 6.157522 333 Oluw1976 23 7 35 33 36.4 28.4 23.4 16.8 14.8 12.4 2.6 2.9 D 0.33 0.364 0.284 0.234 0.08553 0.987791 0.154762 50.90909 6.605199 334 Oluw1976 23 8 35 45 46.4 40.6 28.6 18.6 16.8 14.4 2.6 3.2 D 0.45 0.464 0.406 0.286 0.159043 2.103313 0.139785 41.33333 8.042477 335 Oluw1976 23 9 35 19.8 22.8 17.4 15.8 14.4 12.2 10.1 2.5 2.8 C 0.198 0.228 0.174 0.158 0.030791 0.316284 0.173611 72.72727 6.157522 336 Oluw1976 23 10 35 21 24.6 19.4 17.2 14.6 12.8 10.6 2.5 2.8 C 0.21 0.246 0.194 0.172 0.034636 0.403203 0.171233 69.52381 6.157522 337 Oluw1976 23 11 35 18 22.1 16.1 14.2 13.8 11.4 9.6 2.5 2.8 C 0.18 0.221 0.161 0.142 0.025447 0.257696 0.181159 76.66667 6.157522 338 Oluw1976 23 12 35 29.5 31.4 27.6 21.8 14.6 12.6 10.8 2.5 2.8 C 0.295 0.314 0.276 0.218 0.068349 0.74356 0.171233 49.49153 6.157522 153 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 339 Oluw1976 23 13 35 12.1 14.4 10.2 8.4 12.4 10.2 8.1 2.4 2.6 S 0.121 0.144 0.102 0.084 0.011499 0.092672 0.193548 102.4793 5.309292 340 Oluw1976 23 14 35 19.3 22.6 17.3 15.2 13.6 11.8 9.6 2.4 2.6 S 0.193 0.226 0.173 0.152 0.029255 0.299495 0.176471 70.46632 5.309292 341 Oluw1976 24 1 35 37 41.4 34.2 28.6 18.8 16.4 14.2 2.6 2.9 D 0.37 0.414 0.342 0.286 0.107521 1.547913 0.138298 50.81081 6.605199 342 Oluw1976 24 2 35 24.2 26.4 22.1 20.2 14.6 12.8 10.6 2.5 2.8 C 0.242 0.264 0.221 0.202 0.045996 0.51248 0.171233 60.33058 6.157522 343 Oluw1976 24 3 35 24.9 26.8 22.4 20.4 14.8 12.6 10.8 2.5 2.8 C 0.249 0.268 0.224 0.204 0.048695 0.518129 0.168919 59.43775 6.157522 344 Oluw1976 24 4 35 19.9 21.8 17.8 15.6 13.4 11.2 9.1 2.5 2.8 C 0.199 0.218 0.178 0.156 0.031103 0.291157 0.186567 67.33668 6.157522 345 Oluw1976 24 5 35 16.1 18.2 14.2 12.1 12.8 10.4 8.2 2.4 2.6 S 0.161 0.182 0.142 0.121 0.020358 0.174827 0.1875 79.50311 5.309292 346 Oluw1976 24 6 35 37.1 38.4 34.1 28.8 17.8 15.4 13.2 2.6 2.9 D 0.371 0.384 0.341 0.288 0.108103 1.402076 0.146067 47.97844 6.605199 347 Oluw1976 24 7 35 22 24.4 20.1 18.4 14.2 12.6 10.4 2.5 2.8 C 0.22 0.244 0.201 0.184 0.038013 0.420574 0.176056 64.54545 6.157522 348 Oluw1976 24 8 35 30 32.6 28.2 24.6 16.6 14.8 12 2.6 2.9 D 0.3 0.326 0.282 0.246 0.070686 0.939381 0.156627 55.33333 6.605199 349 Oluw1976 24 9 35 30.4 32.8 28.1 24.2 16.8 14.9 12.2 2.6 2.9 D 0.304 0.328 0.281 0.242 0.072583 0.94008 0.154762 55.26316 6.605199 350 Oluw1976 24 10 35 36.4 42.4 28 18.8 17.8 15.6 13.8 2.6 2.9 D 0.364 0.424 0.28 0.188 0.104062 1.079665 0.146067 48.9011 6.605199 351 Oluw1976 24 11 35 27.2 29.6 25.6 23.4 15.6 13.4 11.1 2.5 2.8 C 0.272 0.296 0.256 0.234 0.058107 0.709544 0.160256 57.35294 6.157522 352 Oluw1976 24 12 35 34.5 36.6 30.8 22.8 18.4 16.8 14.4 2.6 2.9 D 0.345 0.366 0.308 0.228 0.093482 1.243371 0.141304 53.33333 6.605199 353 Oluw1976 24 13 35 21.2 24.4 17.6 15.4 14.8 12.6 10.8 2.5 2.8 C 0.212 0.244 0.176 0.154 0.035299 0.34167 0.168919 69.81132 6.157522 354 Oluw1976 24 14 35 31.5 34.8 17.8 24.4 16.6 14.8 12.8 2.6 2.9 D 0.315 0.348 0.178 0.244 0.077931 0.595484 0.156627 52.69841 6.605199 355 Oluw1976 24 15 35 19 21.4 17.4 14.2 14.8 12.2 10.1 2.5 2.8 C 0.19 0.214 0.174 0.142 0.028353 0.298737 0.168919 77.89474 6.157522 356 Oluw1976 24 16 35 33.5 35.6 29.8 23.4 16.8 14.6 12.6 2.6 2.9 D 0.335 0.356 0.298 0.234 0.088141 1.025722 0.154762 50.14925 6.605199 357 Oluw1976 24 17 35 37.2 39.8 32.8 22.4 16.4 14.8 12.4 2.6 2.9 D 0.372 0.398 0.328 0.224 0.108687 1.237782 0.158537 44.08602 6.605199 358 Sha1984 25 1 27 34.1 36.4 31.6 28.1 16.4 14.2 12.6 2.5 2.8 C 0.341 0.364 0.316 0.281 0.091327 1.135491 0.152439 48.09384 6.157522 359 Sha1984 25 2 27 20.7 22.6 18.4 14.8 12.8 10.6 8.4 2.5 2.6 S 0.207 0.226 0.184 0.148 0.033654 0.289168 0.195313 61.83575 5.309292 360 Sha1984 25 3 27 37 39.2 34.6 29.8 16.8 14.5 12.7 2.6 2.8 C 0.37 0.392 0.346 0.298 0.107521 1.369121 0.154762 45.40541 6.157522 361 Sha1984 25 4 27 43 46.1 41.4 38.1 17.4 16.8 14.6 2.6 2.9 D 0.43 0.461 0.414 0.381 0.14522 2.294262 0.149425 40.46512 6.605199 362 Sha1984 25 5 27 25 26.2 22.6 19.3 12.4 10.4 9.8 2.5 2.8 C 0.25 0.262 0.226 0.193 0.049087 0.422289 0.201613 49.6 6.157522 363 Sha1984 25 6 27 30.9 32.8 28.4 25.4 14.8 12.6 10.4 2.6 2 C 0.309 0.328 0.284 0.254 0.074991 0.815966 0.175676 47.89644 3.141593 364 Sha1984 25 7 27 18.3 22.2 16.4 14.6 12.6 10.9 9.3 2.4 2.6 C 0.183 0.222 0.164 0.146 0.026302 0.254234 0.190476 68.85246 5.309292 365 Sha1984 25 8 27 31.7 32.6 29.2 24.6 14.4 12.8 11.6 2.6 2.9 C 0.317 0.326 0.292 0.246 0.078924 0.850907 0.180556 45.42587 6.605199 366 Sha1984 25 9 27 18.3 21.8 16.4 12.4 12.5 10.6 8.2 2.4 2.6 S 0.183 0.218 0.164 0.124 0.026302 0.236553 0.192 68.30601 5.309292 154 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 367 Sha1984 25 10 27 41.4 43.4 38.6 32.1 17.1 16.2 14.8 2.6 2.9 D 0.414 0.434 0.386 0.321 0.134614 1.881758 0.152047 41.30435 6.605199 368 Sha1984 25 11 27 13.4 16.6 10.8 8.4 12.1 10.4 8.1 2.4 2.5 S 0.134 0.166 0.108 0.084 0.014103 0.110635 0.198347 90.29851 4.908739 369 Sha1984 25 12 27 23 25.2 20.6 18.6 14.2 12.6 10.6 2.4 2.6 C 0.23 0.252 0.206 0.186 0.041548 0.441765 0.169014 61.73913 5.309292 370 Sha1984 25 13 27 15.9 18.4 13.8 10.4 10.1 9.6 8.4 2.4 2.5 S 0.159 0.184 0.138 0.104 0.019856 0.151862 0.237624 63.52201 4.908739 371 Sha1984 25 14 27 30.3 32.6 28.4 24.6 13.8 12.4 10.8 2.6 2.8 C 0.303 0.326 0.284 0.246 0.072107 0.794399 0.188406 45.54455 6.157522 372 Sha1984 25 15 27 17.5 19.8 14.6 12.2 9.8 9.2 8.1 2.4 2.5 S 0.175 0.198 0.146 0.122 0.024053 0.167818 0.244898 56 4.908739 373 Sha1984 25 16 27 31.7 32.9 28.4 26.1 13.6 12.8 11.2 2.6 2.9 C 0.317 0.329 0.284 0.261 0.078924 0.836059 0.191176 42.90221 6.605199 374 Sha1984 25 17 27 26.9 29.4 24.6 21.6 12.4 10.6 9.4 2.4 2.8 C 0.269 0.294 0.246 0.216 0.056832 0.520543 0.193548 46.09665 6.157522 375 Sha1984 25 18 27 25.8 27.6 22.7 20.2 12.5 10.9 9.2 2.4 2.9 C 0.258 0.276 0.227 0.202 0.052279 0.460996 0.192 48.44961 6.605199 376 Sha1984 26 1 27 25.1 27.4 23.4 18.8 14.4 12.6 10.4 2.5 2.8 C 0.251 0.274 0.234 0.188 0.049481 0.543364 0.173611 57.37052 6.157522 377 Sha1984 26 2 27 22.6 24.4 20.2 16.7 14.6 12.7 10.8 2.5 2.8 C 0.226 0.244 0.202 0.167 0.040115 0.416672 0.171233 64.60177 6.157522 378 Sha1984 26 3 27 27 29.8 25.4 22.4 15.8 13.6 11.2 2.5 2.8 C 0.27 0.298 0.254 0.224 0.057256 0.706832 0.158228 58.51852 6.157522 379 Sha1984 26 4 27 39 41.4 36.8 32.6 16.4 14.8 12.6 2.6 2.9 D 0.39 0.414 0.368 0.326 0.119459 1.587374 0.158537 42.05128 6.605199 380 Sha1984 26 5 27 17.7 19.8 15.4 12.8 12.6 10.8 8.9 2.5 2.8 C 0.177 0.198 0.154 0.128 0.024606 0.212697 0.198413 71.18644 6.157522 381 Sha1984 26 6 27 27.6 29.8 25.6 22.3 14.8 12.6 10.2 2.5 2.8 C 0.276 0.298 0.256 0.223 0.059828 0.660851 0.168919 53.62319 6.157522 382 Sha1984 26 7 27 23.8 25.6 21.4 18.4 13.4 11.6 9.2 2.5 2.8 C 0.238 0.256 0.214 0.184 0.044488 0.429074 0.186567 56.30252 6.157522 383 Sha1984 26 8 27 23.8 25.4 21.2 18.1 12.8 10.4 8.9 2.5 2.8 C 0.238 0.254 0.212 0.181 0.044488 0.377168 0.195313 53.78151 6.157522 384 Sha1984 26 9 27 22.8 24.6 20.4 17.6 12.7 10.8 8.6 2.5 2.8 C 0.228 0.246 0.204 0.176 0.040828 0.364677 0.19685 55.70175 6.157522 385 Sha1984 26 10 27 27.4 29.8 25.6 22.8 14.8 12.6 10.4 2.5 2.8 C 0.274 0.298 0.256 0.228 0.058965 0.66457 0.168919 54.0146 6.157522 386 Sha1984 26 11 27 13.2 15.6 11.4 9.6 12.4 10.6 8.4 2.5 2.6 C 0.132 0.156 0.114 0.096 0.013685 0.118684 0.201613 93.93939 5.309292 387 Sha1984 26 12 27 24.6 28.4 21.4 18.8 13.8 11.5 9.8 2.5 2.8 C 0.246 0.284 0.214 0.188 0.047529 0.450376 0.181159 56.09756 6.157522 388 Sha1984 26 13 27 25 21.4 16.6 14.4 12.8 10.6 8.4 2.5 2.8 C 0.25 0.214 0.166 0.144 0.049087 0.245255 0.195313 51.2 6.157522 389 Sha1984 26 14 27 28.5 27.6 23.4 19.6 13.8 11.4 9.6 2.5 2.8 C 0.285 0.276 0.234 0.196 0.063794 0.497841 0.181159 48.42105 6.157522 390 Sha1984 26 15 27 26.4 30.2 23.6 13.7 14 12.4 10.1 2.5 2.8 C 0.264 0.302 0.236 0.137 0.054739 0.540117 0.178571 53.0303 6.157522 391 Sha1984 26 16 27 32.2 15.8 11.2 9.4 11.4 9.6 7.8 2.4 2.6 C 0.322 0.158 0.112 0.094 0.081433 0.105527 0.210526 35.40373 5.309292 392 Sha1984 26 17 27 41.5 34.8 29.6 27.4 15.6 13.8 11.4 2.5 2.8 C 0.415 0.348 0.296 0.274 0.135265 0.987466 0.160256 37.59036 6.157522 393 Sha1984 26 18 27 22.8 19.8 15.4 13.2 12.8 10.4 8.8 2.5 2.9 C 0.228 0.198 0.154 0.132 0.040828 0.206235 0.195313 56.14035 6.605199 394 Sha1984 26 19 27 36.6 44.4 30.6 26.4 18.5 16.4 14.2 2.6 3.1 D 0.366 0.444 0.306 0.264 0.105209 1.376877 0.140541 50.54645 7.547676 395 Sha1984 26 20 27 20.4 24.8 20.2 18.4 14.8 12.6 10.8 2.5 2.8 C 0.204 0.248 0.202 0.184 0.032685 0.426479 0.168919 72.54902 6.157522 396 Sha1984 26 21 27 20.6 20.2 14.4 12.6 12.8 10.2 8.1 2.4 2.6 S 0.206 0.202 0.144 0.126 0.033329 0.186423 0.1875 62.13592 5.309292 155 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 397 Sha1984 26 22 27 38.2 23.4 18.6 16.2 13.8 11.6 9.8 2.5 2.8 C 0.382 0.234 0.186 0.162 0.114608 0.333121 0.181159 36.12565 6.157522 398 Sha1984 26 23 27 20.6 23.6 18.8 16.4 13.8 11.8 9.9 2.5 2.8 C 0.206 0.236 0.188 0.164 0.033329 0.345945 0.181159 66.99029 6.157522 399 Sha1984 26 24 27 38.2 40.4 36.4 32.4 16.8 14.6 12.4 2.6 2.9 D 0.382 0.404 0.364 0.324 0.114608 1.525423 0.154762 43.97906 6.605199 400 Sha1984 26 25 27 33.1 35.2 29.8 26.8 15.6 13.6 11.8 2.5 2.8 C 0.331 0.352 0.298 0.268 0.086049 0.98081 0.160256 47.12991 6.157522 401 Sha1984 26 26 27 18.5 22.4 16.4 14.2 13.6 11.5 9.9 2.5 2.8 C 0.185 0.224 0.164 0.142 0.02688 0.267837 0.183824 73.51351 6.157522 402 Sha1984 26 27 27 28.2 32.4 24.8 22.6 14.8 12.6 10.2 2.5 2.8 C 0.282 0.324 0.248 0.226 0.062458 0.663145 0.168919 52.48227 6.157522 403 Sha1984 26 28 27 27.6 29.8 25.4 22.8 14.6 12.4 10.1 2.5 2.8 C 0.276 0.298 0.254 0.228 0.059828 0.647399 0.171233 52.89855 6.157522 404 Sha1984 26 29 27 18.4 20.4 16.6 14.6 13.8 11.6 9.8 2.5 2.8 C 0.184 0.204 0.166 0.146 0.02659 0.262926 0.181159 75 6.157522 405 Sha1984 26 30 27 16 18.6 14.4 12.6 12.6 10.6 8.9 2.4 2.6 S 0.16 0.186 0.144 0.126 0.020106 0.18512 0.190476 78.75 5.309292 406 Sha1984 26 31 27 32.1 36.4 28.8 24.8 14.8 12.8 10.9 2.5 2.8 C 0.321 0.364 0.288 0.248 0.080928 0.880946 0.168919 46.10592 6.157522 407 Sha1984 26 32 27 39.5 42.6 36.7 32.4 16.2 14.6 12.8 2.6 2.9 D 0.395 0.426 0.367 0.324 0.122542 1.577084 0.160494 41.01266 6.605199 408 Sha1984 26 33 27 18.4 22.8 16.2 14.4 12.8 10.4 8.4 2.4 2.6 S 0.184 0.228 0.162 0.144 0.02659 0.241908 0.1875 69.56522 5.309292 409 Sha1984 26 34 27 28 32.6 26.4 22.8 14.7 12.4 10.1 2.5 2.8 C 0.28 0.326 0.264 0.228 0.061575 0.709391 0.170068 52.5 6.157522 410 Sha1984 26 35 27 27.1 29.8 25.6 22.4 13.8 11.6 9.8 2.5 2.8 C 0.271 0.298 0.256 0.224 0.05768 0.609081 0.181159 50.92251 6.157522 411 Sha1984 26 36 27 21.1 24.6 18.4 16.3 12.8 10.6 8.6 2.5 2.8 C 0.211 0.246 0.184 0.163 0.034967 0.308739 0.195313 60.66351 6.157522 412 Sha1984 26 37 27 24 27.4 22.8 20.2 13.6 11.8 9.6 2.5 2.8 C 0.24 0.274 0.228 0.202 0.045239 0.500172 0.183824 56.66667 6.157522 413 Sha1984 26 38 27 48.7 50.2 44.2 36.8 18.1 16.4 14.3 2.6 3.1 D 0.487 0.502 0.442 0.368 0.186272 2.509308 0.143646 37.16632 7.547676 414 Sha1984 26 39 27 20.4 24.2 18.6 16.4 13.6 11.4 9.8 2.5 2.8 C 0.204 0.242 0.186 0.164 0.032685 0.334033 0.183824 66.66667 6.157522 415 Sha1984 26 40 27 38.7 42.4 34.6 28.4 16.4 14.2 12.6 2.6 3.1 D 0.387 0.424 0.346 0.284 0.117628 1.374185 0.158537 42.37726 7.547676 416 Sha1984 26 41 27 24.1 26.4 22.4 20.6 13.8 11.6 9.6 2.5 2.8 C 0.241 0.264 0.224 0.206 0.045617 0.475022 0.181159 57.26141 6.157522 417 Sha1984 26 42 27 18.7 20.4 16.6 14.4 12.8 10.6 8.3 2.5 2.8 C 0.187 0.204 0.166 0.144 0.027465 0.239456 0.195313 68.4492 6.157522 418 Sha1984 26 43 27 19 21.6 17.6 15.6 13.6 11.6 9.2 2.5 2.8 C 0.19 0.216 0.176 0.156 0.028353 0.295937 0.183824 71.57895 6.157522 419 Sha1984 26 44 27 31 34.2 28.4 26.6 14.6 12.6 10.2 2.5 2.8 C 0.31 0.342 0.284 0.266 0.075477 0.841729 0.171233 47.09677 6.157522 420 Sha1984 26 45 27 30 34.6 28.6 26.4 14.6 12.4 10.1 2.5 2.8 C 0.3 0.346 0.286 0.264 0.070686 0.838516 0.171233 48.66667 6.157522 421 Sha1984 26 46 27 22.3 26.2 20.4 18.6 12.6 10.4 8.8 2.5 2.8 C 0.223 0.262 0.204 0.186 0.039057 0.367163 0.198413 56.50224 6.157522 422 Sha1984 26 47 27 12.4 14.6 10.4 8.4 10.9 8.8 6.4 2.4 2.6 S 0.124 0.146 0.104 0.084 0.012076 0.082519 0.220183 87.90323 5.309292 423 Sha1984 27 1 27 30.8 32.6 28.4 25.7 16.2 14.6 12.4 2.5 2.8 C 0.308 0.326 0.284 0.257 0.074506 0.945915 0.154321 52.5974 6.157522 424 Sha1984 27 2 27 20.6 22.4 18.6 16.4 13.6 11.4 9.6 2.5 2.8 C 0.206 0.224 0.186 0.164 0.033329 0.321516 0.183824 66.01942 6.157522 156 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 425 Sha1984 27 3 27 22.9 24.8 20.4 18.6 14.8 12.8 10.4 2.5 2.8 C 0.229 0.248 0.204 0.186 0.041187 0.43993 0.168919 64.62882 6.157522 426 Sha1984 27 4 27 19.5 21.6 16.6 13.5 12.4 10.7 8.9 2.5 2.8 C 0.195 0.216 0.166 0.135 0.029865 0.245257 0.201613 63.58974 6.157522 427 Sha1984 27 5 27 29.8 33.4 25.8 23.4 14.8 12.6 10.8 2.5 2.8 C 0.298 0.334 0.258 0.234 0.069746 0.71345 0.168919 49.66443 6.157522 428 Sha1984 27 6 27 35.5 38.6 32.4 28.6 17.4 15.6 13.8 2.6 2.9 D 0.355 0.386 0.324 0.286 0.09898 1.328744 0.149425 49.01408 6.605199 429 Sha1984 27 7 27 44.4 17.4 12.2 10.4 12.8 10.4 8.2 2.4 2.6 S 0.444 0.174 0.122 0.104 0.15483 0.136991 0.1875 28.82883 5.309292 430 Sha1984 27 8 27 24.2 26.6 22.1 18.4 14.8 12.6 10.8 2.5 2.8 C 0.242 0.266 0.221 0.184 0.045996 0.494761 0.168919 61.15702 6.157522 431 Sha1984 27 9 27 10.9 13.4 8.6 6.4 10.4 8.8 6.4 2.5 2.8 S 0.109 0.134 0.086 0.064 0.009331 0.05948 0.240385 95.41284 6.157522 432 Sha1984 27 10 27 15 18.6 13.4 10.2 12.8 10.6 8.8 2.4 2.6 S 0.15 0.186 0.134 0.102 0.017671 0.162098 0.1875 85.33333 5.309292 433 Sha1984 27 11 27 19.8 20.4 14.8 12.4 12.9 10.8 8.9 2.4 2.6 S 0.198 0.204 0.148 0.124 0.030791 0.204435 0.186047 65.15152 5.309292 434 Sha1984 27 12 27 29.2 32.6 26.4 24.6 14.8 12.6 10.8 2.5 2.8 C 0.292 0.326 0.264 0.246 0.066966 0.734905 0.168919 50.68493 6.157522 435 Sha1984 27 13 27 36.9 38.8 34.4 32.1 18.2 16.6 14.2 2.6 2.9 D 0.369 0.388 0.344 0.321 0.106941 1.579569 0.142857 49.32249 6.605199 436 Sha1984 27 14 27 20.3 24.4 18.4 16.2 13.5 11.6 9.8 2.5 2.8 C 0.203 0.244 0.184 0.162 0.032365 0.335884 0.185185 66.50246 6.157522 437 Sha1984 27 15 27 25.1 28.4 23.6 20.4 15.8 12.9 10.8 2.5 2.8 C 0.251 0.284 0.236 0.204 0.049481 0.582664 0.158228 62.94821 6.157522 438 Sha1984 27 16 27 16.8 20.6 14.8 12.4 13.8 11.6 9.2 2.4 2.6 S 0.168 0.206 0.148 0.124 0.022167 0.220823 0.173913 82.14286 5.309292 439 Sha1984 27 17 27 34.3 38.4 30.6 28.6 16.8 14.9 12.8 2.6 2.9 D 0.343 0.384 0.306 0.286 0.092401 1.177647 0.154762 48.97959 6.605199 440 Sha1984 27 18 27 22.3 28.6 20.4 18.4 14.6 12.4 10.1 2.5 2.8 C 0.223 0.286 0.204 0.184 0.039057 0.457918 0.171233 65.47085 6.157522 441 Sha1984 27 19 27 18.2 22.6 16.2 14.4 14.6 12.4 10 2.4 2.6 S 0.182 0.226 0.162 0.144 0.026016 0.286955 0.164384 80.21978 5.309292 442 Sha1984 27 20 27 32.4 36.4 29.4 26.2 16.2 13.8 11.8 2.5 2.8 C 0.324 0.364 0.294 0.262 0.082448 0.9879 0.154321 50 6.157522 443 Sha1984 27 21 27 25.9 28.6 22.6 20.4 14.8 12.4 10.6 2.5 2.8 C 0.259 0.286 0.226 0.204 0.052685 0.531934 0.168919 57.14286 6.157522 444 Sha1984 27 22 27 35 38.4 32.4 28.6 18.2 16.4 14.1 2.6 2.9 D 0.35 0.384 0.324 0.286 0.096211 1.393579 0.142857 52 6.605199 445 Sha1984 27 23 27 19.7 22.6 16.6 14.4 13.6 11.8 9.9 2.5 2.8 C 0.197 0.226 0.166 0.144 0.030481 0.281176 0.183824 69.03553 6.157522 446 Sha1984 27 24 27 36.4 38.4 32.4 28.6 18.4 16.8 14.6 2.6 2.9 D 0.364 0.384 0.324 0.286 0.104062 1.427569 0.141304 50.54945 6.605199 447 Sha1984 27 25 27 24.7 28.6 21.6 19.6 14.6 12.8 10.4 2.5 2.8 C 0.247 0.286 0.216 0.196 0.047916 0.514109 0.171233 59.10931 6.157522 448 Sha1984 27 26 27 23.1 26.4 20.4 18.4 14.6 12.4 10.1 2.5 2.8 C 0.231 0.264 0.204 0.184 0.04191 0.438278 0.171233 63.20346 6.157522 449 Sha1984 27 27 27 27 29.6 24.6 20.6 14.6 12.8 10.4 2.5 2.8 C 0.27 0.296 0.246 0.206 0.057256 0.623486 0.171233 54.07407 6.157522 450 Sha1984 27 28 27 17 21.4 15.6 12.8 13.5 11.6 9.4 2.4 2.6 S 0.17 0.214 0.156 0.128 0.022698 0.242227 0.177778 79.41176 5.309292 451 Sha1984 27 29 27 20.6 23.6 18.8 16.4 13.6 11.5 9.9 2.5 2.8 C 0.206 0.236 0.188 0.164 0.033329 0.337149 0.183824 66.01942 6.157522 452 Sha1984 27 30 27 21.5 25.2 18.6 15.6 14.6 12.4 10.1 2.5 2.8 C 0.215 0.252 0.186 0.156 0.036305 0.367197 0.171233 67.90698 6.157522 157 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 453 Sha1984 28 1 27 21.8 23.4 18.4 16.4 14.8 12.6 10.8 2.5 2.8 C 0.218 0.234 0.184 0.164 0.037325 0.358031 0.168919 67.88991 6.157522 454 Sha1984 28 2 27 35.4 38.6 32.4 28.1 18.6 16.4 14.2 2.6 3.1 D 0.354 0.386 0.324 0.281 0.098423 1.390799 0.139785 52.54237 7.547676 455 Sha1984 28 3 27 17 21.4 15.6 13.4 14.4 11.5 9.1 2.4 2.6 S 0.17 0.214 0.156 0.134 0.022698 0.242505 0.166667 84.70588 5.309292 456 Sha1984 28 4 27 17.9 21.6 15.8 13.2 14.6 11.6 9.6 2.5 2.8 C 0.179 0.216 0.158 0.132 0.025165 0.248926 0.171233 81.56425 6.157522 457 Sha1984 28 5 27 26.6 29.4 24.2 22.4 14.8 12.8 10.8 2.5 2.8 C 0.266 0.294 0.242 0.224 0.055572 0.621395 0.168919 55.6391 6.157522 458 Sha1984 28 6 27 14.1 18.8 12.4 10.2 13.8 11.8 9.8 2.4 2.6 S 0.141 0.188 0.124 0.102 0.015615 0.165663 0.173913 97.87234 5.309292 459 Sha1984 28 7 27 15.4 19.4 13.2 11.4 13.8 11.6 9.9 2.4 2.6 S 0.154 0.194 0.132 0.114 0.018627 0.18271 0.173913 89.61039 5.309292 460 Sha1984 28 8 27 21.8 24.6 18.6 15.8 14.6 12.8 10.6 2.5 2.8 C 0.218 0.246 0.186 0.158 0.037325 0.375088 0.171233 66.97248 6.157522 461 Sha1984 28 9 27 36.5 38.4 32.4 28.6 18.4 16.6 14.6 2.6 3.1 D 0.365 0.384 0.324 0.286 0.104635 1.410574 0.141304 50.41096 7.547676 462 Sha1984 28 10 27 30.2 34.6 28.6 24.4 16.8 14.6 12.8 2.5 2.9 C 0.302 0.346 0.286 0.244 0.071631 0.967868 0.14881 55.62914 6.605199 463 Sha1984 28 11 27 26.7 29.4 24.4 20.6 15.6 13.6 11.4 2.5 2.9 C 0.267 0.294 0.244 0.206 0.05599 0.653375 0.160256 58.42697 6.605199 464 Sha1984 28 12 27 10.6 14.4 28.4 6.2 12.4 10.8 8.2 2.4 2.6 S 0.106 0.144 0.284 0.062 0.008825 0.490848 0.193548 116.9811 5.309292 465 Sha1984 28 13 27 39.7 42.4 36.6 28.4 13.6 16.8 14.8 2.6 3.2 D 0.397 0.424 0.366 0.284 0.123786 1.751058 0.191176 34.25693 8.042477 466 Sha1984 28 14 27 37.1 40.2 34.2 26.4 17.8 15.6 13.4 2.6 3.1 D 0.371 0.402 0.342 0.264 0.108103 1.427701 0.146067 47.97844 7.547676 467 Sha1984 28 15 27 20 24.6 18.6 16.2 13.4 11.8 9.4 2.5 2.8 C 0.2 0.246 0.186 0.162 0.031416 0.347761 0.186567 67 6.157522 468 Sha1984 28 16 27 28.5 32.4 24.2 24.1 16.8 14.6 12.2 2.5 2.8 C 0.285 0.324 0.242 0.241 0.063794 0.759319 0.14881 58.94737 6.157522 469 Sha1984 28 17 27 26.2 28.6 24.4 20.4 15.6 13.4 11.2 2.5 2.8 C 0.262 0.286 0.244 0.204 0.053913 0.634189 0.160256 59.54198 6.157522 470 Sha1984 28 18 27 18 24.4 16.8 14.2 13.9 11.8 9.6 2.5 2.8 C 0.18 0.244 0.168 0.142 0.025447 0.297487 0.179856 77.22222 6.157522 471 Sha1984 28 19 27 25.7 28.8 22.6 20.1 14.8 12.6 10.4 2.5 2.8 C 0.257 0.288 0.226 0.201 0.051875 0.540403 0.168919 57.58755 6.157522 472 Sha1984 28 20 27 20.3 24.4 18.6 16.4 13.6 11.8 9.6 2.5 2.8 C 0.203 0.244 0.186 0.164 0.032365 0.347254 0.183824 66.99507 6.157522 473 Sha1984 28 21 27 28.5 32.4 24.8 20.1 18.6 14.4 12.1 2.5 2.8 C 0.285 0.324 0.248 0.201 0.063794 0.737758 0.134409 65.26316 6.157522 474 Sha1984 28 22 27 33 36.6 28.6 24.4 16.4 14.8 12.8 2.5 2.8 C 0.33 0.366 0.286 0.244 0.08553 1.008714 0.152439 49.69697 6.157522 475 Sha1984 28 23 27 15.8 18.8 13.4 10.6 13.6 11.4 9.1 2.4 2.6 S 0.158 0.188 0.134 0.106 0.019607 0.176689 0.176471 86.07595 5.309292 476 Sha1984 29 1 27 18.9 21.4 16.4 12.4 13.6 11.4 9.2 2.5 2.8 C 0.189 0.214 0.164 0.124 0.028055 0.251827 0.183824 71.95767 6.157522 477 Sha1984 29 2 27 24.7 26.8 23.2 18.6 14.5 12.8 10.6 2.5 2.8 C 0.247 0.268 0.232 0.186 0.047916 0.53904 0.172414 58.70445 6.157522 478 Sha1984 29 3 27 11.7 15.4 9.4 8.6 12.4 10.2 8.1 2.5 2.6 S 0.117 0.154 0.094 0.086 0.010751 0.088731 0.201613 105.9829 5.309292 479 Sha1984 29 4 27 15.8 18.6 12.6 10.4 12.6 10.4 8.2 2.4 2.6 S 0.158 0.186 0.126 0.104 0.019607 0.148274 0.190476 79.74684 5.309292 480 Sha1984 29 5 27 15 18.4 12.4 10.2 12.8 10.2 8.1 2.4 2.6 S 0.15 0.184 0.124 0.102 0.017671 0.141214 0.1875 85.33333 5.309292 158 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 481 Sha1984 29 6 27 13 15.6 11.2 9.4 11.6 9.8 7.4 2.4 2.6 S 0.13 0.156 0.112 0.094 0.013273 0.10692 0.206897 89.23077 5.309292 482 Sha1984 29 7 27 25 27.8 21.6 18.4 14.8 12.5 10.8 2.5 2.8 C 0.25 0.278 0.216 0.184 0.049087 0.487215 0.168919 59.2 6.157522 483 Sha1984 29 8 27 31.8 24.6 28.4 22.8 16.6 14.8 12.6 2.5 2.8 C 0.318 0.246 0.284 0.228 0.079423 0.842972 0.150602 52.20126 6.157522 484 Sha1984 29 9 27 16.7 19.8 14.6 12.4 12.4 10.8 8.6 2.4 2.6 S 0.167 0.198 0.146 0.124 0.021904 0.1977 0.193548 74.2515 5.309292 485 Sha1984 29 10 27 31.6 33.4 28.4 22.6 16.4 14.8 12.4 2.5 2.8 C 0.316 0.334 0.284 0.226 0.078427 0.940094 0.152439 51.89873 6.157522 486 Sha1984 29 11 27 14.2 18.6 12.2 10.4 10.6 3.8 6.4 2.4 2.6 S 0.142 0.186 0.122 0.104 0.015837 0.052203 0.226415 74.64789 5.309292 487 Sha1984 29 12 27 37.1 42.4 34.2 20.1 18.6 16.4 14.6 2.6 2.9 D 0.371 0.424 0.342 0.201 0.108103 1.477038 0.139785 50.13477 6.605199 488 Sha1984 29 13 27 22.8 26.4 18.6 14.6 13.8 11.8 9.9 2.5 2.8 C 0.228 0.264 0.186 0.146 0.040828 0.354329 0.181159 60.52632 6.157522 489 Sha1984 29 14 27 11.4 14.6 9.8 7.4 10.6 8.4 6.2 2.4 2.6 C 0.114 0.146 0.098 0.074 0.010207 0.0717 0.226415 92.98246 5.309292 490 Sha1984 29 15 27 23.3 28.4 18.6 14.4 14.8 12.6 10.2 2.5 2.8 C 0.233 0.284 0.186 0.144 0.042638 0.395471 0.168919 63.51931 6.157522 491 Sha1984 29 16 27 11.4 15.8 9.8 7.6 10.4 8.6 6.2 2.4 2.6 S 0.114 0.158 0.098 0.076 0.010207 0.077851 0.230769 91.22807 5.309292 492 Sha1984 29 17 27 22.7 26.6 18.4 14.4 13.6 11.8 9.8 2.5 2.8 C 0.227 0.266 0.184 0.144 0.040471 0.350498 0.183824 59.91189 6.157522 493 Sha1984 29 18 27 20.5 24.2 16.6 12.6 12.9 10.8 8.9 2.5 2.8 C 0.205 0.242 0.166 0.126 0.033006 0.261063 0.193798 62.92683 6.157522 494 Sha1984 29 19 27 25.1 28.8 22.4 18.1 14.8 12.6 10.2 2.5 2.8 C 0.251 0.288 0.224 0.181 0.049481 0.521865 0.168919 58.96414 6.157522 495 Sha1984 29 20 27 21.3 26.6 17.6 15.2 13.6 11.8 9.6 2.5 2.8 C 0.213 0.266 0.176 0.152 0.035633 0.336362 0.183824 63.84977 6.157522 496 Sha1984 29 21 27 19.1 23.4 16.6 13.6 12.8 10.8 8.9 2.5 2.8 C 0.191 0.234 0.166 0.136 0.028652 0.259383 0.195313 67.01571 6.157522 497 Sha1984 29 22 27 23.5 27.8 16.8 14.2 14.8 12.6 10.4 2.5 2.8 C 0.235 0.278 0.168 0.142 0.043374 0.346928 0.168919 62.97872 6.157522 498 Sha1984 29 23 27 19.5 23.8 16.8 13.9 14.6 12.4 10.1 2.5 2.8 C 0.195 0.238 0.168 0.139 0.029865 0.306551 0.171233 74.87179 6.157522 499 Sha1984 29 24 27 18.4 22.4 16.2 12.6 13.8 11.6 9.2 2.5 2.8 C 0.184 0.224 0.162 0.126 0.02659 0.259695 0.181159 75 6.157522 500 Sha1984 29 25 27 32 34.8 28.6 23.4 16.6 14.8 12.6 2.5 2.8 C 0.32 0.348 0.286 0.234 0.080425 0.974555 0.150602 51.875 6.157522 501 Sha1984 29 26 27 10.2 14.6 8.4 6.8 10.8 8.6 6.8 2.4 2.6 C 0.102 0.146 0.084 0.068 0.008171 0.060974 0.222222 105.8824 5.309292 502 Sha1984 29 27 27 27.3 31.8 24.6 18.4 14.6 12.8 10.9 2.5 2.8 C 0.273 0.318 0.246 0.184 0.058535 0.631743 0.171233 53.47985 6.157522 503 Sha1984 29 28 27 14.3 18.6 12.4 10.6 11.4 9.6 7.2 2.4 2.6 S 0.143 0.186 0.124 0.106 0.016061 0.134882 0.210526 79.72028 5.309292 504 Sha1984 29 29 27 18.1 22.5 16.2 14.4 12.6 10.8 8.6 2.5 2.8 C 0.181 0.225 0.162 0.144 0.02573 0.249291 0.198413 69.61326 6.157522 505 Sha1984 29 30 27 27.5 29.6 22.4 18.1 14.8 12.8 10.9 2.5 2.8 C 0.275 0.296 0.224 0.181 0.059396 0.537976 0.168919 53.81818 6.157522 506 Sha1984 29 31 27 20.5 24.8 16.8 14.4 12.8 10.8 8.9 2.5 2.8 C 0.205 0.248 0.168 0.144 0.033006 0.275867 0.195313 62.43902 6.157522 159 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 507 Sha1984 29 32 27 26.9 30.2 22.4 18.4 14.8 12.6 10.8 2.5 2.8 C 0.269 0.302 0.224 0.184 0.056832 0.537294 0.168919 55.01859 6.157522 508 Sha1984 29 33 27 19.6 24.1 16.3 14.5 14.8 12.4 10.1 2.5 2.8 C 0.196 0.241 0.163 0.145 0.030172 0.300904 0.168919 75.5102 6.157522 509 Sha1984 29 34 27 44 46.4 38.8 24.2 18.8 16.6 14.8 2.6 3.2 D 0.44 0.464 0.388 0.242 0.152053 1.903569 0.138298 42.72727 8.042477 510 Sha1984 30 1 27 25.4 27.5 22.4 18.2 14.6 12.8 10.4 2.5 2.8 C 0.254 0.275 0.224 0.182 0.050671 0.518493 0.171233 57.48031 6.157522 511 Sha1984 30 2 27 23.3 26.2 19.5 16.4 13.6 11.6 9.8 2.5 2.8 C 0.233 0.262 0.195 0.164 0.042638 0.376026 0.183824 58.3691 6.157522 512 Sha1984 30 3 27 23.7 26.4 19.6 16.5 13.8 11.8 9.9 2.5 2.8 C 0.237 0.264 0.196 0.165 0.044115 0.387058 0.181159 58.22785 6.157522 513 Sha1984 30 4 27 27.2 30.6 24.4 19.8 14.4 12.6 10.8 2.5 2.8 C 0.272 0.306 0.244 0.198 0.058107 0.611877 0.173611 52.94118 6.157522 514 Sha1984 30 5 27 24 28.2 18.6 14.6 14.2 12.4 10.1 2.5 2.8 C 0.24 0.282 0.186 0.146 0.045239 0.388298 0.176056 59.16667 6.157522 515 Sha1984 30 6 27 20.1 24.4 18.2 16.4 13.6 11.5 9.2 2.5 2.8 C 0.201 0.244 0.182 0.164 0.031731 0.329562 0.183824 67.66169 6.157522 516 Sha1984 30 7 27 15.8 17.4 13.4 11.3 11.6 9.8 7.6 2.4 2.6 S 0.158 0.174 0.134 0.113 0.019607 0.147356 0.206897 73.41772 5.309292 517 Sha1984 30 8 27 31.8 33.8 28.6 22.1 15.8 13.8 11.4 2.5 2.8 C 0.318 0.338 0.286 0.221 0.079423 0.88563 0.158228 49.68553 6.157522 518 Sha1984 30 9 27 28.7 30.8 24.1 18.8 15.9 13.8 11.2 2.5 2.8 C 0.287 0.308 0.241 0.188 0.064692 0.654884 0.157233 55.4007 6.157522 519 Sha1984 30 10 27 11.2 14.4 9.2 7.4 10.8 8.6 6.5 2.4 2.6 S 0.112 0.144 0.092 0.074 0.009852 0.067621 0.222222 96.42857 5.309292 520 Sha1984 30 11 27 14.4 18.6 12.5 10.6 11.6 9.4 7.2 2.4 2.6 S 0.144 0.186 0.125 0.106 0.016286 0.133298 0.206897 80.55556 5.309292 521 Sha1984 30 12 27 33 36.4 28.6 22.4 16.8 14.8 12.6 2.6 2.9 D 0.33 0.364 0.286 0.224 0.08553 0.987752 0.154762 50.90909 6.605199 522 Sha1984 30 13 27 14.4 18.6 12.5 10.6 11.8 9.6 7.2 2.4 2.6 S 0.144 0.186 0.125 0.106 0.016286 0.136134 0.20339 81.94444 5.309292 523 Sha1984 30 14 27 18.5 24.8 16.4 14.4 12.8 10.8 8.6 2.5 2.8 C 0.185 0.248 0.164 0.144 0.02688 0.268357 0.195313 69.18919 6.157522 524 Sha1984 30 15 27 39.2 42.4 34.6 22.1 16.5 14.6 12.4 2.6 2.9 D 0.392 0.424 0.346 0.221 0.120687 1.352092 0.157576 42.09184 6.605199 525 Sha1984 30 16 27 18.8 26.2 16.8 14.6 12.6 10.8 8.6 2.5 2.8 C 0.188 0.262 0.168 0.146 0.027759 0.286781 0.198413 67.02128 6.157522 526 Sha1984 30 17 27 13.8 18.6 10.4 8.8 10.5 8.4 6.2 2.4 2.6 S 0.138 0.186 0.104 0.088 0.014957 0.094127 0.228571 76.08696 5.309292 527 Sha1984 30 18 27 20.5 24.6 18.6 14.1 13.6 11.8 9.6 2.5 2.8 C 0.205 0.246 0.186 0.141 0.033006 0.337933 0.183824 66.34146 6.157522 528 Sha1984 30 19 27 24.5 28.4 20.2 18.1 14.8 12.6 10.4 2.5 2.8 C 0.245 0.284 0.202 0.181 0.047144 0.456261 0.168919 60.40816 6.157522 529 Sha1984 30 20 27 35.7 38.4 31.4 26.6 15.8 13.8 11.6 2.6 2.9 D 0.357 0.384 0.314 0.266 0.100098 1.106603 0.164557 44.2577 6.605199 530 Sha1984 30 21 27 29.5 42.2 32.8 26.8 18.6 16.6 14.8 2.6 2.9 D 0.295 0.422 0.328 0.268 0.068349 1.478126 0.139785 63.05085 6.605199 531 Sha1984 31 1 27 16.2 18.6 14.4 12.2 12.5 10.4 8.1 2.4 2.6 S 0.162 0.186 0.144 0.122 0.020612 0.180276 0.192 77.16049 5.309292 532 Sha1984 31 2 27 19.8 22.4 16.8 13.6 14.8 12.6 10.2 2.5 2.8 C 0.198 0.224 0.168 0.136 0.030791 0.299467 0.168919 74.74747 6.157522 533 Sha1984 31 3 27 30.6 32.8 28.4 22.4 14.8 12.6 12.2 2.5 2.8 C 0.306 0.328 0.284 0.224 0.073542 0.792315 0.168919 48.36601 6.157522 534 Sha1984 31 4 27 30.2 32.4 28.2 20.8 18.8 12.8 12.3 2.5 2.8 C 0.302 0.324 0.282 0.208 0.071631 0.781353 0.132979 62.25166 6.157522 160 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 535 Sha1984 31 5 27 34.5 36.8 28.8 21.6 18.4 16.4 14.2 2.6 2.9 D 0.345 0.368 0.288 0.216 0.093482 1.103123 0.141304 53.33333 6.605199 536 Sha1984 31 6 27 11.2 16.4 9.1 7.2 10.4 8.2 6.1 2.4 2.6 S 0.112 0.164 0.091 0.072 0.009852 0.069989 0.230769 92.85714 5.309292 537 Sha1984 31 7 27 15.8 18.6 13.6 10.8 13.6 11.8 9.8 2.4 2.6 S 0.158 0.186 0.136 0.108 0.019607 0.185731 0.176471 86.07595 5.309292 538 Sha1984 31 8 27 26.9 29.8 23.6 19.9 14.8 12.8 10.8 2.5 2.8 C 0.269 0.298 0.236 0.199 0.056832 0.588423 0.168919 55.01859 6.157522 539 Sha1984 31 9 27 18 24.4 16.2 14.1 13.8 11.8 9.9 2.5 2.8 C 0.18 0.244 0.162 0.141 0.025447 0.284816 0.181159 76.66667 6.157522 540 Sha1984 31 10 27 23.8 27.6 20.4 16.4 14.6 12.6 10.2 2.5 2.8 C 0.238 0.276 0.204 0.164 0.044488 0.444555 0.171233 61.34454 6.157522 541 Sha1984 31 11 27 16.8 31.4 14.2 12.6 12.5 10.4 8.1 2.4 2.6 S 0.168 0.314 0.142 0.126 0.022167 0.265639 0.192 74.40476 5.309292 542 Sha1984 31 12 27 17.4 22.6 14.8 12.8 13.6 11.5 9.2 2.4 2.6 S 0.174 0.226 0.148 0.128 0.023779 0.233443 0.176471 78.16092 5.309292 543 Sha1984 31 13 27 29.7 34.2 26.4 20.1 14.8 12.6 10.9 2.5 2.8 C 0.297 0.342 0.264 0.201 0.069279 0.719356 0.168919 49.83165 6.157522 544 Sha1984 31 14 27 27.2 29.8 24.6 22.4 14.6 12.4 10.4 2.5 2.8 C 0.272 0.298 0.246 0.224 0.058107 0.618494 0.171233 53.67647 6.157522 545 Sha1984 31 15 27 15.7 18.6 13.4 11.1 11.6 9.5 7.4 2.4 2.6 S 0.157 0.186 0.134 0.111 0.019359 0.14766 0.206897 73.88535 5.309292 546 Sha1984 31 16 27 17.1 22.6 14.8 12.2 12.6 10.4 8.2 2.4 2.6 S 0.171 0.226 0.148 0.122 0.022966 0.209072 0.190476 73.68421 5.309292 547 Sha1984 31 17 27 16.6 20.4 14.2 12.1 12.4 10.2 8.1 2.4 2.6 S 0.166 0.204 0.142 0.121 0.021642 0.182803 0.193548 74.6988 5.309292 548 Sha1984 31 18 27 29.8 34.6 25.5 20.8 14.8 12.9 10.8 2.5 2.8 C 0.298 0.346 0.255 0.208 0.069746 0.714415 0.168919 49.66443 6.157522 549 Sha1984 31 19 27 12.7 16.4 10.5 8.7 10.6 8.4 6.2 2.4 2.6 S 0.127 0.164 0.105 0.087 0.012668 0.086387 0.226415 83.46457 5.309292 550 Sha1984 31 20 27 28.8 32.6 26.8 22.4 14.8 12.8 10.8 2.5 2.8 C 0.288 0.326 0.268 0.224 0.065144 0.743507 0.168919 51.38889 6.157522 551 Sha1984 31 21 27 18.7 24.8 16.6 14.5 13.6 11.6 9.2 2.5 2.6 C 0.187 0.248 0.166 0.145 0.027465 0.292683 0.183824 72.72727 5.309292 552 Sha1984 31 22 27 41.8 46.6 34.8 24.1 18.8 16.8 14.6 2.6 3.1 D 0.418 0.466 0.348 0.241 0.137228 1.670564 0.138298 44.97608 7.547676 553 Sha1984 31 23 27 18 24.6 16.4 14.1 13.5 11.4 9.2 2.4 2.6 S 0.18 0.246 0.164 0.141 0.025447 0.280516 0.177778 75 5.309292 554 Sha1984 31 24 27 18.2 24.8 16.6 14.4 12.6 10.8 8.9 2.4 2.6 S 0.182 0.248 0.166 0.144 0.026016 0.27209 0.190476 69.23077 5.309292 555 Sha1984 31 25 27 21.7 26.6 18.4 16.7 14.8 12.6 10.2 2.5 2.8 C 0.217 0.266 0.184 0.167 0.036984 0.386058 0.168919 68.20276 6.157522 556 Sha1984 31 26 27 22.5 26.8 20.6 18.5 14.8 12.8 10.6 2.5 2.8 C 0.225 0.268 0.206 0.185 0.039761 0.462096 0.168919 65.77778 6.157522 557 Sha1984 31 27 27 27.6 22.4 15.6 13.5 11.8 9.8 7.6 2.4 2.6 S 0.276 0.224 0.156 0.135 0.059828 0.212621 0.20339 42.75362 5.309292 558 Sha1984 31 28 27 14 18.6 12.4 10.2 10.5 8.4 6.2 2.4 2.6 S 0.14 0.186 0.124 0.102 0.015394 0.117107 0.228571 75 5.309292 559 Sha1984 31 29 27 36 40.1 32.2 28.1 18.7 16.8 14.6 2.6 2.9 D 0.36 0.401 0.322 0.281 0.101788 1.439316 0.139037 51.94444 6.605199 560 Sha1984 31 30 27 35.3 29.6 22.4 18.3 14.8 12.8 10.8 2.5 2.8 C 0.353 0.296 0.224 0.183 0.097868 0.539196 0.168919 41.92635 6.157522 161 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 561 Sha1984 31 31 27 48 52.4 44.2 26.8 18.7 16.8 14.8 2.6 3.2 D 0.48 0.524 0.442 0.268 0.180956 2.480285 0.139037 38.95833 8.042477 562 Sha1984 31 32 27 26.9 29.8 22.4 18.8 14.8 12.6 10.9 2.5 2.8 C 0.269 0.298 0.224 0.188 0.056832 0.53579 0.168919 55.01859 6.157522 563 Sha1984 31 33 27 27.5 31.4 23.6 19.2 15.6 14.4 11.2 2.5 2.8 C 0.275 0.314 0.236 0.192 0.059396 0.675274 0.160256 56.72727 6.157522 564 Sha1984 31 34 27 24.8 29.6 21.4 18.6 14.7 12.8 10.6 2.5 2.8 C 0.248 0.296 0.214 0.186 0.048305 0.511696 0.170068 59.27419 6.157522 565 Sha1984 31 35 27 28 32.4 24.8 19.6 15.6 13.6 11.4 2.5 2.8 C 0.28 0.324 0.248 0.196 0.061575 0.693238 0.160256 55.71429 6.157522 566 Sha1984 31 36 27 31.8 34.6 27.4 20.8 16.8 14.6 12.2 2.5 2.8 C 0.318 0.346 0.274 0.208 0.079423 0.885399 0.14881 52.83019 6.157522 567 Sha1984 32 1 27 18.7 24.2 14.4 14.4 10.8 8.6 6.8 2.4 2.6 S 0.187 0.242 0.144 0.144 0.027465 0.182644 0.222222 57.75401 5.309292 568 Sha1984 32 2 27 18.2 23.6 16.1 13.6 10.6 8.4 6.2 2.4 2.6 S 0.182 0.236 0.161 0.136 0.026016 0.195585 0.226415 58.24176 5.309292 569 Sha1984 32 3 27 22.2 26.4 18.4 15.6 14.4 12.2 10.1 2.5 2.8 C 0.222 0.264 0.184 0.156 0.038708 0.366436 0.173611 64.86486 6.157522 570 Sha1984 32 4 27 17.1 23.2 15.4 13.4 11.5 9.4 7.2 2.4 2.6 S 0.171 0.232 0.154 0.134 0.022966 0.205048 0.208696 67.25146 5.309292 571 Sha1984 32 5 27 20.5 24.6 18.2 14.8 13.7 11.6 9.8 2.5 2.8 C 0.205 0.246 0.182 0.148 0.033006 0.326336 0.182482 66.82927 6.157522 572 Sha1984 32 6 27 31.5 34.4 28.4 24.2 16.8 14.8 12.2 2.5 2.8 C 0.315 0.344 0.284 0.242 0.077931 0.967736 0.14881 53.33333 6.157522 573 Sha1984 32 7 27 24 28.6 21.6 18.6 15.6 13.8 11.2 2.5 2.8 C 0.24 0.286 0.216 0.186 0.045239 0.547373 0.160256 65 6.157522 574 Sha1984 32 8 27 17 21.4 15.2 13.4 11.6 9.4 7.2 2.4 2.6 S 0.17 0.214 0.152 0.134 0.022698 0.192158 0.206897 68.23529 5.309292 575 Sha1984 32 9 27 16.4 18.8 14.2 12.8 10.8 8.8 6.4 2.4 2.6 S 0.164 0.188 0.142 0.128 0.021124 0.152495 0.222222 65.85366 5.309292 576 Sha1984 32 10 27 12.7 16.4 10.6 8.7 9.8 7.8 5.6 2.4 2.6 S 0.127 0.164 0.106 0.087 0.012668 0.081078 0.244898 77.16535 5.309292 577 Sha1984 32 11 27 23.8 27.6 19.8 15.9 14.8 12.6 10.4 2.5 2.8 C 0.238 0.276 0.198 0.159 0.044488 0.425979 0.168919 62.18487 6.157522 578 Sha1984 32 12 27 12.2 18.8 10.1 8.4 9.8 7.8 5.4 2.4 2.6 S 0.122 0.188 0.101 0.084 0.01169 0.084953 0.244898 80.32787 5.309292 579 Sha1984 32 13 27 11.2 15.8 9.1 8.2 9.8 7.4 5.2 2.4 2.6 S 0.112 0.158 0.091 0.082 0.009852 0.062781 0.244898 87.5 5.309292 580 Sha1984 32 14 27 18.7 23.8 16.4 13.7 10.7 8.6 6.6 2.5 2.8 C 0.187 0.238 0.164 0.137 0.027465 0.206007 0.233645 57.21925 6.157522 581 Sha1984 32 15 27 40 44.2 38.2 28.1 18.8 16.8 4.8 2.6 3.1 D 0.4 0.442 0.382 0.281 0.125664 1.886887 0.138298 47 7.547676 582 Sha1984 32 16 27 18.1 22.8 16.2 13.4 10.6 18.4 6.2 2.4 2.6 S 0.181 0.228 0.162 0.134 0.02573 0.421295 0.226415 58.56354 5.309292 583 Sha1984 32 17 27 24.5 28.6 20.4 18.1 14.8 12.8 10.6 2.5 2.8 C 0.245 0.286 0.204 0.181 0.047144 0.470855 0.168919 60.40816 6.157522 584 Sha1984 32 18 27 11.8 15.8 9.4 7.8 9.8 8.8 5.7 2.4 2.6 S 0.118 0.158 0.094 0.078 0.010936 0.076478 0.244898 83.05085 5.309292 585 Sha1984 32 19 27 25.1 28.9 21.2 16.4 14.8 12.6 10.8 2.5 2.8 C 0.251 0.289 0.212 0.164 0.049481 0.478626 0.168919 58.96414 6.157522 586 Sha1984 32 20 27 27.3 31.2 24.3 21.4 14.8 12.8 10.9 2.5 2.8 C 0.273 0.312 0.243 0.214 0.058535 0.635584 0.168919 54.21245 6.157522 587 Sha1984 32 21 27 15.1 17.8 12.4 10.2 11.6 9.4 7.1 2.4 2.6 S 0.151 0.178 0.124 0.102 0.017908 0.127466 0.206897 76.82119 5.309292 588 Sha1984 32 22 27 10.5 14.2 8.3 6.8 9.8 7.8 5.1 2.4 2.6 S 0.105 0.142 0.083 0.068 0.008659 0.053444 0.244898 93.33333 5.309292 162 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 589 Sha1984 32 23 27 31.7 34.6 26.8 24.6 16.4 14.4 12.2 2.5 2.8 C 0.317 0.346 0.268 0.246 0.078924 0.88127 0.152439 51.73502 6.157522 590 Sha1984 32 24 27 28.7 32.6 24.6 20.7 15.6 13.6 11.4 2.5 2.8 C 0.287 0.326 0.246 0.207 0.064692 0.696409 0.160256 54.3554 6.157522 591 Sha1984 32 25 27 26.9 28.8 22.6 18.9 13.8 11.7 9.8 2.5 2.8 C 0.269 0.288 0.226 0.189 0.056832 0.494636 0.181159 51.30112 6.157522 592 Sha1984 32 26 27 40.2 44.4 28.6 26.8 18.8 16.8 14.8 2.6 3.1 D 0.402 0.444 0.286 0.268 0.126923 1.310989 0.138298 46.76617 7.547676 593 Sha1984 32 27 27 34.7 38.4 28.8 22.4 16.9 14.9 12.8 2.6 3.1 D 0.347 0.384 0.288 0.224 0.094569 1.03256 0.153846 48.70317 7.547676 594 J4-1990 33 1 21 28.4 32.4 25.2 16.1 10.1 9.8 8.4 2.6 2.8 C 0.284 0.324 0.252 0.161 0.063347 0.493773 0.257426 35.56338 6.157522 595 J4-1990 33 2 21 27.8 29.4 24.1 15.8 12.4 10.8 9.4 2.6 2.4 D 0.278 0.294 0.241 0.158 0.060699 0.485928 0.209677 44.60432 4.523893 596 J4-1990 33 3 21 26.7 28.6 22.8 14.9 13.6 11.1 9.6 2.7 3.3 D 0.267 0.286 0.228 0.149 0.05599 0.453234 0.198529 50.93633 8.552986 597 J4-1990 33 4 21 30.7 33.2 27.8 19.4 13.9 11.4 9.8 2.6 3.4 D 0.307 0.332 0.278 0.194 0.074023 0.681955 0.18705 45.27687 9.079203 598 J4-1990 33 5 21 20.5 24.1 18.4 14.1 10.1 9.9 8.7 2.5 2.9 C 0.205 0.241 0.184 0.141 0.033006 0.276528 0.247525 49.26829 6.605199 599 J4-1990 33 6 21 29.9 32.3 24.9 15.6 12.2 10.4 8.6 2.5 2.9 C 0.299 0.323 0.249 0.156 0.070215 0.512781 0.204918 40.80268 6.605199 600 J4-1990 33 7 21 28.5 31.4 23.9 16 10.4 9.9 10.2 2.6 2.8 C 0.285 0.314 0.239 0.16 0.063794 0.45704 0.25 36.49123 6.157522 601 J4-1990 33 8 21 23.8 27.4 21.4 12.9 10.8 9.8 9.1 2.6 2.9 C 0.238 0.274 0.214 0.129 0.044488 0.352648 0.240741 45.37815 6.605199 602 J4-1990 33 9 21 21.8 24.6 19.1 12.1 10.4 9.9 8.8 2.4 2.6 C 0.218 0.246 0.191 0.121 0.037325 0.2865 0.230769 47.70642 5.309292 603 J4-1990 33 10 21 24.8 27.3 21.3 13.1 10.9 10.1 9.4 2.6 2.8 C 0.248 0.273 0.213 0.131 0.048305 0.361149 0.238532 43.95161 6.157522 604 J4-1990 33 11 21 23.6 26.9 20.4 12.7 9.9 9.1 8.6 2.4 2.6 I 0.236 0.269 0.204 0.127 0.043744 0.303698 0.242424 41.94915 5.309292 605 J4-1990 33 12 21 22.5 25.8 19.5 11.8 10.8 10.4 9.3 2.6 2.9 C 0.225 0.258 0.195 0.118 0.039761 0.316635 0.240741 48 6.605199 606 J4-1990 33 13 21 24.2 27.4 21.6 12.9 10.4 9.2 8.1 2.5 2.9 C 0.242 0.274 0.216 0.129 0.045996 0.3352 0.240385 42.97521 6.605199 607 J4-1990 33 14 21 26 29.2 23.3 14.5 10.5 9.4 8.4 2.5 2.9 C 0.26 0.292 0.233 0.145 0.053093 0.397985 0.238095 40.38462 6.605199 608 J4-1990 33 15 21 23.6 27.1 20.4 14.2 10.3 9.8 8.8 2.5 2.8 C 0.236 0.271 0.204 0.142 0.043744 0.333621 0.242718 43.64407 6.157522 609 J4-1990 33 16 21 29.5 31.8 25.8 16.1 10.4 9.6 9.3 2.5 2.6 I 0.295 0.318 0.258 0.161 0.068349 0.494237 0.240385 35.25424 5.309292 610 J4-1990 33 17 21 17.8 19.9 14.2 11.1 8.4 7.8 6.9 2.4 2.5 S 0.178 0.199 0.142 0.111 0.024885 0.135364 0.285714 47.19101 4.908739 611 J4-1990 33 18 21 31.8 34.1 28.9 17.6 13.4 11.4 10.2 2.8 3.4 D 0.318 0.341 0.289 0.176 0.079423 0.718284 0.208955 42.13836 9.079203 612 J4-1990 33 19 21 30.6 33.8 27.8 17.1 10.9 10.4 9.8 2.6 2.9 C 0.306 0.338 0.278 0.171 0.073542 0.616179 0.238532 35.62092 6.605199 613 J4-1990 33 20 21 22.7 25.1 19.1 12.1 9.5 8.9 9.1 2.4 2.6 I 0.227 0.251 0.191 0.121 0.040471 0.260456 0.252632 41.85022 5.309292 614 J4-1990 33 21 21 24 26.3 20.4 13.4 9.5 8.4 6.4 2.4 2.6 I 0.24 0.263 0.204 0.134 0.045239 0.278836 0.252632 39.58333 5.309292 615 J4-1990 34 1 21 19.5 21.6 17.2 11.8 9.1 8.4 7.2 2.4 2.6 I 0.195 0.216 0.172 0.118 0.029865 0.196728 0.263736 46.66667 5.309292 616 J4-1990 34 2 21 13.3 21.4 16.4 10.9 10.4 8.9 6.9 2.5 2.9 C 0.133 0.214 0.164 0.109 0.013893 0.19253 0.240385 78.19549 6.605199 163 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 617 J4-1990 34 3 21 27.8 29.9 25.1 14.2 10.9 9.2 8.4 2.6 2.9 C 0.278 0.299 0.251 0.142 0.060699 0.435429 0.238532 39.20863 6.605199 618 J4-1990 34 4 21 21.8 24.1 19.6 12.6 8.9 8.4 7.7 2.4 2.6 I 0.218 0.241 0.196 0.126 0.037325 0.250282 0.269663 40.82569 5.309292 619 J4-1990 34 5 21 24.5 26.4 22.1 13.8 10.2 9.4 8.3 2.5 2.9 C 0.245 0.264 0.221 0.138 0.047144 0.349578 0.245098 41.63265 6.605199 620 J4-1990 34 6 21 19.5 22.1 16.8 11.6 8.9 8.5 7.8 2.5 2.6 I 0.195 0.221 0.168 0.116 0.029865 0.194928 0.280899 45.64103 5.309292 621 J4-1990 34 7 21 24.3 26.3 21.4 12.8 10.1 9.6 8.2 2.6 2.9 C 0.243 0.263 0.214 0.128 0.046377 0.337705 0.257426 41.56379 6.605199 622 J4-1990 34 8 21 27.5 29.8 25.4 13.9 11.9 10.4 8.5 2.9 3.4 D 0.275 0.298 0.254 0.139 0.059396 0.498514 0.243697 43.27273 9.079203 623 J4-1990 34 9 21 18.5 22.1 16.2 11.4 10.6 8.8 7.2 2.5 2.9 C 0.185 0.221 0.162 0.114 0.02688 0.192155 0.235849 57.2973 6.605199 624 J4-1990 34 10 21 18.6 21.9 16.1 11.1 10.4 8.9 6.4 2.6 2.9 C 0.186 0.219 0.161 0.111 0.027172 0.191022 0.25 55.91398 6.605199 625 J4-1990 34 11 21 22.6 25.1 20.1 12.2 10.1 8.8 7.2 2.6 2.9 C 0.226 0.251 0.201 0.122 0.040115 0.275872 0.257426 44.69027 6.605199 626 J4-1990 34 12 21 18 21.9 15.9 11 9.9 8.2 6.8 2.7 2.9 C 0.18 0.219 0.159 0.11 0.025447 0.173012 0.272727 55 6.605199 627 J4-1990 34 13 21 17.2 20.6 14.4 9.6 8.4 7.9 7.1 2.4 2.6 I 0.172 0.206 0.144 0.096 0.023235 0.139187 0.285714 48.83721 5.309292 628 J4-1990 34 14 21 17.5 21.2 14.5 9.8 8.2 7.6 7.3 2.4 2.6 I 0.175 0.212 0.145 0.098 0.024053 0.137932 0.292683 46.85714 5.309292 629 J4-1990 34 15 21 28.7 31.1 26.4 14.1 11.4 10.9 9.2 2.9 3.4 D 0.287 0.311 0.264 0.141 0.064692 0.564139 0.254386 39.72125 9.079203 630 J4-1990 34 16 21 21.5 24.2 19.1 12.4 10 8.9 7.1 2.5 2.9 C 0.215 0.242 0.191 0.124 0.036305 0.256143 0.25 46.51163 6.605199 631 J4-1990 34 17 21 25.7 29.9 23.4 13.5 10.9 10.4 8.4 2.6 2.8 C 0.257 0.299 0.234 0.135 0.051875 0.444687 0.238532 42.41245 6.157522 632 J4-1990 34 18 21 20.8 22.8 18.6 11.9 9.9 8.1 7.8 2.5 2.9 C 0.208 0.228 0.186 0.119 0.033979 0.21686 0.252525 47.59615 6.605199 633 J4-1990 34 19 21 22.5 25.2 20.1 12.1 11.4 10.6 9.4 2.6 2.9 D 0.225 0.252 0.201 0.121 0.039761 0.332661 0.22807 50.66667 6.605199 634 J4-1990 34 20 21 30.8 32.9 28.7 14.8 12.5 11.4 10.6 2.9 3.4 D 0.308 0.329 0.287 0.148 0.074506 0.685872 0.232 40.58442 9.079203 635 J4-1990 34 21 21 18.7 21.5 15.6 11.1 9.2 8.4 7.2 2.4 2.6 I 0.187 0.215 0.156 0.111 0.027465 0.17141 0.26087 49.19786 5.309292 636 J4-1990 34 22 21 17.5 20.6 14.4 9.8 9.4 8.6 6.8 2.4 2.6 I 0.175 0.206 0.144 0.098 0.024053 0.151957 0.255319 53.71429 5.309292 637 J4-1990 35 1 21 39.4 41.2 34.8 14.8 13.4 11.6 10.4 2.9 3.2 D 0.394 0.412 0.348 0.148 0.121922 1.02656 0.216418 34.01015 8.042477 638 J4-1990 35 2 21 31.8 33.4 29.2 13.4 11.9 10.8 7.2 2.8 3.4 D 0.318 0.334 0.292 0.134 0.079423 0.66525 0.235294 37.42138 9.079203 639 J4-1990 35 3 21 26.7 24.6 24.7 12.5 11.4 10.4 6.8 2.9 3.1 D 0.267 0.246 0.247 0.125 0.05599 0.435875 0.254386 42.69663 7.547676 640 J4-1990 35 4 21 18.8 21.4 16.4 11.8 8.6 7.2 5.7 2.4 2.6 I 0.188 0.214 0.164 0.118 0.027759 0.15768 0.27907 45.74468 5.309292 641 J4-1990 35 5 21 20.2 23.5 19.4 11.9 9.2 8.4 6.1 2.5 2.9 C 0.202 0.235 0.194 0.119 0.032047 0.241826 0.271739 45.54455 6.605199 642 J4-1990 35 6 21 22.2 24.6 20.2 12 9.4 8.5 6.4 2.6 2.8 C 0.222 0.246 0.202 0.12 0.038708 0.264957 0.276596 42.34234 6.157522 643 J4-1990 35 7 21 24.5 26.2 21.3 12.1 9.7 8.6 6.6 2.9 3.3 D 0.245 0.262 0.213 0.121 0.047144 0.298051 0.298969 39.59184 8.552986 644 J4-1990 35 8 21 21 23.4 19.2 11.8 8.4 7.3 5.8 2.4 2.6 I 0.21 0.234 0.192 0.118 0.034636 0.206533 0.285714 40 5.309292 164 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 645 J4-1990 35 9 21 32.1 35.1 29.8 13.1 11.8 10.5 8.4 2.9 3.4 D 0.321 0.351 0.298 0.131 0.080928 0.681146 0.245763 36.76012 9.079203 646 J4-1990 35 10 21 17.8 20.6 15.1 10.2 8.4 7 5.4 2.4 2.6 I 0.178 0.206 0.151 0.102 0.024885 0.131987 0.285714 47.19101 5.309292 647 J4-1990 35 11 21 26.5 29.8 24.3 12.4 7.9 6.9 4.8 2.4 2.7 I 0.265 0.298 0.243 0.124 0.055155 0.30743 0.303797 29.81132 5.725553 648 J4-1990 35 12 21 22.5 25.1 20.1 11.8 10.1 9.1 7.8 2.5 2.9 C 0.225 0.251 0.201 0.118 0.039761 0.284133 0.247525 44.88889 6.605199 649 J4-1990 35 13 21 26 28 24.3 12.4 9.9 8.6 6.1 2.6 2.8 C 0.26 0.28 0.243 0.124 0.053093 0.371462 0.262626 38.07692 6.157522 650 J4-1990 35 14 21 27.2 29.8 25.1 12.6 10.1 8.9 6.4 2.5 2.9 C 0.272 0.298 0.251 0.126 0.058107 0.415539 0.247525 37.13235 6.605199 651 J4-1990 35 15 21 18 21.4 16.3 10.3 9.7 8.8 6.6 2.4 2.6 I 0.18 0.214 0.163 0.103 0.025447 0.187395 0.247423 53.88889 5.309292 652 J4-1990 35 16 21 38.8 40.2 35.6 14.9 11.8 10.6 9.8 2.8 3.4 D 0.388 0.402 0.356 0.149 0.118237 0.95844 0.237288 30.41237 9.079203 653 J4-1990 35 17 21 26.7 29.4 24.3 12.4 9.8 8.6 7.2 2.6 2.3 C 0.267 0.294 0.243 0.124 0.05599 0.380508 0.265306 36.70412 4.154756 654 J4-1990 35 18 21 11.5 14.1 9.4 8.3 7.5 5.4 3.4 2.4 2.6 S 0.115 0.141 0.094 0.083 0.010387 0.043906 0.32 65.21739 5.309292 655 J4-1990 35 19 21 26 28.9 24.2 12.1 9.9 8.4 6.9 2.5 2.9 C 0.26 0.289 0.242 0.121 0.053093 0.365513 0.252525 38.07692 6.605199 656 J4-1990 35 20 21 25.5 28.1 23.4 11.8 9.8 8.8 7.4 2.5 2.8 C 0.255 0.281 0.234 0.118 0.051071 0.359293 0.255102 38.43137 6.157522 657 J4-1990 35 21 21 15.7 17.6 13.8 9.4 8.9 7.2 6 2.4 2.8 S 0.157 0.176 0.138 0.094 0.019359 0.109316 0.269663 56.6879 6.157522 658 J4-1990 35 22 21 27.5 29.8 25.4 12 9.7 8.9 7.8 2.5 2.9 C 0.275 0.298 0.254 0.12 0.059396 0.42088 0.257732 35.27273 6.605199 659 J4-1990 35 23 21 26.7 23.7 24.6 12 9.8 8.4 6.9 2.4 2.6 C 0.267 0.237 0.246 0.12 0.05599 0.343758 0.244898 36.70412 5.309292 660 J4-1990 36 1 21 25.2 27.4 23.6 13.8 10.2 8.6 6.2 2.6 3 C 0.252 0.274 0.236 0.138 0.049876 0.356751 0.254902 40.47619 7.068583 661 J4-1990 36 2 21 40 42.3 38.6 29.8 7.4 11.4 7.4 2.6 3.2 D 0.4 0.423 0.386 0.298 0.125664 1.288887 0.351351 18.5 8.042477 662 J4-1990 36 3 21 24.6 26.8 21.4 13.6 9.9 8.3 7.3 2.5 2.9 C 0.246 0.268 0.214 0.136 0.047529 0.297153 0.252525 40.2439 6.605199 663 J4-1990 36 4 21 29.5 32.1 26.8 14.1 10.1 9.9 8.1 2.6 3 C 0.295 0.321 0.268 0.141 0.068349 0.531604 0.257426 34.23729 7.068583 664 J4-1990 36 5 21 19 22.4 16.8 11.2 8.5 6.4 5.8 2.4 2.6 I 0.19 0.224 0.168 0.112 0.028353 0.147124 0.282353 44.73684 5.309292 665 J4-1990 36 6 21 25.5 27.6 22.9 12.8 10.4 9.6 8.4 2.6 2.9 C 0.255 0.276 0.229 0.128 0.051071 0.379912 0.25 40.78431 6.605199 666 J4-1990 36 7 21 17 19.8 15.2 10.4 8.6 7.4 6.4 2.4 2.6 I 0.17 0.198 0.152 0.104 0.022698 0.137972 0.27907 50.58824 5.309292 667 J4-1990 36 8 21 25 26.9 23.4 8.6 12.9 11.1 9.2 2.6 3.4 D 0.25 0.269 0.234 0.086 0.049087 0.434125 0.20155 51.6 9.079203 668 J4-1990 36 9 21 21.2 23.8 18.8 12.9 10.3 9.8 8.1 2.5 2.9 C 0.212 0.238 0.188 0.129 0.035299 0.275371 0.242718 48.58491 6.605199 669 J4-1990 36 10 21 29 32.1 26.7 10.3 12.8 10.4 8.9 2.7 3.3 D 0.29 0.321 0.267 0.103 0.066052 0.542917 0.210938 44.13793 8.552986 670 J4-1990 36 11 21 32.6 36.4 29.8 12.8 13.4 11.9 10.4 2.6 3.6 D 0.326 0.364 0.298 0.128 0.083469 0.785234 0.19403 41.10429 10.17876 671 J4-1990 36 12 21 27.5 30.4 25.1 13.4 10.9 10.2 9.1 2.6 2.9 C 0.275 0.304 0.251 0.134 0.059396 0.483836 0.238532 39.63636 6.605199 672 J4-1990 36 13 21 24.2 29.3 21.9 10.9 10.9 10.2 9.4 2.4 2.8 C 0.242 0.293 0.219 0.109 0.045996 0.386633 0.220183 45.04132 6.157522 165 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 673 J4-1990 36 14 21 31.5 33.4 29.4 12.9 12.9 11.8 10.5 2.9 3.4 D 0.315 0.334 0.294 0.129 0.077931 0.732057 0.224806 40.95238 9.079203 674 J4-1990 36 15 21 23.5 27.1 20.9 10.4 10.4 9.8 8.4 2.4 2.8 C 0.235 0.271 0.209 0.104 0.043374 0.332225 0.230769 44.25532 6.157522 675 J4-1990 36 16 21 27.5 31.2 25.2 10.6 10.6 9.9 8.3 2.4 2.9 C 0.275 0.312 0.252 0.106 0.059396 0.469891 0.226415 38.54545 6.605199 676 J4-1990 36 17 21 27.5 30.6 25.4 10.2 10.2 9.6 8.6 2.6 2.8 C 0.275 0.306 0.254 0.102 0.059396 0.455033 0.254902 37.09091 6.157522 677 J4-1990 36 18 21 13.5 17.8 11.1 3.6 8.6 7.2 5.4 2.4 2.5 I 0.135 0.178 0.111 0.036 0.014314 0.077532 0.27907 63.7037 4.908739 678 J4-1990 36 19 21 16.8 19.4 13.9 8.2 8.2 7.4 6.3 2.4 2.6 I 0.168 0.194 0.139 0.082 0.022167 0.117831 0.292683 48.80952 5.309292 679 J4-1990 36 20 21 19.5 21.5 16.9 11.9 11.9 10.6 9.2 2.8 3.5 D 0.195 0.215 0.169 0.119 0.029865 0.242306 0.235294 61.02564 9.621128 680 J4-1990 36 21 21 19 20.7 13.6 8.1 8.1 7.6 6.4 2.4 2.6 I 0.19 0.207 0.136 0.081 0.028353 0.122757 0.296296 42.63158 5.309292 681 J4-1990 36 22 21 40.5 43.3 38.2 13.6 13.6 12.8 11.3 2.9 3.4 D 0.405 0.433 0.382 0.136 0.128825 1.323123 0.213235 33.58025 9.079203 682 J4-1990 36 23 21 26.2 29.4 24.7 12.9 12.9 11.6 10.4 2.9 3.6 D 0.262 0.294 0.247 0.129 0.053913 0.527069 0.224806 49.23664 10.17876 683 J4-1990 36 24 21 27.5 30.1 25.2 10.8 10.8 10.1 9.2 2.6 2.9 C 0.275 0.301 0.252 0.108 0.059396 0.471034 0.240741 39.27273 6.605199 684 J4-1990 36 25 21 20.2 23.4 17.3 10.6 10.6 9.8 8.4 2.7 2.8 C 0.202 0.234 0.173 0.106 0.032047 0.238229 0.254717 52.47525 6.157522 685 J4-1990 36 26 21 23.6 27.1 20.9 10.4 10.4 8.8 7.4 2.6 2.8 C 0.236 0.271 0.209 0.104 0.043744 0.298325 0.25 44.0678 6.157522 686 J4-1990 36 27 21 23 26.8 21.1 10.2 10.2 8.4 6.9 2.6 2.9 S 0.23 0.268 0.211 0.102 0.041548 0.286228 0.254902 44.34783 6.605199 687 J4-1990 37 1 21 30 32.1 28.6 18.1 10.4 9.2 5.9 2.6 2.9 C 0.3 0.321 0.286 0.181 0.070686 0.557563 0.25 34.66667 6.605199 688 J4-1990 37 2 21 12 14.8 10.2 9.1 7.4 5.3 4.2 2.5 2.6 S 0.12 0.148 0.102 0.091 0.01131 0.049813 0.337838 61.66667 5.309292 689 J4-1990 37 3 21 16 19.1 14.3 10.2 8.1 7.2 5.6 2.4 2.7 I 0.16 0.191 0.143 0.102 0.020106 0.121279 0.296296 50.625 5.725553 690 J4-1990 37 4 21 23.3 26.6 21.4 11.8 8.4 7.6 5.4 2.4 2.8 I 0.233 0.266 0.214 0.118 0.042638 0.266481 0.285714 36.0515 6.157522 691 J4-1990 37 5 21 15.5 18.1 13.4 10.2 8.6 6.4 4.6 2.4 2.8 I 0.155 0.181 0.134 0.102 0.018869 0.096333 0.27907 55.48387 6.157522 692 J4-1990 37 6 21 18.3 21.2 16.2 11.2 8.4 7.8 4.5 2.4 2.9 I 0.183 0.212 0.162 0.112 0.026302 0.165879 0.285714 45.90164 6.605199 693 J4-1990 37 7 21 11.5 14.6 9.4 8.1 8.2 6.3 4.1 2.4 2.8 I 0.115 0.146 0.094 0.081 0.010387 0.052136 0.292683 71.30435 6.157522 694 J4-1990 37 8 21 19.2 22.3 16.8 11.1 7.6 5.4 4.6 2.3 2.9 S 0.192 0.223 0.168 0.111 0.028953 0.123662 0.302632 39.58333 6.605199 695 J4-1990 37 9 21 32.5 36.1 29.1 16.9 11.9 10.4 8.9 2.9 3.4 D 0.325 0.361 0.291 0.169 0.082958 0.677419 0.243697 36.61538 9.079203 696 J4-1990 37 10 21 33.8 37.2 30.3 19.4 10.2 9.8 8.6 2.8 3.1 C 0.338 0.372 0.303 0.194 0.089727 0.696898 0.27451 30.17751 7.547676 697 J4-1990 37 11 21 23.5 26.1 21.4 11.6 10.4 9.9 7.8 2.8 3 C 0.235 0.261 0.214 0.116 0.043374 0.343106 0.269231 44.25532 7.068583 698 J4-1990 37 12 21 14.5 17.4 11.9 9.4 7.9 7 6.2 2.4 2.6 S 0.145 0.174 0.119 0.094 0.016513 0.087741 0.303797 54.48276 5.309292 699 J4-1990 37 13 21 12.8 15.6 10.4 8.6 7.4 5.6 4.9 2.5 2.7 S 0.128 0.156 0.104 0.086 0.012868 0.054975 0.337838 57.8125 5.725553 700 J4-1990 37 14 21 19.2 21.4 16.4 11.7 8.1 7.4 5.3 2.4 2.6 I 0.192 0.214 0.164 0.117 0.028953 0.161833 0.296296 42.1875 5.309292 166 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 701 J4-1990 37 15 21 39.2 42.1 35.9 19.8 12.8 11.8 10.2 2.9 3.4 D 0.392 0.421 0.359 0.198 0.120687 1.130611 0.226563 32.65306 9.079203 702 J4-1990 37 16 21 30.2 34.1 28.8 15.1 12.6 11.4 9.4 2.8 3.5 D 0.302 0.341 0.288 0.151 0.071631 0.702641 0.222222 41.72185 9.621128 703 J4-1990 37 17 21 20 22.4 19.2 12.2 8.4 7.1 6.8 2.6 2.8 I 0.2 0.224 0.192 0.122 0.031416 0.19751 0.309524 42 6.157522 704 J4-1990 37 18 21 14 16.4 12.4 9.6 8.1 7.4 6.4 2.4 2.7 I 0.14 0.164 0.124 0.096 0.015394 0.094556 0.296296 57.85714 5.725553 705 J4-1990 37 19 21 24.5 26.8 21.3 11.9 10.1 9.4 7.2 2.9 3 C 0.245 0.268 0.213 0.119 0.047144 0.329099 0.287129 41.22449 7.068583 706 J4-1990 37 20 21 33.8 36.4 29.9 12.4 12.4 11.6 9.4 2.9 3.6 D 0.338 0.364 0.299 0.124 0.089727 0.767533 0.233871 36.68639 10.17876 707 J4-1990 37 21 21 19.5 21.8 17.4 11 8.5 7.2 6.2 2.5 2.9 I 0.195 0.218 0.174 0.11 0.029865 0.170332 0.294118 43.58974 6.605199 708 J4-1990 37 22 21 16 18.4 14.8 11.1 8.1 6.9 5.9 2.4 2.8 I 0.16 0.184 0.148 0.111 0.020106 0.120843 0.296296 50.625 6.157522 709 J4-1990 37 23 21 11.5 13.2 9.4 8.4 7.3 6.1 5.2 2.4 2.6 S 0.115 0.132 0.094 0.084 0.010387 0.047769 0.328767 63.47826 5.309292 710 J4-1990 37 24 21 12.5 15.3 10.2 8.6 7.4 6.3 5.4 2.5 2.7 S 0.125 0.153 0.102 0.086 0.012272 0.059723 0.337838 59.2 5.725553 711 J4-1990 37 25 21 24 26.8 20.4 11.8 10.1 9.2 7.1 2.6 2.8 C 0.24 0.268 0.204 0.118 0.045239 0.303733 0.257426 42.08333 6.157522 712 J4-1990 37 26 21 28.4 32.2 24.2 11.9 10.9 9.8 8.9 2.7 2.9 C 0.284 0.322 0.242 0.119 0.063347 0.451681 0.247706 38.38028 6.605199 713 J4-1990 37 27 21 22.2 25.6 19.2 10.4 10.8 9.9 8.4 2.8 2.9 C 0.222 0.256 0.192 0.104 0.038708 0.290034 0.259259 48.64865 6.605199 714 J4-1990 37 28 21 14.8 17.4 11.9 9.4 8.6 7.5 6.3 2.4 2.9 I 0.148 0.174 0.119 0.094 0.017203 0.094008 0.27907 58.10811 6.605199 715 J4-1990 37 29 21 19.8 21.8 16.8 10.4 10.4 9.9 8.8 2.8 3 C 0.198 0.218 0.168 0.104 0.030791 0.221906 0.269231 52.52525 7.068583 716 J4-1990 37 30 21 12.2 16.7 10.1 9.2 8.3 6.5 5.4 2.9 2.6 S 0.122 0.167 0.101 0.092 0.01169 0.065649 0.349398 68.03279 5.309292 717 J4-1990 37 31 21 15.2 17.4 13.2 10.2 8.4 7.1 5.2 2.5 2.8 S 0.152 0.174 0.132 0.102 0.018146 0.102582 0.297619 55.26316 6.157522 718 J4-1990 37 32 21 15.5 17.8 12.9 9.2 8.4 7 5.4 2.6 2.9 S 0.155 0.178 0.129 0.092 0.018869 0.09778 0.309524 54.19355 6.605199 719 J4-1990 37 33 21 25.5 27.6 21.4 11.4 10.1 8.4 6.9 2.6 3 C 0.255 0.276 0.214 0.114 0.051071 0.299471 0.257426 39.60784 7.068583 720 J4-1990 37 34 21 23.5 26.4 20.6 15.2 10.2 8.2 6.5 2.7 3.1 C 0.235 0.264 0.206 0.152 0.043374 0.281809 0.264706 43.40426 7.547676 721 J4-1990 37 35 21 17 21.2 15.6 11.4 9.9 8 5.2 2.6 3 C 0.17 0.212 0.156 0.114 0.022698 0.162613 0.262626 58.23529 7.068583 722 J4-1990 37 36 21 17.2 20.6 15.2 11.6 9.8 8.1 5.3 2.7 2.9 C 0.172 0.206 0.152 0.116 0.023235 0.157249 0.27551 56.97674 6.605199 723 J4-1990 37 37 21 18.8 21.4 16.4 12.1 10.1 8.3 6.1 2.6 3.1 C 0.188 0.214 0.164 0.121 0.027759 0.182549 0.257426 53.7234 7.547676 724 J4-1990 37 38 21 33.3 36.4 30.6 18.1 12.4 10.6 9.4 2.9 3.4 D 0.333 0.364 0.306 0.181 0.087092 0.748994 0.233871 37.23724 9.079203 725 J4-1990 37 39 21 19.5 22.2 17.2 11.9 9.8 8.8 6.5 2.4 2.9 C 0.195 0.222 0.172 0.119 0.029865 0.209397 0.244898 50.25641 6.605199 726 J4-1990 37 40 21 24.5 26.9 21.9 12.2 9.9 8.7 7.4 2.5 2.9 C 0.245 0.269 0.219 0.122 0.047144 0.317834 0.252525 40.40816 6.605199 727 J4-1990 37 41 21 31.2 35.6 29.8 16.9 11.9 10.8 8.9 2.8 3.6 D 0.312 0.356 0.298 0.169 0.076454 0.721721 0.235294 38.14103 10.17876 728 J4-1990 37 42 21 26.5 28.4 24.2 17.4 10.2 9.1 7.2 2.9 3.1 C 0.265 0.284 0.242 0.174 0.055155 0.411184 0.284314 38.49057 7.547676 167 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 729 J4-1990 37 43 21 16.5 18.8 14.3 11.4 7.8 6.9 6.4 2.6 2.9 S 0.165 0.188 0.143 0.114 0.021382 0.11754 0.333333 47.27273 6.605199 730 J4-1990 38 1 21 26 29.2 24.3 14.1 10.1 8.2 5.8 2.6 3.1 C 0.26 0.292 0.243 0.141 0.053093 0.366388 0.257426 38.84615 7.547676 731 J4-1990 38 2 21 27.3 29.5 25.1 13.2 12.9 10.4 8.2 2.8 3.6 D 0.273 0.295 0.251 0.132 0.058535 0.48526 0.217054 47.25275 10.17876 732 J4-1990 38 3 21 28.5 30.2 24.9 14.3 10.4 9.6 7.2 2.9 3.1 C 0.285 0.302 0.249 0.143 0.063794 0.451958 0.278846 36.49123 7.547676 733 J4-1990 38 4 21 22.2 27.4 17.4 11.4 10.1 8.9 6.4 2.8 3.2 C 0.222 0.274 0.174 0.114 0.038708 0.243692 0.277228 45.4955 8.042477 734 J4-1990 38 5 21 16.8 19.5 14.2 10.4 8.9 6.4 5.1 2.6 2.9 I 0.168 0.195 0.142 0.104 0.022167 0.108487 0.292135 52.97619 6.605199 735 J4-1990 38 6 21 10 12.4 9.1 8.2 7.9 5.2 4.8 2.5 2.8 S 0.1 0.124 0.091 0.082 0.007854 0.03759 0.316456 79 6.157522 736 J4-1990 38 7 21 15.5 17.8 13.2 10.8 7.8 6.1 5.6 2.6 2.9 S 0.155 0.178 0.132 0.108 0.018869 0.090264 0.333333 50.32258 6.605199 737 J4-1990 38 8 21 20.6 22.4 17.9 13.1 10.1 8.9 6.8 2.8 2.9 C 0.206 0.224 0.179 0.131 0.033329 0.22776 0.277228 49.02913 6.605199 738 J4-1990 38 9 21 20.4 22.5 18.4 12.2 9.9 8.8 6.8 2.7 3.1 C 0.204 0.225 0.184 0.122 0.032685 0.231458 0.272727 48.52941 7.547676 739 J4-1990 38 10 21 23.5 25.2 20.2 14.1 10.2 8.9 7.4 2.6 3.9 C 0.235 0.252 0.202 0.141 0.043374 0.287292 0.254902 43.40426 11.94591 740 J4-1990 38 11 21 22.5 25 19.8 13.8 10.2 8.8 7.4 2.4 2.8 C 0.225 0.25 0.198 0.138 0.039761 0.274571 0.235294 45.33333 6.157522 741 J4-1990 38 12 21 23.7 25.1 21.2 12.4 10.1 9.1 7.2 2.6 3.1 C 0.237 0.251 0.212 0.124 0.044115 0.307509 0.257426 42.61603 7.547676 742 J4-1990 38 13 21 21.5 24.8 18.9 12.1 9.7 8.9 6.8 2.8 3 C 0.215 0.248 0.189 0.121 0.036305 0.25517 0.28866 45.11628 7.068583 743 J4-1990 38 14 21 15 17.3 13.4 9.4 7.3 6.4 5.4 2.8 2.8 S 0.15 0.173 0.134 0.094 0.017671 0.092647 0.383562 48.66667 6.157522 744 J4-1990 38 15 21 12.5 15.4 10.1 8.1 7.1 6.3 5.8 2.7 2.6 S 0.125 0.154 0.101 0.081 0.012272 0.058618 0.380282 56.8 5.309292 745 J4-1990 38 16 21 18.5 21.2 16.2 11.2 9.6 7.8 6.2 2.5 2.6 I 0.185 0.212 0.162 0.112 0.02688 0.165879 0.260417 51.89189 5.309292 746 J4-1990 38 17 21 39.2 42.1 36.4 17.5 13.1 11.9 10.9 2.9 3.4 D 0.392 0.421 0.364 0.175 0.120687 1.149354 0.221374 33.41837 9.079203 747 J4-1990 38 18 21 18.8 21.3 16.5 10.8 9.2 7.9 5.4 2.4 2.7 I 0.188 0.213 0.165 0.108 0.027759 0.171593 0.26087 48.93617 5.725553 748 J4-1990 38 19 21 15.2 16.9 13.5 9.6 9.1 7.8 4.2 2.4 2.8 I 0.152 0.169 0.135 0.096 0.018146 0.113003 0.263736 59.86842 6.157522 749 J4-1990 38 20 21 15.2 17.4 13.4 9.9 9.6 7.7 5.4 2.5 2.9 I 0.152 0.174 0.134 0.099 0.018146 0.112788 0.260417 63.15789 6.605199 750 J4-1990 38 21 21 20.4 22.6 18.4 12.1 9.8 8.1 6.2 2.6 2.8 I 0.204 0.226 0.184 0.121 0.032685 0.213267 0.265306 48.03922 6.157522 751 J4-1990 38 22 21 30.5 32.4 27.8 14.1 12.9 10.9 9.7 2.9 3.4 D 0.305 0.324 0.278 0.141 0.073062 0.619224 0.224806 42.29508 9.079203 752 J4-1990 38 23 21 31.7 32.2 29.4 12.4 13.4 11.2 10.2 2.8 3.5 D 0.317 0.322 0.294 0.124 0.078924 0.681438 0.208955 42.27129 9.621128 753 J4-1990 38 24 21 25.6 27.4 22.6 11.6 10.8 9.8 8.2 2.7 2.9 C 0.256 0.274 0.226 0.116 0.051472 0.375655 0.25 42.1875 6.605199 754 J4-1990 38 25 21 23.5 25.4 21.4 10.1 10.4 9.6 7.9 2.8 2.9 C 0.235 0.254 0.214 0.101 0.043374 0.324088 0.269231 44.25532 6.605199 755 J4-1990 38 26 21 35.5 37.3 31.2 19.3 13.2 11.8 10.4 2.9 3.4 D 0.355 0.373 0.312 0.193 0.09898 0.873873 0.219697 37.1831 9.079203 756 J4-1990 38 27 21 23 25.3 19.8 11.4 11.1 9.2 7.9 2.6 3.1 C 0.23 0.253 0.198 0.114 0.041548 0.281585 0.234234 48.26087 7.547676 168 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 757 J4-1990 38 28 21 28.2 31.4 24.8 14.1 10.8 9.8 8.4 2.7 3 C 0.282 0.314 0.248 0.141 0.062458 0.467578 0.25 38.29787 7.068583 758 J4-1990 38 29 21 29 32.2 25.9 13.2 10.9 10.1 8.7 2.6 3.1 C 0.29 0.322 0.259 0.132 0.066052 0.514863 0.238532 37.58621 7.547676 759 J4-1990 38 30 21 23.5 27.1 20.4 13.6 10.4 9.8 7.8 2.9 3 C 0.235 0.271 0.204 0.136 0.043374 0.331481 0.278846 44.25532 7.068583 760 J4-1990 38 31 21 17.3 19.4 15.2 10.2 8.8 8 6.9 2.6 2.8 I 0.173 0.194 0.152 0.102 0.023506 0.147085 0.295455 50.86705 6.157522 761 J4-1990 39 1 21 24 26.4 22.1 11.6 10.6 9.4 8.2 2.8 3.1 C 0.24 0.264 0.221 0.116 0.045239 0.342702 0.264151 44.16667 7.547676 762 J4-1990 39 2 21 27.8 29.4 21.9 12.1 11.2 9.2 8.8 2.9 2.8 C 0.278 0.294 0.219 0.121 0.060699 0.352758 0.258929 40.28777 6.157522 763 J4-1990 39 3 21 28.2 31.2 23.8 15.1 11.4 10.4 8.9 2.9 3.2 C 0.282 0.312 0.238 0.151 0.062458 0.472011 0.254386 40.42553 8.042477 764 J4-1990 39 4 21 20.5 24.3 18.4 14.6 10.8 9.1 7.4 2.9 3.1 C 0.205 0.243 0.184 0.146 0.033006 0.257045 0.268519 52.68293 7.547676 765 J4-1990 39 5 21 10.2 12.6 8.9 7.2 7.8 7.2 5.2 2.6 2.8 S 0.102 0.126 0.089 0.072 0.008171 0.04971 0.333333 76.47059 6.157522 766 J4-1990 39 6 21 16.5 18.6 14.8 10.4 8.2 6.4 4.5 2.4 2.9 S 0.165 0.186 0.148 0.104 0.021382 0.111445 0.292683 49.69697 6.605199 767 J4-1990 39 7 21 13.8 17.4 12.2 10.9 7.6 7.1 5.2 2.5 2.8 S 0.138 0.174 0.122 0.109 0.014957 0.094512 0.328947 55.07246 6.157522 768 J4-1990 39 8 21 18.5 21.2 15.8 11.4 9.2 8.2 6.9 2.6 2.9 I 0.185 0.212 0.158 0.114 0.02688 0.169375 0.282609 49.72973 6.605199 769 J4-1990 39 9 21 19.2 21.8 16.9 12.1 9.4 8.4 7.2 2.5 2.8 I 0.192 0.218 0.169 0.121 0.028953 0.193972 0.265957 48.95833 6.157522 770 J4-1990 39 10 21 34.8 37.2 29.6 15.3 13.4 12.5 10.4 2.7 3.3 D 0.348 0.372 0.296 0.153 0.095115 0.838179 0.201493 38.50575 8.552986 771 J4-1990 39 11 21 27.8 31.1 25.4 13.1 12.9 11.9 9.9 2.6 3.4 D 0.278 0.311 0.254 0.131 0.060699 0.579383 0.20155 46.40288 9.079203 772 J4-1990 39 12 21 32.8 36.4 29.8 14.8 12.8 11.8 10.1 2.6 3.2 D 0.328 0.364 0.298 0.148 0.084496 0.787161 0.203125 39.02439 8.042477 773 J4-1990 39 13 21 10.2 12.6 9.6 7.4 7.8 6.4 4.2 2.4 2.9 S 0.102 0.126 0.096 0.074 0.008171 0.048771 0.307692 76.47059 6.605199 774 J4-1990 39 14 21 9.2 11.1 8.4 6.9 7.4 6.1 4.3 2.5 2.8 S 0.092 0.111 0.084 0.069 0.006648 0.036176 0.337838 80.43478 6.157522 775 J4-1990 39 15 21 11.2 12.9 10.3 6.9 7.4 6.2 4.5 2.4 2.9 S 0.112 0.129 0.103 0.069 0.009852 0.05181 0.324324 66.07143 6.605199 776 J4-1990 39 16 21 17.2 20.2 15.2 11.2 8.4 7.3 5.3 2.4 2.9 I 0.172 0.202 0.152 0.112 0.023235 0.139287 0.285714 48.83721 6.605199 777 J4-1990 39 17 21 14.6 17.8 12.7 9.2 7.3 6.1 6.1 2.6 2.3 S 0.146 0.178 0.127 0.092 0.016742 0.083573 0.356164 50 4.154756 778 J4-1990 39 18 21 22.3 24.5 26.8 12.4 11.9 10.8 9.4 2.8 3.1 C 0.223 0.245 0.268 0.124 0.039057 0.512751 0.235294 53.36323 7.547676 779 J4-1990 39 19 21 17.2 21.1 16.1 11.3 8.6 7.5 6.9 2.8 2.9 I 0.172 0.211 0.161 0.113 0.023235 0.158036 0.325581 50 6.605199 780 J4-1990 39 20 21 10.8 12.3 9.8 7.2 7.5 6.4 4.8 2.9 3 S 0.108 0.123 0.098 0.072 0.009161 0.049201 0.386667 69.44444 7.068583 781 J4-1990 39 21 21 9.5 11.5 8.4 6.4 7.2 6 4.9 2.7 2.9 S 0.095 0.115 0.084 0.064 0.007088 0.035771 0.375 75.78947 6.605199 782 J4-1990 39 22 21 15.5 18.1 13.4 10.2 6.9 5.9 4.8 2.6 2.8 S 0.155 0.181 0.134 0.102 0.018869 0.088807 0.376812 44.51613 6.157522 783 J4-1990 39 23 21 7.5 10.2 6.2 5.4 7.1 5.8 4.9 2.7 2.9 S 0.075 0.102 0.062 0.054 0.004418 0.021787 0.380282 94.66667 6.605199 784 J4-1990 39 24 21 38.2 42.3 31.4 14.4 14.2 13.4 11.4 2.9 3.5 D 0.382 0.423 0.314 0.144 0.114608 1.041995 0.204225 37.17277 9.621128 169 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 785 J4-1990 39 25 21 20.2 23.4 18.6 11.4 10.9 9.8 7.4 2.8 2.9 C 0.202 0.234 0.186 0.114 0.032047 0.264435 0.256881 53.9604 6.605199 786 J4-1990 39 26 21 20.5 24.1 18.4 11.1 10.6 9.2 7.8 2.7 2.8 C 0.205 0.241 0.184 0.111 0.033006 0.247872 0.254717 51.70732 6.157522 787 J4-1990 39 27 21 22 23.4 18.5 11 10.5 9.4 7.2 2.5 2.9 C 0.22 0.234 0.185 0.11 0.038013 0.250713 0.238095 47.72727 6.605199 788 J4-1990 39 28 21 23.5 26.1 21.2 12.4 10.8 9.8 8.1 2.6 2.9 C 0.235 0.261 0.212 0.124 0.043374 0.337731 0.240741 45.95745 6.605199 789 J4-1990 39 29 21 36.5 39.2 28.1 13.4 12.8 11.9 10.4 2.9 3.4 D 0.365 0.392 0.281 0.134 0.104635 0.759326 0.226563 35.06849 9.079203 790 J4-1990 39 30 21 21.2 23.8 18.4 10.4 11.2 9.9 8.4 2.6 3.1 C 0.212 0.238 0.184 0.104 0.035299 0.262919 0.232143 52.83019 7.547676 791 J4-1990 39 31 21 22.3 24.2 18.5 10.2 11.4 10.1 8.6 2.5 2.8 C 0.223 0.242 0.185 0.102 0.039057 0.272175 0.219298 51.12108 6.157522 792 J4-1990 39 32 21 19.6 21.4 17.8 11 10.8 9.8 8.1 2.9 3.1 C 0.196 0.214 0.178 0.11 0.030172 0.236849 0.268519 55.10204 7.547676 793 J4-1990 39 33 21 16 19.2 14.6 10.4 10.8 7.9 6.8 2.9 2.6 I 0.16 0.192 0.146 0.104 0.020106 0.137478 0.268519 67.5 5.309292 794 J4-1990 40 1 21 20.2 22.4 18.1 9.8 11.8 8.8 6.9 2.9 3.4 C 0.202 0.224 0.181 0.098 0.032047 0.219813 0.245763 58.41584 9.079203 795 J4-1990 40 2 21 21.8 24.1 16.8 9.6 11.6 8.4 7.3 2.8 3.3 C 0.218 0.241 0.168 0.096 0.037325 0.198133 0.241379 53.21101 8.552986 796 J4-1990 40 3 21 10.6 12.4 9.4 7.2 7.1 6 5.4 2.4 2.9 S 0.106 0.124 0.094 0.072 0.008825 0.043907 0.338028 66.98113 6.605199 797 J4-1990 40 4 21 13.5 16.2 9.8 9 9 6.8 6.2 2.6 2.9 I 0.135 0.162 0.098 0.09 0.014314 0.064765 0.288889 66.66667 6.605199 798 J4-1990 40 5 21 24.2 26.1 21.2 10.1 10.9 9.1 8.4 2.7 3.1 C 0.242 0.261 0.212 0.101 0.045996 0.307443 0.247706 45.04132 7.547676 799 J4-1990 40 6 21 37.8 39.2 25.4 11.4 13.1 11.4 10.2 3.2 3.6 D 0.378 0.392 0.254 0.114 0.112221 0.633797 0.244275 34.65608 10.17876 800 J4-1990 40 7 21 21 24.2 16.6 9.5 11.7 8.4 7.4 2.9 3.2 C 0.21 0.242 0.166 0.095 0.034636 0.195516 0.247863 55.71429 8.042477 801 J4-1990 40 8 21 19.5 22.1 18 9.6 9 6.6 5.8 2.8 2.9 I 0.195 0.221 0.18 0.096 0.029865 0.162124 0.311111 46.15385 6.605199 802 J4-1990 40 9 21 8.2 10.2 5.9 4.8 8.1 6 5.1 2.6 2.9 S 0.082 0.102 0.059 0.048 0.005281 0.020917 0.320988 98.78049 6.605199 803 J4-1990 40 10 21 25.5 28.2 21.4 13.2 10.8 9.4 8.5 2.6 3 C 0.255 0.282 0.214 0.132 0.051071 0.34469 0.240741 42.35294 7.068583 804 J4-1990 40 11 21 26.8 28.6 21.8 13.7 10.9 9.9 8.4 2.7 3.1 C 0.268 0.286 0.218 0.137 0.05641 0.37667 0.247706 40.67164 7.547676 805 J4-1990 40 12 21 15.5 17.2 13.2 9.1 8.8 7.4 5.9 2.9 3 S 0.155 0.172 0.132 0.091 0.018869 0.10419 0.329545 56.77419 7.068583 806 J4-1990 40 13 21 18.5 22 16.8 9.9 10.2 8.5 6.1 2.8 3.1 C 0.185 0.22 0.168 0.099 0.02688 0.190371 0.27451 55.13514 7.547676 807 J4-1990 40 14 21 16.8 18.8 14.2 11 10.4 8.8 5.8 2.9 3.2 C 0.168 0.188 0.142 0.11 0.022167 0.147561 0.278846 61.90476 8.042477 808 J4-1990 40 15 21 10.8 13.2 9.8 8.4 8.9 7.2 5.6 2.6 2.9 S 0.108 0.132 0.098 0.084 0.009161 0.059278 0.292135 82.40741 6.605199 809 J4-1990 40 16 21 19 21.1 17.4 12.6 9.1 7.9 5.9 2.7 3 I 0.19 0.211 0.174 0.126 0.028353 0.187692 0.296703 47.89474 7.068583 810 J4-1990 40 17 21 23.6 26.2 20.9 11.1 11.1 8.9 8.4 2.9 3.1 C 0.236 0.262 0.209 0.111 0.043744 0.29788 0.261261 47.0339 7.547676 811 J4-1990 40 18 21 32.7 38.1 25.4 12.1 12.4 10.3 10.4 3.1 3.4 D 0.327 0.381 0.254 0.121 0.083982 0.563395 0.25 37.92049 9.079203 812 J4-1990 40 19 21 36 38.4 26.2 12.4 13.4 10.1 9.9 2.9 3.4 D 0.36 0.384 0.262 0.124 0.101788 0.578291 0.216418 37.22222 9.079203 170 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 813 J4-1990 40 20 21 31.8 37.2 24.9 12.8 11.9 10.4 9.8 2.7 3.4 D 0.318 0.372 0.249 0.128 0.079423 0.548316 0.226891 37.42138 9.079203 814 J4-1990 40 21 21 17.5 21.4 12.9 10.1 9.4 9.2 8.1 2.6 2.5 I 0.175 0.214 0.129 0.101 0.024053 0.147597 0.276596 53.71429 4.908739 815 J4-1990 40 22 21 28.5 31.2 22.4 11.8 10.1 9.9 9.2 2.7 2.9 C 0.285 0.312 0.224 0.118 0.063794 0.404287 0.267327 35.4386 6.605199 816 J4-1990 40 23 21 15 18.1 12.8 9.6 8.9 7.4 5.9 2.6 2.8 I 0.15 0.181 0.128 0.096 0.017671 0.104143 0.292135 59.33333 6.157522 817 J4-1990 40 24 21 29.3 31.4 21.4 10.9 10.9 9.6 9.4 2.9 3.5 D 0.293 0.314 0.214 0.109 0.067426 0.369025 0.266055 37.20137 9.621128 818 J4-1990 40 25 21 23.5 27.4 19.6 10.6 10.1 9.7 8.4 2.9 3.1 C 0.235 0.274 0.196 0.106 0.043374 0.304704 0.287129 42.97872 7.547676 819 J4-1990 40 26 21 30.5 34.1 28.4 11.9 11.8 10.9 10.4 2.8 3.4 D 0.305 0.341 0.284 0.119 0.073062 0.646438 0.237288 38.68852 9.079203 820 J4-1990 40 27 21 9.5 11.2 6.6 6.1 7.9 6.4 5.2 2.4 2.7 S 0.095 0.112 0.066 0.061 0.007088 0.028223 0.303797 83.15789 5.725553 821 J4-1990 40 28 21 30.2 36.4 28.2 12.1 11.6 10.4 9.8 2.9 3.4 D 0.302 0.364 0.282 0.121 0.071631 0.633348 0.25 38.4106 9.079203 822 J4-1990 40 29 21 26.6 29.9 21.9 11.1 10.1 9.8 8.4 2.7 3 C 0.266 0.299 0.219 0.111 0.055572 0.376591 0.267327 37.96992 7.068583 823 J4-1990 40 30 21 18 20.9 14.8 9.9 9.9 9.2 5.6 2.6 3.1 C 0.18 0.209 0.148 0.099 0.025447 0.169921 0.262626 55 7.547676 824 J4-1990 40 31 21 19.2 21.4 17.1 10.1 10.1 9.4 6.2 2.8 3.2 C 0.192 0.214 0.171 0.101 0.028953 0.212821 0.277228 52.60417 8.042477 825 J4-1990 40 32 21 24.5 29.8 19.2 9.9 10.8 9.7 7.8 2.9 3.1 C 0.245 0.298 0.192 0.099 0.047144 0.31243 0.268519 44.08163 7.547676 826 J4-1990 40 33 21 25.5 26.2 19.6 12.1 10.4 9.8 8.6 3.4 3.1 C 0.255 0.262 0.196 0.121 0.051071 0.303962 0.326923 40.78431 7.547676 827 J4-1990 40 34 21 20.4 22.3 14.3 9.4 9.9 8.4 7.9 3 2.8 C 0.204 0.223 0.143 0.094 0.032685 0.154335 0.30303 48.52941 6.157522 828 J4-1990 40 35 21 18 19.6 11.2 8.6 8.9 7.9 5.4 2.8 2.6 I 0.18 0.196 0.112 0.086 0.025447 0.099262 0.314607 49.44444 5.309292 829 J4-1990 40 36 21 15.2 17.4 10.4 7.3 7.8 5.8 4.9 2.8 2.5 I 0.152 0.174 0.104 0.073 0.018146 0.059879 0.358974 51.31579 4.908739 830 J4-1990 40 37 21 22.2 24.2 17.3 10.1 10.2 9.4 8.2 3.1 2.9 C 0.222 0.242 0.173 0.101 0.038708 0.231918 0.303922 45.94595 6.605199 831 J4-1990 40 38 21 21.2 23.3 16.8 9.6 10.4 9.9 8.6 3.2 3.1 C 0.212 0.233 0.168 0.096 0.035299 0.228599 0.307692 49.0566 7.547676 832 J4-1990 40 39 21 14.8 17.3 11.4 8.1 9.4 7.9 5.1 2.7 2.5 I 0.148 0.173 0.114 0.081 0.017203 0.091492 0.287234 63.51351 4.908739 833 J4-1990 40 40 21 24.6 27.2 18.8 9.6 10.2 9.4 8.9 3.3 3.2 C 0.246 0.272 0.188 0.096 0.047529 0.276331 0.323529 41.46341 8.042477 834 J4-1990 40 41 21 19.5 22.1 12.3 8.2 9.1 8 5.6 2.8 2.8 I 0.195 0.221 0.123 0.082 0.029865 0.12156 0.307692 46.66667 6.157522 835 Oluw1991 41 1 20 15.4 17.8 13.2 11.4 12.6 10.8 8.4 2.5 2.8 C 0.154 0.178 0.132 0.114 0.018627 0.161695 0.198413 81.81818 6.157522 836 Oluw1991 41 2 20 11.2 13.5 9.2 7.4 11.6 9.8 7.6 2.4 2.6 S 0.112 0.135 0.092 0.074 0.009852 0.073835 0.206897 103.5714 5.309292 837 Oluw1991 41 3 20 6.6 8.8 6.4 5.2 9.8 7.4 5.2 2.4 2.6 S 0.066 0.088 0.064 0.052 0.003421 0.025991 0.244898 148.4848 5.309292 838 Oluw1991 41 4 20 23.8 26.4 19.2 15.6 15.6 13.4 11.2 2.6 2.8 D 0.238 0.264 0.192 0.156 0.044488 0.423583 0.166667 65.54622 6.157522 839 Oluw1991 41 5 20 17.8 20.1 15.4 13.8 12.8 10.6 8.6 2.5 2.8 C 0.178 0.201 0.154 0.138 0.024885 0.214109 0.195313 71.91011 6.157522 840 Oluw1991 41 6 20 14.4 16.8 12.2 10.2 12.8 10.4 8.1 2.4 2.6 S 0.144 0.168 0.122 0.102 0.016286 0.133636 0.1875 88.88889 5.309292 171 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 841 Oluw1991 41 7 20 20 23.2 18.1 16.1 14.6 12.6 10.7 2.5 2.8 C 0.2 0.232 0.181 0.161 0.031416 0.347662 0.171233 73 6.157522 842 Oluw1991 41 8 20 9.1 11.4 7.2 5.1 10.6 8.5 6.2 2.4 2.6 S 0.091 0.114 0.072 0.051 0.006504 0.040426 0.226415 116.4835 5.309292 843 Oluw1991 41 9 20 12.5 14.6 10.4 8.2 13.8 11.4 9.2 2.4 2.6 S 0.125 0.146 0.104 0.082 0.012272 0.106404 0.173913 110.4 5.309292 844 Oluw1991 41 10 20 21.5 23.4 18.6 16.4 15.9 13.8 11.4 2.5 2.8 C 0.215 0.234 0.186 0.164 0.036305 0.397477 0.157233 73.95349 6.157522 845 Oluw1991 41 11 20 19 22.2 17.2 15.1 14.6 12.4 10.2 2.5 2.8 C 0.19 0.222 0.172 0.151 0.028353 0.309083 0.171233 76.84211 6.157522 846 Oluw1991 41 12 20 23 25.6 19.4 17.2 15.5 13.4 11.2 2.6 2.9 D 0.23 0.256 0.194 0.172 0.041548 0.430908 0.167742 67.3913 6.605199 847 Oluw1991 41 13 20 15.8 17.4 13.6 11.8 12.9 10.8 8.6 2.5 2.8 C 0.158 0.174 0.136 0.118 0.019607 0.167079 0.193798 81.64557 6.157522 848 Oluw1991 41 14 20 19 21.6 17.2 15.6 14.6 12.4 10.2 2.5 2.8 C 0.19 0.216 0.172 0.156 0.028353 0.307309 0.171233 76.84211 6.157522 849 Oluw1991 41 15 20 27.9 29.4 24.4 20.8 14.8 12.6 10.8 2.6 2.9 D 0.279 0.294 0.244 0.208 0.061136 0.606698 0.175676 53.04659 6.605199 850 Oluw1991 41 16 20 23.5 15.6 11.4 9.5 16.6 14.8 12.6 2.6 2.9 D 0.235 0.156 0.114 0.095 0.043374 0.16534 0.156627 70.6383 6.605199 851 Oluw1991 41 17 20 15.5 17.8 13.2 11.5 12.8 10.6 8.8 2.5 2.8 C 0.155 0.178 0.132 0.115 0.018869 0.159019 0.195313 82.58065 6.157522 852 Oluw1991 41 18 20 13.4 15.8 11.3 9.4 13.6 11.4 9.1 2.5 2.8 C 0.134 0.158 0.113 0.094 0.014103 0.126657 0.183824 101.4925 6.157522 853 Oluw1991 41 19 20 14.3 16.6 12.4 10.6 14.4 12.3 10.2 2.5 2.8 C 0.143 0.166 0.124 0.106 0.016061 0.161483 0.173611 100.6993 6.157522 854 Oluw1991 41 20 20 15.5 17.4 13.6 11.2 12.8 10.4 8.2 2.5 2.8 C 0.155 0.174 0.136 0.112 0.018869 0.159012 0.195313 82.58065 6.157522 855 Oluw1991 41 21 20 19.2 21.8 17.4 15.6 13.6 10.6 8.4 2.5 2.8 C 0.192 0.218 0.174 0.156 0.028953 0.267745 0.183824 70.83333 6.157522 856 Oluw1991 41 22 20 22.1 25.2 20.2 18.1 14.8 12.8 10.6 2.6 2.9 D 0.221 0.252 0.202 0.181 0.03836 0.434765 0.175676 66.96833 6.605199 857 Oluw1991 41 23 20 12.5 15.6 10.4 8.5 13.6 11.4 9.2 2.5 2.8 C 0.125 0.156 0.104 0.085 0.012272 0.111658 0.183824 108.8 6.157522 858 Oluw1991 41 24 20 17.9 19.8 15.7 13.9 13.8 11.2 9 2.5 2.8 C 0.179 0.198 0.157 0.139 0.025165 0.230351 0.181159 77.09497 6.157522 859 Oluw1991 41 25 20 23.2 25.4 19.6 17.4 16.6 14.2 12.1 2.6 2.9 D 0.232 0.254 0.196 0.174 0.042273 0.461824 0.156627 71.55172 6.605199 860 Oluw1991 41 26 20 14.4 16.8 12.2 10.4 14.4 12.1 10 2.5 2.8 C 0.144 0.168 0.122 0.104 0.016286 0.156133 0.173611 100 6.157522 861 Oluw1991 41 27 20 12.3 15.2 10.4 8.3 13.6 11.5 9.2 2.4 2.6 S 0.123 0.152 0.104 0.083 0.011882 0.110277 0.176471 110.5691 5.309292 862 Oluw1991 41 28 20 14.5 16.8 12.5 10.4 14.2 12.8 10.4 2.4 2.6 S 0.145 0.168 0.125 0.104 0.016513 0.170132 0.169014 97.93103 5.309292 863 Oluw1991 42 1 20 14.7 16.8 12.4 10.4 14.6 12.6 10.4 2.5 2.8 C 0.147 0.168 0.124 0.104 0.016972 0.165831 0.171233 99.31973 6.157522 864 Oluw1991 42 2 20 37 39.6 34.2 28.8 17.8 15.4 13.6 2.6 2.9 D 0.37 0.396 0.342 0.288 0.107521 1.426451 0.146067 48.10811 6.605199 865 Oluw1991 42 3 20 21.4 24.6 19.2 16.4 15.5 13.6 11.2 2.6 2.9 D 0.214 0.246 0.192 0.164 0.035968 0.41812 0.167742 72.42991 6.605199 866 Oluw1991 42 4 20 14.6 18.4 12.4 10.6 14.8 12.8 10.4 2.5 2.8 C 0.146 0.184 0.124 0.106 0.016742 0.178603 0.168919 101.3699 6.157522 867 Oluw1991 42 5 20 18.6 22.8 16.6 14.2 15.8 13.4 11.1 2.5 2.8 C 0.186 0.228 0.166 0.142 0.027172 0.319891 0.158228 84.94624 6.157522 868 Oluw1991 42 6 20 27.8 29.6 24.8 21.4 16.6 13.8 11.6 2.6 2.9 D 0.278 0.296 0.248 0.214 0.060699 0.685405 0.156627 59.71223 6.605199 172 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 869 Oluw1991 42 7 20 30.7 32.8 27.9 24.2 17.8 15.4 13.2 2.6 2.9 D 0.307 0.328 0.279 0.242 0.074023 0.962595 0.146067 57.98046 6.605199 870 Oluw1991 42 8 20 18.5 22.6 16.4 14.4 13.4 11.8 9.6 2.5 2.8 C 0.185 0.226 0.164 0.144 0.02688 0.277098 0.186567 72.43243 6.157522 871 Oluw1991 42 9 20 23 25.4 20.2 16.6 16.6 14.8 12.2 2.6 2.9 D 0.23 0.254 0.202 0.166 0.041548 0.494573 0.156627 72.17391 6.605199 872 Oluw1991 42 10 20 14 18.2 12.1 10.2 13.8 11.6 9.9 2.5 2.8 C 0.14 0.182 0.121 0.102 0.015394 0.15502 0.181159 98.57143 6.157522 873 Oluw1991 42 11 20 32.5 36.6 28.4 23.4 20.4 18.8 16.4 2.6 2.9 D 0.325 0.366 0.284 0.234 0.082958 1.258354 0.127451 62.76923 6.605199 874 Oluw1991 42 12 20 21.5 24.6 18.6 16.5 15.6 13.8 11.4 2.5 2.9 D 0.215 0.246 0.186 0.165 0.036305 0.408476 0.160256 72.55814 6.605199 875 Oluw1991 42 13 20 16.4 19.3 14.2 12.4 14.8 12.8 10.8 2.5 2.8 C 0.164 0.193 0.142 0.124 0.021124 0.223314 0.168919 90.2439 6.157522 876 Oluw1991 42 14 20 16.4 19.2 14.3 12.3 14.6 12.6 10.8 2.5 2.8 C 0.164 0.192 0.143 0.123 0.021124 0.220663 0.171233 89.02439 6.157522 877 Oluw1991 42 15 20 16.3 19.5 14.3 12.3 14.8 12.6 10.8 2.5 2.8 C 0.163 0.195 0.143 0.123 0.020867 0.222578 0.168919 90.79755 6.157522 878 Oluw1991 42 16 20 18 21.2 16.2 14.1 15.6 13.2 11.1 2.5 2.8 C 0.18 0.212 0.162 0.141 0.025447 0.293395 0.160256 86.66667 6.157522 879 Oluw1991 42 17 20 19.8 23.2 17.6 15.8 15.8 13.6 11.4 2.5 2.8 C 0.198 0.232 0.176 0.158 0.030791 0.36084 0.158228 79.79798 6.157522 880 Oluw1991 42 18 20 16.2 18.8 14.2 12.8 14.6 12.8 10.4 2.5 2.8 C 0.162 0.188 0.142 0.128 0.020612 0.221812 0.171233 90.12346 6.157522 881 Oluw1991 42 19 20 16.2 19.2 14.1 12.2 14.8 12.6 10.5 2.5 2.8 C 0.162 0.192 0.141 0.122 0.020612 0.216512 0.168919 91.35802 6.157522 882 Oluw1991 42 20 20 21.1 24.6 18.4 16.2 15.4 13.4 11.2 2.5 2.8 C 0.211 0.246 0.184 0.162 0.034967 0.389723 0.162338 72.98578 6.157522 883 Oluw1991 42 21 20 28.9 32.8 24.6 22.2 15.6 13.8 11.8 2.5 2.8 C 0.289 0.328 0.246 0.222 0.065597 0.720637 0.160256 53.97924 6.157522 884 Oluw1991 42 22 20 16.8 18.8 14.6 12.8 14.8 12.6 10.4 2.5 2.8 C 0.168 0.188 0.146 0.128 0.022167 0.225946 0.168919 88.09524 6.157522 885 Oluw1991 42 23 20 11.4 15.4 9.2 7.4 13.8 11.4 9.2 2.4 2.6 S 0.114 0.154 0.092 0.074 0.010207 0.094084 0.173913 121.0526 5.309292 886 Oluw1991 42 24 20 20.4 22.3 18.4 15.6 14.6 12.8 10.6 2.5 2.8 C 0.204 0.223 0.184 0.156 0.032685 0.351002 0.171233 71.56863 6.157522 887 Oluw1991 42 25 20 27 29.8 24.3 18.6 14.8 12.6 10.8 2.6 2.9 D 0.27 0.298 0.243 0.186 0.057256 0.593095 0.175676 54.81481 6.605199 888 Oluw1991 42 26 20 24.2 27.6 21.4 18.2 15.6 13.6 11.8 2.6 2.9 D 0.242 0.276 0.214 0.182 0.045996 0.52069 0.166667 64.46281 6.605199 889 Oluw1991 42 27 20 14.2 18.2 12.1 10.4 13.8 11.8 9.6 2.5 2.8 C 0.142 0.182 0.121 0.104 0.015837 0.158329 0.181159 97.1831 6.157522 890 Oluw1991 42 28 20 8.5 12.6 6.4 4.8 8.9 6.9 4.8 2.4 2.6 S 0.085 0.126 0.064 0.048 0.005675 0.031218 0.269663 104.7059 5.309292 891 Oluw1991 42 29 20 20.9 22.8 18.6 16.8 15.4 13.4 11.2 2.5 2.8 C 0.209 0.228 0.186 0.168 0.034307 0.383423 0.162338 73.68421 6.157522 892 Oluw1991 42 30 20 7.2 11.6 5.2 4.6 8.9 6.8 4.4 2.4 2.6 S 0.072 0.116 0.052 0.046 0.004072 0.023488 0.269663 123.6111 5.309292 893 Oluw1991 42 31 20 21.9 23.8 18.6 14.9 15.8 13.6 11.6 2.5 2.8 C 0.219 0.238 0.186 0.149 0.037668 0.386719 0.158228 72.14612 6.157522 894 Oluw1991 42 32 20 42.3 44.6 38.3 28.6 18.6 16.4 14.2 2.6 2.9 D 0.423 0.446 0.383 0.286 0.140531 1.862241 0.139785 43.97163 6.605199 895 Oluw1991 42 33 20 11.3 15.4 10.2 8.6 13.6 11.8 9.4 2.4 2.6 S 0.113 0.154 0.102 0.086 0.010029 0.112337 0.176471 120.354 5.309292 896 Oluw1991 42 34 20 11.5 15.8 10.4 8.8 13.4 11.6 9.5 2.4 2.6 S 0.115 0.158 0.104 0.088 0.010387 0.115359 0.179104 116.5217 5.309292 173 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 897 Oluw1991 43 1 20 18.8 22.4 16.4 14.3 15.6 73.6 11.4 2.5 2.8 C 0.188 0.224 0.164 0.143 0.027759 1.716904 0.160256 82.97872 6.157522 898 Oluw1991 43 2 20 14.1 18.2 12.2 10.4 14.4 12.3 10.2 2.5 2.8 C 0.141 0.182 0.122 0.104 0.015615 0.166603 0.173611 102.1277 6.157522 899 Oluw1991 43 3 20 16.6 18.8 14.4 12.2 14.6 12.6 10.8 2.5 2.8 C 0.166 0.188 0.144 0.122 0.021642 0.219645 0.171233 87.95181 6.157522 900 Oluw1991 43 4 20 18.5 21.4 16.5 14.5 15.5 13.4 11.2 2.5 2.8 C 0.185 0.214 0.165 0.145 0.02688 0.308224 0.16129 83.78378 6.157522 901 Oluw1991 43 5 20 16.3 18.2 14.3 12.4 14.4 12.2 10.1 2.5 2.8 C 0.163 0.182 0.143 0.124 0.020867 0.20808 0.173611 88.34356 6.157522 902 Oluw1991 43 6 20 10.5 12.6 8.4 6.5 13.4 11.4 9.4 2.4 2.6 S 0.105 0.126 0.084 0.065 0.008659 0.072113 0.179104 127.619 5.309292 903 Oluw1991 43 7 20 14.4 16.4 12.5 10.4 13.6 11.6 9.8 2.4 2.6 S 0.144 0.164 0.125 0.104 0.016286 0.152166 0.176471 94.44444 5.309292 904 Oluw1991 43 8 20 19.2 22.6 17.2 15.5 15.6 13.8 11.8 2.5 2.8 C 0.192 0.226 0.172 0.155 0.028953 0.349428 0.160256 81.25 6.157522 905 Oluw1991 43 9 20 16.4 18.8 14.4 12.2 14.8 12.6 10.8 2.5 2.8 C 0.164 0.188 0.144 0.122 0.021124 0.219645 0.168919 90.2439 6.157522 906 Oluw1991 43 10 20 19.6 23.2 17.4 15.4 14.8 12.8 12.4 2.5 2.8 C 0.196 0.232 0.174 0.154 0.030172 0.332831 0.168919 75.5102 6.157522 907 Oluw1991 43 11 20 22.2 25.6 19.4 17.2 16.6 14.6 12.8 2.5 2.8 C 0.222 0.256 0.194 0.172 0.038708 0.469497 0.150602 74.77477 6.157522 908 Oluw1991 43 12 20 18.2 22.4 16.2 14.4 15.6 13.4 11.2 2.5 2.8 C 0.182 0.224 0.162 0.144 0.026016 0.308517 0.160256 85.71429 6.157522 909 Oluw1991 43 13 20 18.5 22.8 16.6 14.5 15.6 13.8 11.4 2.5 2.8 C 0.185 0.228 0.166 0.145 0.02688 0.330995 0.160256 84.32432 6.157522 910 Oluw1991 43 14 20 18.4 22.6 16.4 14.2 15.4 13.2 11.1 2.5 2.8 C 0.184 0.226 0.164 0.142 0.02659 0.308986 0.162338 83.69565 6.157522 911 Oluw1991 43 15 20 27.5 29.6 25.6 20.6 18.6 16.8 14.6 2.6 2.9 D 0.275 0.296 0.256 0.206 0.059396 0.862484 0.139785 67.63636 6.605199 912 Oluw1991 43 16 20 17.1 21.2 15.2 13.1 15.4 13.2 11 2.5 2.8 C 0.171 0.212 0.152 0.131 0.022966 0.266993 0.162338 90.05848 6.157522 913 Oluw1991 43 17 20 24.8 27.6 22.4 20.6 13.8 11.4 11.1 2.6 2.9 D 0.248 0.276 0.224 0.206 0.048305 0.476501 0.188406 55.64516 6.605199 914 Oluw1991 43 18 20 30.1 32.4 26.8 22.2 18.8 16.4 14.2 2.6 2.9 D 0.301 0.324 0.268 0.222 0.071158 0.947913 0.138298 62.45847 6.605199 915 Oluw1991 43 19 20 28.2 30.6 26.4 22.1 18.6 17.2 15.4 2.6 2.9 D 0.282 0.306 0.264 0.221 0.062458 0.948458 0.139785 65.95745 6.605199 916 Oluw1991 43 20 20 18.5 22.4 16.4 14.2 15.6 13.6 11.4 2.5 2.8 C 0.185 0.224 0.164 0.142 0.02688 0.316747 0.160256 84.32432 6.157522 917 Oluw1991 43 21 20 17.7 19.8 15.6 13.4 14.4 12.2 10.1 2.5 2.8 C 0.177 0.198 0.156 0.134 0.024606 0.246739 0.173611 81.35593 6.157522 918 Oluw1991 43 22 20 23.9 25.8 21.6 19.6 16.6 14.8 12.9 2.5 2.8 C 0.239 0.258 0.216 0.196 0.044863 0.564929 0.150602 69.45607 6.157522 919 Oluw1991 43 23 20 22.1 24.4 19.6 17.2 15.8 13.6 11.8 2.5 2.8 C 0.221 0.244 0.196 0.172 0.03836 0.432213 0.158228 71.49321 6.157522 920 Oluw1991 43 24 20 23.8 26.4 20.6 18.6 16.9 14.8 12.8 2.6 2.9 D 0.238 0.264 0.206 0.186 0.044488 0.530894 0.153846 71.0084 6.605199 921 Oluw1991 43 25 20 18.1 22.2 16.4 14.2 14.6 12.8 10.9 2.5 2.8 C 0.181 0.222 0.164 0.142 0.02573 0.29662 0.171233 80.66298 6.157522 922 Oluw1991 43 26 20 14.6 18.4 12.5 10.6 13.4 11.8 9.6 2.4 2.6 S 0.146 0.184 0.125 0.106 0.016742 0.166188 0.179104 91.78082 5.309292 923 Oluw1991 43 27 20 19.6 22.4 17.6 15.6 16.6 14.2 12.1 2.5 2.8 C 0.196 0.224 0.176 0.156 0.030172 0.368811 0.150602 84.69388 6.157522 924 Oluw1991 44 1 20 19.9 22.4 17.8 15.8 16.4 14.6 12.4 2.5 2.8 C 0.199 0.224 0.178 0.158 0.031103 0.385812 0.152439 82.41206 6.157522 174 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 925 Oluw1991 44 2 20 14.5 16.8 12.4 10.5 12.8 10.4 8.2 2.4 2.6 S 0.145 0.168 0.124 0.105 0.016513 0.137161 0.1875 88.27586 5.309292 926 Oluw1991 44 3 20 18.9 21.6 16.8 14.9 14.8 12.8 10.4 2.5 2.8 C 0.189 0.216 0.168 0.149 0.028055 0.30453 0.168919 78.30688 6.157522 927 Oluw1991 44 4 20 19.1 23.4 17.2 15.1 15.6 13.6 11.8 2.5 2.8 C 0.191 0.234 0.172 0.151 0.028652 0.348736 0.160256 81.67539 6.157522 928 Oluw1991 44 5 20 12.3 14.85 10.2 8.3 13.4 11.4 9.6 2.4 2.6 S 0.123 0.1485 0.102 0.083 0.011882 0.10529 0.179104 108.9431 5.309292 929 Oluw1991 44 6 20 14.9 16.8 12.8 10.9 12.6 10.4 8.6 2.4 2.6 S 0.149 0.168 0.128 0.109 0.017437 0.143815 0.190476 84.56376 5.309292 930 Oluw1991 44 7 20 21.7 25.6 19.7 16.6 16.8 14.6 12.8 2.5 2.8 C 0.217 0.256 0.197 0.166 0.036984 0.474588 0.14881 77.41935 6.157522 931 Oluw1991 44 8 20 15.6 19.6 13.4 11.2 14.8 12.6 10.4 2.5 2.8 C 0.156 0.196 0.134 0.112 0.019113 0.202512 0.168919 94.87179 6.157522 932 Oluw1991 44 9 20 27.2 29.4 25.1 23.4 18.6 16.8 14.4 2.6 2.9 D 0.272 0.294 0.251 0.234 0.058107 0.864683 0.139785 68.38235 6.605199 933 Oluw1991 44 10 20 12.5 15.6 10.4 8.4 13.8 11.8 9.6 2.4 2.6 S 0.125 0.156 0.104 0.084 0.012272 0.115315 0.173913 110.4 5.309292 934 Oluw1991 44 11 20 20.3 23.4 18.3 16.2 16.4 14.6 12.8 2.5 2.8 C 0.203 0.234 0.183 0.162 0.032365 0.41081 0.152439 80.78818 6.157522 935 Oluw1991 44 12 20 11.1 13.2 9.2 7.1 13.6 11.8 9.9 2.4 2.6 S 0.111 0.132 0.092 0.071 0.009677 0.086994 0.176471 122.5225 5.309292 936 Oluw1991 44 13 20 12.4 14.8 10.2 8.4 14.6 14.6 10.9 2.4 2.6 S 0.124 0.148 0.102 0.084 0.012076 0.13488 0.164384 117.7419 5.309292 937 Oluw1991 44 14 20 11.8 13.6 9.2 7.6 13.8 11.8 9.9 2.4 2.6 S 0.118 0.136 0.092 0.076 0.010936 0.089785 0.173913 116.9492 5.309292 938 Oluw1991 44 15 20 12.6 15.8 10.4 8.6 13.9 12.8 9.9 2.4 2.6 S 0.126 0.158 0.104 0.086 0.012469 0.126709 0.172662 110.3175 5.309292 939 Oluw1991 44 16 20 13.2 15.9 11.2 9.8 13.8 11.8 9.9 2.4 2.6 S 0.132 0.159 0.112 0.098 0.013685 0.131387 0.173913 104.5455 5.309292 940 Oluw1991 44 17 20 23.6 25.6 21.4 19.6 16.4 14.6 12.8 2.6 2.9 D 0.236 0.256 0.214 0.196 0.043744 0.548756 0.158537 69.49153 6.605199 941 Oluw1991 44 18 20 26.6 29.8 24.4 22.4 16.6 14.8 12.9 2.6 2.9 D 0.266 0.298 0.244 0.224 0.055572 0.730608 0.156627 62.40602 6.605199 942 Oluw1991 44 19 20 17.6 19.5 15.6 13.4 14.8 12.4 10.2 2.4 2.8 C 0.176 0.195 0.156 0.134 0.024328 0.24887 0.162162 84.09091 6.157522 943 Oluw1991 44 20 20 30.4 32.8 28.4 24.2 18.6 16.8 14.6 2.6 2.9 D 0.304 0.328 0.284 0.242 0.072583 1.074866 0.139785 61.18421 6.605199 944 Oluw1991 44 21 20 18.1 22.4 16.2 14.1 15.6 13.8 11.9 2.5 2.8 C 0.181 0.224 0.162 0.141 0.02573 0.316182 0.160256 86.18785 6.157522 945 Oluw1991 44 22 20 12.5 14.6 10.4 8.6 13.8 11.6 9.6 2.4 2.6 S 0.125 0.146 0.104 0.086 0.012272 0.109291 0.173913 110.4 5.309292 946 Oluw1991 44 23 20 21.3 25.2 19.4 16.2 16.6 14.8 12.4 2.6 2.9 D 0.213 0.252 0.194 0.162 0.035633 0.465521 0.156627 77.93427 6.605199 947 Oluw1991 44 24 20 19.8 23.6 17.4 15.2 16.8 14.8 12.9 2.5 2.8 C 0.198 0.236 0.174 0.152 0.030791 0.387277 0.14881 84.84848 6.157522 948 Oluw1991 44 25 20 18.4 22.4 16.6 14.8 14.6 12.8 10.4 2.5 2.8 C 0.184 0.224 0.166 0.148 0.02659 0.305453 0.171233 79.34783 6.157522 949 Oluw1991 44 26 20 18.1 22.1 16.2 14.1 15.8 13.6 11.9 2.5 2.8 C 0.181 0.221 0.162 0.141 0.02573 0.309223 0.158228 87.29282 6.157522 950 Oluw1991 44 27 20 14.4 18.1 12.4 10.6 14.8 12.4 10.2 2.4 2.6 S 0.144 0.181 0.124 0.106 0.016286 0.171245 0.162162 102.7778 5.309292 951 Oluw1991 44 28 20 13.3 15.6 11.2 9.4 14.2 12.2 10.1 2.4 2.6 S 0.133 0.156 0.112 0.094 0.013893 0.133105 0.169014 106.7669 5.309292 952 Oluw1991 44 29 20 25.4 27.8 23.2 19.6 14.9 12.8 12.4 2.5 2.8 C 0.254 0.278 0.232 0.196 0.050671 0.554589 0.167785 58.66142 6.157522 175 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 953 Oluw1991 45 1 20 21 24.4 19.2 17.4 15.4 13.2 11.1 2.5 2.8 C 0.21 0.244 0.192 0.174 0.034636 0.40997 0.162338 73.33333 6.157522 954 Oluw1991 45 2 20 21.7 24.8 18.8 16.4 15.8 13.6 11.4 2.5 2.8 C 0.217 0.248 0.188 0.164 0.036984 0.409055 0.158228 72.81106 6.157522 955 Oluw1991 45 3 20 13 17.6 11.2 9.1 13.8 11.8 9.4 2.4 2.6 S 0.13 0.176 0.112 0.091 0.013273 0.13814 0.173913 106.1538 5.309292 956 Oluw1991 45 4 20 20.5 22.6 18.3 16.2 14.6 12.6 10.8 2.5 2.8 C 0.205 0.226 0.183 0.162 0.033006 0.348465 0.171233 71.21951 6.157522 957 Oluw1991 45 5 20 22.5 24.6 20.4 18.2 16.6 14.6 12.6 2.5 2.8 C 0.225 0.246 0.204 0.182 0.039761 0.497094 0.150602 73.77778 6.157522 958 Oluw1991 45 6 20 9.8 11.4 7.6 6.2 9.9 7.8 5.4 2.4 2.6 S 0.098 0.114 0.076 0.062 0.007543 0.040784 0.242424 101.0204 5.309292 959 Oluw1991 45 7 20 16.2 18.4 14.2 12.4 14.8 12.4 10.2 2.4 2.6 S 0.162 0.184 0.142 0.124 0.020612 0.210829 0.162162 91.35802 5.309292 960 Oluw1991 45 8 20 13.8 17.6 11.4 9.6 13.8 11.8 9.9 2.4 2.6 S 0.138 0.176 0.114 0.096 0.014957 0.142377 0.173913 100 5.309292 961 Oluw1991 45 9 20 25.6 27.6 22.6 20.4 16.8 14.4 12.2 2.5 2.8 C 0.256 0.276 0.226 0.204 0.051472 0.607137 0.14881 65.625 6.157522 962 Oluw1991 45 10 20 33.6 36.4 28.6 22.4 18.8 16.6 14.8 2.6 2.9 D 0.336 0.364 0.286 0.224 0.088668 1.107884 0.138298 55.95238 6.605199 963 Oluw1991 45 11 20 21 24.2 19.2 17.1 15.8 18.8 11 2.5 2.8 C 0.21 0.242 0.192 0.171 0.034636 0.578957 0.158228 75.2381 6.157522 964 Oluw1991 45 12 20 18.1 22.4 16.2 14.2 14.8 12.6 10.8 2.4 2.6 S 0.181 0.224 0.162 0.142 0.02573 0.289155 0.162162 81.76796 5.309292 965 Oluw1991 45 13 20 25 27.1 23.2 18.4 16.8 14.4 12 2.5 2.8 C 0.25 0.271 0.232 0.184 0.049087 0.608073 0.14881 67.2 6.157522 966 Oluw1991 45 14 20 19.9 21.4 17.4 15.6 14.6 12.8 10.9 2.5 2.8 C 0.199 0.214 0.174 0.156 0.031103 0.320419 0.171233 73.36683 6.157522 967 Oluw1991 45 15 20 15.6 17.8 13.5 11.5 13.6 11.6 9.8 2.4 2.6 S 0.156 0.178 0.135 0.115 0.019113 0.178885 0.176471 87.17949 5.309292 968 Oluw1991 45 16 20 29.5 32.6 26.8 24.5 17.4 15.4 13.2 2.6 2.9 D 0.295 0.326 0.268 0.245 0.068349 0.914386 0.149425 58.98305 6.605199 969 Oluw1991 45 17 20 22.3 24.6 18.8 16.6 15.6 13.8 11.9 2.5 2.8 C 0.223 0.246 0.188 0.166 0.039057 0.414478 0.160256 69.95516 6.157522 970 Oluw1991 45 18 20 11.4 13.8 9.2 7.4 12.6 10.4 8.2 2.4 2.6 S 0.114 0.138 0.092 0.074 0.010207 0.079471 0.190476 110.5263 5.309292 971 Oluw1991 45 19 20 24.5 26.6 21.4 19.4 15.8 13.8 11.9 2.5 2.8 C 0.245 0.266 0.214 0.194 0.047144 0.526707 0.158228 64.4898 6.157522 972 Oluw1991 45 20 20 13.5 17.4 11.4 9.5 13.8 11.6 9.6 2.4 2.6 S 0.135 0.174 0.114 0.095 0.014314 0.13861 0.173913 102.2222 5.309292 973 Oluw1991 45 21 20 20.9 24.8 18.6 16.4 14.8 12.8 10.8 2.5 2.8 C 0.209 0.248 0.186 0.164 0.034307 0.37998 0.168919 70.8134 6.157522 974 Oluw1991 45 22 20 15 17.4 13.2 11.1 13.6 11.4 9.2 2.4 2.6 S 0.15 0.174 0.132 0.111 0.017671 0.16757 0.176471 90.66667 5.309292 975 Oluw1991 45 23 20 15.7 17.8 13.6 11.4 15.8 11.8 9.9 2.4 2.6 S 0.157 0.178 0.136 0.114 0.019359 0.18329 0.151899 100.6369 5.309292 976 Oluw1991 45 24 20 29.2 32.6 24.6 21.6 16.8 15.4 13.6 2.5 2.8 C 0.292 0.326 0.246 0.216 0.066966 0.796255 0.14881 57.53425 6.157522 977 Oluw1991 46 1 20 10.7 12.8 8.6 6.6 9.8 7.8 5.4 2.4 2.6 S 0.107 0.128 0.086 0.066 0.008992 0.051382 0.244898 91.58879 5.309292 978 Oluw1991 46 2 20 12.5 14.6 10.4 8.7 9.9 7.9 5.6 2.4 2.6 S 0.125 0.146 0.104 0.087 0.012272 0.07461 0.242424 79.2 5.309292 979 Oluw1991 46 3 20 9.2 11.4 7.1 5.2 8.6 6.8 4.8 2.4 2.6 S 0.092 0.114 0.071 0.052 0.006648 0.031923 0.27907 93.47826 5.309292 980 Oluw1991 46 4 20 10.5 12.8 8.4 6.4 9.8 7.6 5.6 2.4 2.6 S 0.105 0.128 0.084 0.064 0.008659 0.048453 0.244898 93.33333 5.309292 176 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 981 Oluw1991 46 5 20 31.7 34.8 28.4 24.6 18.6 16.4 14.4 2.6 2.9 D 0.317 0.348 0.284 0.246 0.078924 1.082488 0.139785 58.67508 6.605199 982 Oluw1991 46 6 20 18 22.2 16.2 14.1 14.4 12.4 10.4 2.5 2.8 C 0.18 0.222 0.162 0.141 0.025447 0.282658 0.173611 80 6.157522 983 Oluw1991 46 7 20 15.9 19.8 13.6 11.4 13.6 11.8 9.8 2.4 2.6 S 0.159 0.198 0.136 0.114 0.019856 0.194906 0.176471 85.53459 5.309292 984 Oluw1991 46 8 20 15 17.6 13.2 11.1 13.6 11.6 9.4 2.4 2.6 S 0.15 0.176 0.132 0.111 0.017671 0.171573 0.176471 90.66667 5.309292 985 Oluw1991 46 9 20 14.5 16.8 12.4 10.4 13.4 11.2 9.1 2.4 2.6 S 0.145 0.168 0.124 0.104 0.016513 0.147405 0.179104 92.41379 5.309292 986 Oluw1991 46 10 20 16.6 20.2 14.4 12.6 14.8 12.4 10.2 2.4 2.6 S 0.166 0.202 0.144 0.126 0.021642 0.226632 0.162162 89.15663 5.309292 987 Oluw1991 46 11 20 20.7 22.4 18.6 16.4 16.6 14.6 12.4 2.5 2.8 C 0.207 0.224 0.186 0.164 0.033654 0.411766 0.150602 80.19324 6.157522 988 Oluw1991 46 12 20 15.3 17.6 13.4 11.3 13.8 11.8 9.4 2.4 2.6 S 0.153 0.176 0.134 0.113 0.018385 0.17851 0.173913 90.19608 5.309292 989 Oluw1991 46 13 20 16 19.2 14.1 12.4 13.6 11.8 9.9 2.4 2.6 S 0.16 0.192 0.141 0.124 0.020106 0.203525 0.176471 85 5.309292 990 Oluw1991 46 14 20 25.6 27.8 23.2 19.6 16.8 14.8 12.4 2.5 2.8 C 0.256 0.278 0.232 0.196 0.051472 0.641244 0.14881 65.625 6.157522 991 Oluw1991 46 15 20 22.2 25.2 18.4 16.2 15.6 13.8 11.4 2.5 2.8 C 0.222 0.252 0.184 0.162 0.038708 0.406754 0.160256 70.27027 6.157522 992 Oluw1991 46 16 20 19.5 21.4 17.5 15.6 14.8 12.8 10.8 2.5 2.8 C 0.195 0.214 0.175 0.156 0.029865 0.322758 0.168919 75.89744 6.157522 993 Oluw1991 46 17 20 30.2 32.4 28.2 24.5 18.4 16.4 14.4 2.6 2.9 D 0.302 0.324 0.282 0.245 0.071631 1.037091 0.141304 60.92715 6.605199 994 Oluw1991 46 18 20 25.5 29.6 22.5 20.4 16.2 14.8 12.6 2.5 2.8 C 0.255 0.296 0.225 0.204 0.051071 0.64267 0.154321 63.52941 6.157522 995 Oluw1991 46 19 20 22.2 24.2 20.1 18.2 15.6 13.8 11.4 2.5 2.8 C 0.222 0.242 0.201 0.182 0.038708 0.457551 0.160256 70.27027 6.157522 996 Oluw1991 46 20 20 28.5 32.4 26.4 22.4 17.8 15.8 13.6 2.5 2.8 C 0.285 0.324 0.264 0.224 0.063794 0.897473 0.140449 62.45614 6.157522 997 Oluw1991 46 21 20 21.3 23.6 18.9 16.3 14.6 12.9 10.8 2.5 2.8 C 0.213 0.236 0.189 0.163 0.035633 0.380188 0.171233 68.5446 6.157522 998 Oluw1991 46 22 20 24.5 28.4 22.5 19.5 15.6 13.6 11.8 2.5 2.8 C 0.245 0.284 0.225 0.195 0.047144 0.571778 0.160256 63.67347 6.157522 999 Oluw1991 46 23 20 14.6 18.5 12.4 10.6 13.8 11.6 9.5 2.4 2.6 S 0.146 0.185 0.124 0.106 0.016742 0.16242 0.173913 94.52055 5.309292 1000 Oluw1991 46 24 20 13.6 17.8 11.6 9.6 13.4 11.4 9.2 2.4 2.6 S 0.136 0.178 0.116 0.096 0.014527 0.141353 0.179104 98.52941 5.309292 1001 Oluw1991 46 25 20 23.2 25.8 19.2 15.2 15.4 13.8 11.6 2.5 2.8 C 0.232 0.258 0.192 0.152 0.042273 0.428345 0.162338 66.37931 6.157522 1002 Oluw1991 46 26 20 18.6 22.6 16.4 14.6 14.6 12.4 10.2 2.5 2.8 C 0.186 0.226 0.164 0.146 0.027172 0.292129 0.171233 78.49462 6.157522 1003 Oluw1991 46 27 20 22.5 24.5 20.4 18.5 15.8 13.9 11.8 2.5 2.8 C 0.225 0.245 0.204 0.185 0.039761 0.474371 0.158228 70.22222 6.157522 1004 Oluw1991 46 28 20 21.4 26.4 18.2 16.2 14.8 12.8 10.9 2.5 2.8 C 0.214 0.264 0.182 0.162 0.035968 0.382748 0.168919 69.15888 6.157522 1005 Oluw1991 46 29 20 21 24.6 19.4 17.4 14.6 12.8 10.8 2.5 2.8 C 0.21 0.246 0.194 0.174 0.034636 0.404362 0.171233 69.52381 6.157522 1006 Oluw1991 46 30 20 20.8 24.4 18.6 16.6 14.8 12.6 10.8 2.5 2.8 C 0.208 0.244 0.186 0.166 0.033979 0.371886 0.168919 71.15385 6.157522 1007 Oluw1991 46 31 20 15.7 19.8 13.7 11.6 13.6 11.8 9.8 2.4 2.6 S 0.157 0.198 0.137 0.116 0.019359 0.197303 0.176471 86.6242 5.309292 1008 Oluw1991 46 32 20 17.6 21.6 15.4 13.6 11.9 11.9 9.9 2.4 2.6 S 0.176 0.216 0.154 0.136 0.024328 0.249258 0.201681 67.61364 5.309292 177 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1009 Oluw1991 47 1 20 20.8 26.6 20.6 18.8 15.6 13.6 11.6 2.5 2.8 C 0.208 0.266 0.206 0.188 0.033979 0.491067 0.160256 75 6.157522 1010 Oluw1991 47 2 20 25.8 27.8 23.2 21.6 16.8 14.8 12.4 2.5 2.8 C 0.258 0.278 0.232 0.216 0.052279 0.657207 0.14881 65.11628 6.157522 1011 Oluw1991 47 3 20 14.5 18.4 12.5 10.4 13.4 11.4 9.4 2.4 2.6 S 0.145 0.184 0.125 0.104 0.016513 0.159928 0.179104 92.41379 5.309292 1012 Oluw1991 47 4 20 20.9 22.8 18.6 16.9 14.85 12.8 10.9 2.5 2.8 C 0.209 0.228 0.186 0.169 0.034307 0.366819 0.16835 71.05263 6.157522 1013 Oluw1991 47 5 20 16.5 20.4 14.5 12.4 13.8 11.6 9.8 2.4 2.6 S 0.165 0.204 0.145 0.124 0.021382 0.214239 0.173913 83.63636 5.309292 1014 Oluw1991 47 6 20 27.8 29.8 24.6 22.8 16.4 14.4 12.4 2.5 2.8 C 0.278 0.298 0.246 0.228 0.060699 0.721659 0.152439 58.99281 6.157522 1015 Oluw1991 47 7 20 28.6 32.6 24.8 22.5 16.8 14.8 12.8 2.5 2.8 C 0.286 0.326 0.248 0.225 0.064242 0.780577 0.14881 58.74126 6.157522 1016 Oluw1991 47 8 20 13.5 16.4 11.5 9.4 13.2 11.2 9.1 2.4 2.6 S 0.135 0.164 0.115 0.094 0.014314 0.129941 0.181818 97.77778 5.309292 1017 Oluw1991 47 9 20 14.8 18.4 12.8 10.6 13.4 11.4 9.4 2.4 2.6 S 0.148 0.184 0.128 0.106 0.017203 0.165085 0.179104 90.54054 5.309292 1018 Oluw1991 47 10 20 32.7 34.8 28.4 24.7 18.6 16.6 14.8 2.6 2.9 D 0.327 0.348 0.284 0.247 0.083982 1.096761 0.139785 56.88073 6.605199 1019 Oluw1991 47 11 20 12.7 16.6 10.7 8.5 12.4 10.4 8.2 2.4 2.6 S 0.127 0.166 0.107 0.085 0.012668 0.109694 0.193548 97.6378 5.309292 1020 Oluw1991 47 12 20 19.5 22.8 19.5 15.4 14.2 12.2 10.1 2.5 2.8 C 0.195 0.228 0.195 0.154 0.029865 0.363791 0.176056 72.82051 6.157522 1021 Oluw1991 47 13 20 15.1 17.2 13.2 11.1 13.6 11.6 9.6 2.4 2.6 S 0.151 0.172 0.132 0.111 0.017908 0.169459 0.176471 90.06623 5.309292 1022 Oluw1991 47 14 20 19.4 23.4 17.2 15.1 14.8 12.8 10.4 2.6 2.8 C 0.194 0.234 0.172 0.151 0.029559 0.328222 0.175676 76.28866 6.157522 1023 Oluw1991 47 15 20 21.1 24.2 19.2 16.2 14.8 12.8 10.9 2.6 2.8 C 0.211 0.242 0.192 0.162 0.034967 0.389162 0.175676 70.14218 6.157522 1024 Oluw1991 47 16 20 23.5 27.4 21.4 18.6 15.6 13.6 11.6 2.6 2.8 C 0.235 0.274 0.214 0.186 0.043374 0.521353 0.166667 66.38298 6.157522 1025 Oluw1991 47 17 20 12.2 16.6 10.1 8.1 12.4 10.2 8.1 2.4 2.6 S 0.122 0.166 0.101 0.081 0.01169 0.100033 0.193548 101.6393 5.309292 1026 Oluw1991 47 18 20 22.5 26.8 18.5 16.4 15.6 13.8 11.7 2.5 2.8 C 0.225 0.268 0.185 0.164 0.039761 0.425628 0.160256 69.33333 6.157522 1027 Oluw1991 47 19 20 20.8 24.6 16.8 14.2 10.48 12.9 10.9 2.5 2.8 C 0.208 0.246 0.168 0.142 0.033979 0.326874 0.23855 50.38462 6.157522 1028 Oluw1991 47 20 20 18.2 22.4 16.2 14.1 14.4 12.2 10.1 2.5 2.8 C 0.182 0.224 0.162 0.141 0.026016 0.279524 0.173611 79.12088 6.157522 1029 Oluw1991 47 21 20 14.7 16.8 12.4 10.4 13.6 11.8 9.8 2.4 2.6 S 0.147 0.168 0.124 0.104 0.016972 0.155302 0.176471 92.51701 5.309292 1030 Oluw1991 47 22 20 28.9 22.8 24.85 21.6 13.4 11.4 9.4 2.5 2.8 C 0.289 0.228 0.2485 0.216 0.065597 0.515797 0.186567 46.36678 6.157522 1031 Oluw1991 47 23 20 26.2 29.7 24.2 20.4 16.8 14.6 12.8 2.5 2.8 C 0.262 0.297 0.242 0.204 0.053913 0.695808 0.14881 64.12214 6.157522 1032 Oluw1991 47 24 20 17.1 19.4 15.2 13.1 13.8 11.8 9.8 2.4 2.6 S 0.171 0.194 0.152 0.131 0.022966 0.227388 0.173913 80.70175 5.309292 1033 Oluw1991 47 25 20 18.9 21.8 16.8 14.2 14.6 12.8 10.4 2.4 2.6 S 0.189 0.218 0.168 0.142 0.028055 0.302571 0.164384 77.24868 5.309292 1034 Oluw1991 47 26 20 16.1 18.4 14.3 12.2 14.4 12.2 10.2 2.4 2.6 S 0.161 0.184 0.143 0.122 0.020358 0.208463 0.166667 89.44099 5.309292 1035 Oluw1991 47 27 20 20 24.5 18.2 16.4 15.6 13.6 11.4 2.5 2.8 C 0.2 0.245 0.182 0.164 0.031416 0.390614 0.160256 78 6.157522 1036 Oluw1991 47 28 20 16.2 19.4 14.1 12.2 14.8 12.4 10.2 2.4 2.6 S 0.162 0.194 0.141 0.122 0.020612 0.214328 0.162162 91.35802 5.309292 178 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1037 Oluw1991 47 29 20 25.5 27.6 21.4 19.5 16.2 14.2 12.1 2.5 2.8 C 0.255 0.276 0.214 0.195 0.051071 0.552772 0.154321 63.52941 6.157522 1038 Oluw1991 47 30 20 24.2 28.4 22.1 18.8 15.6 13.6 11.8 2.5 2.8 C 0.242 0.284 0.221 0.188 0.045996 0.554301 0.160256 64.46281 6.157522 1039 Oluw1991 47 31 20 20.8 22.6 18.4 16.6 15.8 13.8 11.4 2.5 2.8 C 0.208 0.226 0.184 0.166 0.033979 0.386674 0.158228 75.96154 6.157522 1040 Oluw1991 48 1 20 17.4 19.8 15.4 13.4 14.6 12.8 10.6 2.5 2.8 C 0.174 0.198 0.154 0.134 0.023779 0.254719 0.171233 83.90805 6.157522 1041 Oluw1991 48 2 20 17.7 19.9 15.8 13.7 14.8 12.9 10.8 2.5 2.8 C 0.177 0.199 0.158 0.137 0.024606 0.267181 0.168919 83.61582 6.157522 1042 Oluw1991 48 3 20 19.7 22.4 16.8 14.7 15.4 13.2 11.1 2.5 2.8 C 0.197 0.224 0.168 0.147 0.030481 0.319106 0.162338 78.17259 6.157522 1043 Oluw1991 48 4 20 19.3 22.1 16.4 14.2 14.6 12.8 10.9 2.5 2.8 C 0.193 0.221 0.164 0.142 0.029255 0.295878 0.171233 75.64767 6.157522 1044 Oluw1991 48 5 20 12.6 15.6 10.6 8.4 12.4 10.2 8.1 2.4 2.6 S 0.126 0.156 0.106 0.084 0.012469 0.101922 0.193548 98.4127 5.309292 1045 Oluw1991 48 6 20 10 14.4 8.4 6.8 11.6 9.6 7.6 2.4 2.6 S 0.1 0.144 0.084 0.068 0.007854 0.067336 0.206897 116 5.309292 1046 Oluw1991 48 7 20 11.9 13.8 9.4 7.9 11.8 9.8 7.8 2.4 2.6 S 0.119 0.138 0.094 0.079 0.011122 0.077776 0.20339 99.15966 5.309292 1047 Oluw1991 48 8 20 24.2 26.4 20.4 18.2 15.8 13.8 11.4 2.5 2.8 C 0.242 0.264 0.204 0.182 0.045996 0.486439 0.158228 65.28926 6.157522 1048 Oluw1991 48 9 20 12.4 14.6 10.6 8.4 12.6 10.4 8.5 2.4 2.6 S 0.124 0.146 0.106 0.084 0.012076 0.099809 0.190476 101.6129 5.309292 1049 Oluw1991 48 10 20 15.1 17.2 13.2 11.1 13.8 11.8 9.4 2.4 2.6 S 0.151 0.172 0.132 0.111 0.017908 0.172381 0.173913 91.39073 5.309292 1050 Oluw1991 48 11 20 17.4 21.8 15.4 13.2 14.6 12.8 10.6 2.5 2.8 C 0.174 0.218 0.154 0.132 0.023779 0.267768 0.171233 83.90805 6.157522 1051 Oluw1991 48 12 20 15.8 19.4 13.8 11.6 13.4 11.7 9.8 2.4 2.6 S 0.158 0.194 0.138 0.116 0.019607 0.194914 0.179104 84.81013 5.309292 1052 Oluw1991 48 13 20 17.7 21.9 15.2 13.4 14.8 12.8 10.7 2.4 2.6 S 0.177 0.219 0.152 0.134 0.024606 0.265289 0.162162 83.61582 5.309292 1053 Oluw1991 48 14 20 11.7 15.8 9.8 7.6 11.6 9.6 7.8 2.4 2.6 S 0.117 0.158 0.098 0.076 0.010751 0.086904 0.206897 99.1453 5.309292 1054 Oluw1991 48 15 20 15.5 17.8 13.6 11.4 13.8 11.8 9.8 2.4 2.6 S 0.155 0.178 0.136 0.114 0.018869 0.18329 0.173913 89.03226 5.309292 1055 Oluw1991 48 16 20 20.5 24.6 18.4 16.5 15.6 13.6 11.2 2.5 2.8 C 0.205 0.246 0.184 0.165 0.033006 0.397286 0.160256 76.09756 6.157522 1056 Oluw1991 48 17 20 14.7 16.8 12.7 10.6 12.8 10.8 8.4 2.4 2.6 S 0.147 0.168 0.127 0.106 0.016972 0.146993 0.1875 87.07483 5.309292 1057 Oluw1991 48 18 20 15 19.4 13.4 11.2 13.6 11.4 9.3 2.4 2.6 S 0.15 0.194 0.134 0.112 0.017671 0.182061 0.176471 90.66667 5.309292 1058 Oluw1991 48 19 20 11.4 15.6 9.6 7.4 11.4 9.2 7.2 2.4 2.6 S 0.114 0.156 0.096 0.074 0.010207 0.080296 0.210526 100 5.309292 1059 Oluw1991 48 20 20 17.6 21.6 15.4 13.6 14.8 12.4 10.2 2.4 2.6 S 0.176 0.216 0.154 0.136 0.024328 0.259731 0.162162 84.09091 5.309292 1060 Oluw1991 48 21 20 20.5 24.6 18.4 16.5 15.6 13.6 11.4 2.5 2.8 C 0.205 0.246 0.184 0.165 0.033006 0.397286 0.160256 76.09756 6.157522 1061 Oluw1991 48 22 20 9.2 13.4 7.2 5.6 9.8 7.8 5.6 2.4 2.6 S 0.092 0.134 0.072 0.056 0.006648 0.042707 0.244898 106.5217 5.309292 1062 Oluw1991 48 23 20 15.7 19.8 13.8 11.9 13.8 11.8 9.6 2.4 2.6 S 0.157 0.198 0.138 0.119 0.019359 0.200091 0.173913 87.89809 5.309292 1063 Oluw1991 48 24 20 11.5 14.5 9.5 7.4 11.8 9.4 7.1 2.4 2.6 S 0.115 0.145 0.095 0.074 0.010387 0.077028 0.20339 102.6087 5.309292 1064 Oluw1991 48 25 20 19.4 23.6 17.6 15.4 14.8 12.8 10.6 2.4 2.6 S 0.194 0.236 0.176 0.154 0.029559 0.340659 0.162162 76.28866 5.309292 179 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1065 Oluw1991 48 26 20 19 21.1 17.41 15.1 14.6 12.4 10.2 2.4 2.6 S 0.19 0.211 0.1741 0.151 0.028353 0.306071 0.164384 76.84211 5.309292 1066 Oluw1991 48 27 20 12.2 15.6 10.2 8.1 10.6 8.6 6.8 2.4 2.6 S 0.122 0.156 0.102 0.081 0.01169 0.081631 0.226415 86.88525 5.309292 1067 Oluw1991 48 28 20 14 18.4 12.1 10.4 12.8 10.4 8.1 2.4 2.6 S 0.14 0.184 0.121 0.104 0.015394 0.140541 0.1875 91.42857 5.309292 1068 Oluw1991 48 29 20 22.6 26.1 20.2 18.4 16.8 14.4 12.1 2.4 2.6 S 0.226 0.261 0.202 0.184 0.040115 0.499877 0.142857 74.33628 5.309292 1069 Oluw1991 48 30 20 15.5 19.4 13.5 11.4 13.6 11.8 9.8 2.4 2.6 S 0.155 0.194 0.135 0.114 0.018869 0.19081 0.176471 87.74194 5.309292 1070 Oluw1991 48 31 20 17.3 21.6 15.3 13.4 14.8 12.8 110.4 2.4 2.6 S 0.173 0.216 0.153 0.134 0.023506 0.265147 0.162162 85.54913 5.309292 1071 Oluw1991 48 32 20 9.3 13.6 7.4 5.6 10.8 8.8 6.4 2.4 2.6 S 0.093 0.136 0.074 0.056 0.006793 0.05015 0.222222 116.129 5.309292 1072 Oluw1993 49 1 18 27.1 29.1 25.2 23.2 16.8 14.8 12.4 2.5 2.8 C 0.271 0.291 0.252 0.232 0.05768 0.760437 0.14881 61.99262 6.157522 1073 Oluw1993 49 2 18 29 32.1 27.4 24.1 16.6 14.6 12.6 2.6 2.9 D 0.29 0.321 0.274 0.241 0.066052 0.881848 0.156627 57.24138 6.605199 1074 Oluw1993 49 3 18 23.5 25.6 21.5 19.5 15.4 13.4 11.4 2.5 2.8 C 0.235 0.256 0.215 0.195 0.043374 0.505977 0.162338 65.53191 6.157522 1075 Oluw1993 49 4 18 20.4 22.4 18.4 16.4 14.8 12.8 10.8 2.5 2.8 C 0.204 0.224 0.184 0.164 0.032685 0.35604 0.168919 72.54902 6.157522 1076 Oluw1993 49 5 18 23 25.1 21 19.1 15.2 13.2 11.2 2.5 2.8 C 0.23 0.251 0.21 0.191 0.041548 0.47669 0.164474 66.08696 6.157522 1077 Oluw1993 49 6 18 27 29.6 25.8 23.6 16.1 14.1 12.1 2.5 2.8 C 0.27 0.296 0.258 0.236 0.057256 0.755934 0.15528 59.62963 6.157522 1078 Oluw1993 49 7 18 28 32.1 26.1 24 16.2 14.2 12.2 2.5 2.8 C 0.28 0.321 0.261 0.24 0.061575 0.805082 0.154321 57.85714 6.157522 1079 Oluw1993 49 8 18 17.2 19.4 15.2 13.4 14.4 12.4 10.4 2.5 2.8 C 0.172 0.194 0.152 0.134 0.023235 0.24024 0.173611 83.72093 6.157522 1080 Oluw1993 49 9 18 14.9 18.9 12.8 10.9 13.2 11.2 9.2 2.4 2.6 S 0.149 0.189 0.128 0.109 0.017437 0.165869 0.181818 88.5906 5.309292 1081 Oluw1993 49 10 18 23.5 27.5 21.5 19.6 15.4 13.4 11.4 2.5 2.8 C 0.235 0.275 0.215 0.196 0.043374 0.524359 0.162338 65.53191 6.157522 1082 Oluw1993 49 11 18 30.2 32.4 28.6 24.2 17.4 15.4 13.4 2.6 2.9 D 0.302 0.324 0.286 0.242 0.071631 0.989229 0.149425 57.61589 6.605199 1083 Oluw1993 49 12 18 32.5 34.6 28.5 23.8 18.6 16.6 14.6 2.6 2.9 D 0.325 0.346 0.285 0.238 0.082958 1.089205 0.139785 57.23077 6.605199 1084 Oluw1993 49 13 18 18 22.2 16.1 14 15.1 13.1 11.1 2.5 2.8 C 0.18 0.222 0.161 0.14 0.025447 0.295917 0.165563 83.88889 6.157522 1085 Oluw1993 49 14 18 22.5 24.6 20.5 18.5 14.8 12.8 10.8 2.5 2.8 C 0.225 0.246 0.205 0.185 0.039761 0.440394 0.168919 65.77778 6.157522 1086 Oluw1993 49 15 18 30 32.2 28.4 24.2 17.4 15.2 13.2 2.6 2.9 D 0.3 0.322 0.284 0.242 0.070686 0.964738 0.149425 58 6.605199 1087 Oluw1993 49 16 18 16 20.1 14.8 12.3 13.2 11.2 9.2 2.5 2.8 C 0.16 0.201 0.148 0.123 0.020106 0.209863 0.189394 82.5 6.157522 1088 Oluw1993 50 1 18 14.5 16.6 12.5 10.5 14.2 12.1 10.1 2.4 2.6 S 0.145 0.166 0.125 0.105 0.016513 0.160101 0.169014 97.93103 5.309292 1089 Oluw1993 50 2 18 25.9 27.8 23.8 21.9 15.8 13.8 11.8 2.5 2.8 C 0.259 0.278 0.238 0.219 0.052685 0.635535 0.158228 61.00386 6.157522 1090 Oluw1993 50 3 18 16 19 14.1 12.2 13.8 11.8 9.8 2.4 2.6 S 0.16 0.19 0.141 0.122 0.020106 0.201585 0.173913 86.25 5.309292 1091 Oluw1993 50 4 18 18 21.2 16.1 14.1 15.2 13.2 11.2 2.5 2.8 C 0.18 0.212 0.161 0.141 0.025447 0.291163 0.164474 84.44444 6.157522 1092 Oluw1993 50 5 18 17.5 19.6 15.5 13.4 14.6 12.6 10.6 2.5 2.8 C 0.175 0.196 0.155 0.134 0.024053 0.251478 0.171233 83.42857 6.157522 1093 Oluw1993 50 6 18 17.3 19.8 15.3 13.3 14.2 12.2 10.2 2.5 2.8 C 0.173 0.198 0.153 0.133 0.023506 0.240391 0.176056 82.08092 6.157522 1094 Oluw1993 50 7 18 17.7 20.1 15.7 13.1 14.8 12.8 10.8 2.5 2.8 C 0.177 0.201 0.157 0.131 0.024606 0.261645 0.168919 83.61582 6.157522 180 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1095 Oluw1993 50 8 18 27.4 29.4 25.4 23.2 16.4 14.4 12.4 2.6 2.9 D 0.274 0.294 0.254 0.232 0.058965 0.750823 0.158537 59.85401 6.605199 1096 Oluw1993 50 9 18 18.9 22.8 16.8 16.8 15.6 13.6 11.6 2.5 2.8 C 0.189 0.228 0.168 0.168 0.028055 0.343771 0.160256 82.53968 6.157522 1097 Oluw1993 50 10 18 19.7 21.7 17.6 15.7 15.9 13.9 11.9 2.5 2.8 C 0.197 0.217 0.176 0.157 0.030481 0.355972 0.157233 80.71066 6.157522 1098 Oluw1993 50 11 18 17 20.1 15.2 13.2 14.2 12.1 10.1 2.4 2.6 S 0.17 0.201 0.152 0.132 0.022698 0.237965 0.169014 83.52941 5.309292 1099 Oluw1993 50 12 18 17.3 19.8 15.1 12.8 14.2 12.2 10.2 2.5 2.8 C 0.173 0.198 0.151 0.128 0.023506 0.234423 0.176056 82.08092 6.157522 1100 Oluw1993 50 13 18 15.2 18.2 13.1 11.2 11.4 11.4 9.4 2.4 2.6 S 0.152 0.182 0.131 0.112 0.018146 0.170583 0.210526 75 5.309292 1101 Oluw1993 50 14 18 25.5 27.5 22.4 20.5 13.6 13.6 11.6 2.5 2.8 C 0.255 0.275 0.224 0.205 0.051071 0.566745 0.183824 53.33333 6.157522 1102 Oluw1993 50 15 18 27.5 29.6 25.4 21.5 13.8 13.8 11.9 2.5 2.8 C 0.275 0.296 0.254 0.215 0.059396 0.707943 0.181159 50.18182 6.157522 1103 Oluw1993 51 1 18 15.5 18.6 13.5 11.5 13.8 11.8 9.8 2.4 2.6 S 0.155 0.186 0.135 0.115 0.018869 0.186468 0.173913 89.03226 5.309292 1104 Oluw1993 51 2 18 19.5 21.6 17.5 15.4 13.9 11.9 9.9 2.5 2.8 C 0.195 0.216 0.175 0.154 0.029865 0.300438 0.179856 71.28205 6.157522 1105 Oluw1993 51 3 18 22.5 24.6 19.6 17.5 14.8 12.8 10.9 2.5 2.8 C 0.225 0.246 0.196 0.175 0.039761 0.410175 0.168919 65.77778 6.157522 1106 Oluw1993 51 4 18 27.7 29.7 25.6 24.6 16.8 14.8 12.8 2.5 2.8 C 0.277 0.297 0.256 0.246 0.060263 0.795983 0.14881 60.64982 6.157522 1107 Oluw1993 51 5 18 12.4 16.4 10.3 8.4 12.1 10.1 8.1 2.4 2.6 S 0.124 0.164 0.103 0.084 0.012076 0.100992 0.198347 97.58065 5.309292 1108 Oluw1993 51 6 18 23.8 27.6 21.8 19.8 15.8 13.8 11.8 2.5 2.8 C 0.238 0.276 0.218 0.198 0.044488 0.551817 0.158228 66.38655 6.157522 1109 Oluw1993 51 7 18 25.3 28.2 23.3 19.9 16.1 14.1 12.1 2.5 2.8 C 0.253 0.282 0.233 0.199 0.050273 0.620669 0.15528 63.63636 6.157522 1110 Oluw1993 51 8 18 24.1 26.2 22.1 20 16 14 12 2.5 2.8 C 0.241 0.262 0.221 0.2 0.045617 0.557124 0.15625 66.39004 6.157522 1111 Oluw1993 51 9 18 19.3 21.2 17.2 15.3 13.4 11.4 9.9 2.5 2.8 C 0.193 0.212 0.172 0.153 0.029255 0.278588 0.186567 69.43005 6.157522 1112 Oluw1993 51 10 18 15.3 19.6 13.3 11.1 13.8 11.8 9.8 2.4 2.6 S 0.153 0.196 0.133 0.111 0.018385 0.18766 0.173913 90.19608 5.309292 1113 Oluw1993 51 11 18 26.5 32.4 24.5 22.5 16.4 14.4 12.4 2.5 2.8 C 0.265 0.324 0.245 0.225 0.055155 0.745879 0.152439 61.88679 6.157522 1114 Oluw1993 51 12 18 18 22.1 16.1 14 13.6 11.6 9.6 2.5 2.8 C 0.18 0.221 0.161 0.14 0.025447 0.261361 0.183824 75.55556 6.157522 1115 Oluw1993 51 13 18 33 36.2 29.4 24.1 18.4 16.4 14.4 2.5 2.9 D 0.33 0.362 0.294 0.241 0.08553 1.148233 0.13587 55.75758 6.605199 1116 Oluw1993 52 1 18 20.8 24.8 18.6 16.4 14.8 12.8 10.8 2.5 2.8 C 0.208 0.248 0.186 0.164 0.033979 0.37998 0.168919 71.15385 6.157522 1117 Oluw1993 52 2 18 18.1 22.4 16.2 14.1 13.8 11.8 9.8 2.5 2.8 C 0.181 0.224 0.162 0.141 0.02573 0.270359 0.181159 76.24309 6.157522 1118 Oluw1993 52 3 18 19.1 23.2 16.8 14.4 13.4 11.4 9.4 2.5 2.8 C 0.191 0.232 0.168 0.144 0.028652 0.279732 0.186567 70.15707 6.157522 1119 Oluw1993 52 4 18 19.5 23.4 16.9 14.5 13.8 11.8 9.9 2.5 2.8 C 0.195 0.234 0.169 0.145 0.029865 0.293516 0.181159 70.76923 6.157522 1120 Oluw1993 52 5 18 15.7 18.6 13.7 11.5 12.8 10.8 8.8 2.4 2.6 S 0.157 0.186 0.137 0.115 0.019359 0.173742 0.1875 81.52866 5.309292 1121 Oluw1993 52 6 18 20.7 24.8 18.2 16.2 14.9 12.9 10.9 2.5 2.8 C 0.207 0.248 0.182 0.162 0.033654 0.371905 0.167785 71.98068 6.157522 181 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1122 Oluw1993 52 7 18 21 25.1 17.8 15.6 15.2 13.2 11.2 2.5 2.8 C 0.21 0.251 0.178 0.156 0.034636 0.369892 0.164474 72.38095 6.157522 1123 Oluw1993 52 8 18 14.5 17.5 12.4 10.5 12.7 10.7 8.7 2.4 2.6 S 0.145 0.175 0.124 0.105 0.016513 0.14448 0.188976 87.58621 5.309292 1124 Oluw1993 52 9 18 16.7 19.6 14.7 12.6 13.8 11.8 9.8 2.4 2.6 S 0.167 0.196 0.147 0.126 0.021904 0.217371 0.173913 82.63473 5.309292 1125 Oluw1993 52 10 18 17.8 21.1 15.8 13.8 13.6 11.6 9.6 2.5 2.8 C 0.178 0.211 0.158 0.138 0.024885 0.248144 0.183824 76.40449 6.157522 1126 Oluw1993 52 11 18 27 29.1 25.2 23.2 16.8 14.8 12.8 2.5 2.8 C 0.27 0.291 0.252 0.232 0.057256 0.760437 0.14881 62.22222 6.157522 1127 Oluw1993 52 12 18 18.1 22.1 16.1 14.2 13.9 11.9 9.9 2.5 2.8 C 0.181 0.221 0.161 0.142 0.02573 0.268999 0.179856 76.79558 6.157522 1128 Oluw1993 52 13 18 10.1 14.2 8.1 6 12.2 10.2 8.2 2.4 2.6 S 0.101 0.142 0.081 0.06 0.008012 0.06677 0.196721 120.7921 5.309292 1129 J4-1996 53 1 15 24.3 26.8 21.6 16.1 10.4 9.4 6.4 2.6 2.9 C 0.243 0.268 0.216 0.161 0.046377 0.349904 0.25 42.79835 6.605199 1130 J4-1996 53 2 15 21.6 24.1 18.8 12.2 10.5 9.6 6.6 2.6 2.9 C 0.216 0.241 0.188 0.122 0.036644 0.269349 0.247619 48.61111 6.605199 1131 J4-1996 53 3 15 32.2 34.8 29.4 18.4 11.9 10.4 7.8 2.8 3.4 D 0.322 0.348 0.294 0.184 0.081433 0.681637 0.235294 36.95652 9.079203 1132 J4-1996 53 4 15 10.2 12.4 8.1 6.2 8.4 6.2 3.8 2.3 2.6 S 0.102 0.124 0.081 0.062 0.008171 0.036898 0.27381 82.35294 5.309292 1133 J4-1996 53 5 15 22.5 24.8 19.6 13.5 8.6 6.4 6.5 2.4 2.6 S 0.225 0.248 0.196 0.135 0.039761 0.195527 0.27907 38.22222 5.309292 1134 J4-1996 53 6 15 29.3 32.1 26.5 18.6 11.6 10.1 7.4 2.8 3.4 D 0.293 0.321 0.265 0.186 0.067426 0.553342 0.241379 39.59044 9.079203 1135 J4-1996 53 7 15 16 18.9 13.7 9.6 9.4 8.3 6.9 2.4 2.8 I 0.16 0.189 0.137 0.096 0.020106 0.13039 0.255319 58.75 6.157522 1136 J4-1996 53 8 15 18 20.3 15.8 11.2 10.4 9.2 6.8 2.6 2.8 C 0.18 0.203 0.158 0.112 0.025447 0.184988 0.25 57.77778 6.157522 1137 J4-1996 53 9 15 18.6 20.5 15.9 11.1 9.6 8.9 6.4 2.4 2.6 I 0.186 0.205 0.159 0.111 0.027172 0.181124 0.25 51.6129 5.309292 1138 J4-1996 53 10 15 15.5 17.7 13.3 9.5 9.6 8.4 5.6 2.5 2.6 I 0.155 0.177 0.133 0.095 0.018869 0.122172 0.260417 61.93548 5.309292 1139 J4-1996 53 11 15 26.5 28.2 22.4 16.1 9.7 8.6 6.2 2.4 2.6 I 0.265 0.282 0.224 0.161 0.055155 0.344643 0.247423 36.60377 5.309292 1140 J4-1996 53 12 15 28.7 31.2 26.1 18.5 10.3 9.2 6.9 2.6 2.8 C 0.287 0.312 0.261 0.185 0.064692 0.486592 0.252427 35.8885 6.157522 1141 J4-1996 53 13 15 12.2 14.8 10.1 7.6 7.4 6.5 4.4 2.4 2.6 S 0.122 0.148 0.101 0.076 0.01169 0.058269 0.324324 60.65574 5.309292 1142 J4-1996 53 14 15 24.2 26.9 22.8 16.4 10.5 9.3 7.4 2.5 2.8 C 0.242 0.269 0.228 0.164 0.045996 0.373967 0.238095 43.38843 6.157522 1143 J4-1996 53 15 15 14.8 17.1 11.9 9.6 9.6 8.2 6.2 2.5 2.6 I 0.148 0.171 0.119 0.096 0.017203 0.102079 0.260417 64.86486 5.309292 1144 J4-1996 53 16 15 15.5 17.2 12.6 9.8 9.7 8.4 6.3 2.3 2.6 I 0.155 0.172 0.126 0.098 0.018869 0.112916 0.237113 62.58065 5.309292 1145 J4-1996 53 17 15 13.2 16.3 10.3 8.4 10.4 9.1 6.6 2.6 2.8 C 0.132 0.163 0.103 0.084 0.013685 0.090603 0.25 78.78788 6.157522 1146 J4-1996 53 18 15 10.5 13.5 8.2 6.4 7.7 6.4 5.2 2.4 2.5 S 0.105 0.135 0.082 0.064 0.008659 0.041232 0.311688 73.33333 4.908739 1147 J4-1996 53 19 15 21.3 23.6 19.4 12.1 10.5 9.6 7.4 2.6 2.8 C 0.213 0.236 0.194 0.121 0.035633 0.277567 0.247619 49.29577 6.157522 1148 J4-1996 53 20 15 10.8 13.4 8.3 6.4 10.9 9.9 8.4 2.6 2.8 C 0.108 0.134 0.083 0.064 0.009161 0.064287 0.238532 100.9259 6.157522 1149 J4-1996 53 21 15 14.5 16.6 12.1 8.4 10.3 8.9 6.2 2.6 2.9 C 0.145 0.166 0.121 0.084 0.016513 0.108551 0.252427 71.03448 6.605199 182 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1150 J4-1996 53 22 15 15 17.4 12.6 8.8 7.4 5.6 3.9 2.4 2.6 S 0.15 0.174 0.126 0.088 0.017671 0.074421 0.324324 49.33333 5.309292 1151 J4-1996 53 23 15 26.2 28.6 24.1 16.4 9.9 8.9 6.2 2.6 2.8 C 0.262 0.286 0.241 0.164 0.053913 0.397286 0.262626 37.78626 6.157522 1152 J4-1996 53 24 15 18.2 21.3 16.8 11.5 10.1 8.9 6.4 2.6 2.8 C 0.182 0.213 0.168 0.115 0.026016 0.199787 0.257426 55.49451 6.157522 1153 J4-1996 53 25 15 21.2 23.9 19.2 13.6 9.4 8.1 6.4 2.4 2.6 I 0.212 0.239 0.192 0.136 0.035299 0.236522 0.255319 44.33962 5.309292 1154 J4-1996 53 26 15 15.6 17.4 12.6 8.7 9.3 8.2 7.2 2.4 2.6 I 0.156 0.174 0.126 0.087 0.019113 0.108786 0.258065 59.61538 5.309292 1155 J4-1996 53 27 15 19.2 21.4 16.7 11.4 10.5 9.4 7.8 2.6 2.8 C 0.192 0.214 0.167 0.114 0.028953 0.209606 0.247619 54.6875 6.157522 1156 J4-1996 53 28 15 14.6 17.2 12 8 10.1 8.9 6.3 2.6 2.8 C 0.146 0.172 0.12 0.08 0.016742 0.109026 0.257426 69.17808 6.157522 1157 J4-1996 53 29 15 20 22.7 16.9 11.3 10.4 9.1 8.4 2.6 2.8 C 0.2 0.227 0.169 0.113 0.031416 0.212677 0.25 52 6.157522 1158 J4-1996 53 30 15 18.8 21.3 16.5 11.1 10.6 9.6 8.6 2.6 2.8 C 0.188 0.213 0.165 0.111 0.027759 0.209343 0.245283 56.38298 6.157522 1159 J4-1996 53 31 15 22.4 24.6 20.1 13.8 10.7 9.9 8.9 2.6 2.8 C 0.224 0.246 0.201 0.138 0.039408 0.312526 0.242991 47.76786 6.157522 1160 J4-1996 53 32 15 18 21.5 15.4 10.9 9.4 8.8 7.2 2.4 2.6 I 0.18 0.215 0.154 0.109 0.025447 0.176209 0.255319 52.22222 5.309292 1161 J4-1996 53 33 15 19.8 21.4 17.6 14.2 10.4 8.9 6.8 2.5 2.8 C 0.198 0.214 0.176 0.142 0.030791 0.221193 0.240385 52.52525 6.157522 1162 J4-1996 53 34 15 11.5 14.2 9.4 8.2 9.8 7.8 5.4 2.5 2.7 C 0.115 0.142 0.094 0.082 0.010387 0.06354 0.255102 85.21739 5.725553 1163 J4-1996 53 35 15 13.5 16.1 10.2 8.9 9.8 7.9 5.5 2.5 2.6 C 0.135 0.161 0.102 0.089 0.014314 0.078032 0.255102 72.59259 5.309292 1164 J4-1996 53 36 15 19 22.1 16.9 13.1 10.2 8.8 6.2 2.5 2.8 C 0.19 0.221 0.169 0.131 0.028353 0.207628 0.245098 53.68421 6.157522 1165 J4-1996 53 37 15 15 17.5 13.4 11.2 9.8 7.9 6.4 2.5 2.8 I 0.15 0.175 0.134 0.112 0.017671 0.118915 0.255102 65.33333 6.157522 1166 J4-1996 53 38 15 20 23.4 17.3 14.6 9.9 7.6 6.8 2.5 2.8 C 0.2 0.234 0.173 0.146 0.031416 0.194777 0.252525 49.5 6.157522 1167 J4-1996 53 39 15 23.4 26.8 19.2 17.1 11.1 9.6 8.4 2.5 2.8 C 0.234 0.268 0.192 0.171 0.043005 0.312301 0.225225 47.4359 6.157522 1168 J4-1996 53 40 15 14.5 17.3 12.4 10.4 9.9 7.6 6.4 2.4 2.7 I 0.145 0.173 0.124 0.104 0.016513 0.101721 0.242424 68.27586 5.725553 1169 J4-1996 53 41 15 15.7 18.1 13.4 11.1 9.9 7.8 6.8 2.4 2.7 I 0.157 0.181 0.134 0.111 0.019359 0.119363 0.242424 63.05732 5.725553 1170 J4-1996 53 42 15 15.5 18 13.1 10.9 9.8 7.9 6.6 2.4 2.7 I 0.155 0.18 0.131 0.109 0.018869 0.116777 0.244898 63.22581 5.725553 1171 J4-1996 53 43 15 13.6 15.2 10.4 9.2 7.4 6.8 5.2 2.4 2.6 S 0.136 0.152 0.104 0.092 0.014527 0.066609 0.324324 54.41176 5.309292 1172 J4-1996 53 44 15 20 23.3 19.6 17.2 9.9 8.4 6.8 2.5 2.9 C 0.2 0.233 0.196 0.172 0.031416 0.261186 0.252525 49.5 6.605199 1173 J4-1996 53 45 15 29.2 26.8 24.8 20.1 11.4 10.4 9.4 2.5 3.2 D 0.292 0.268 0.248 0.201 0.066966 0.487694 0.219298 39.0411 8.042477 1174 J4-1996 53 46 15 25.2 27.6 23.6 19.6 11.6 10.4 9.2 2.5 3.1 D 0.252 0.276 0.236 0.196 0.049876 0.459289 0.215517 46.03175 7.547676 1175 J4-1996 53 47 15 18.5 23.4 16.4 13.6 9.9 8.2 7.4 2.5 2.8 C 0.185 0.234 0.164 0.136 0.02688 0.194105 0.252525 53.51351 6.157522 1176 J4-1996 53 48 15 23.2 26.8 20.6 18.2 11.1 9.9 8.9 2.5 2.8 C 0.232 0.268 0.206 0.182 0.042273 0.355975 0.225225 47.84483 6.157522 1177 J4-1996 53 49 15 20.5 23.8 18.4 16.1 10.8 9.4 8.2 2.5 2.8 C 0.205 0.238 0.184 0.161 0.033006 0.268226 0.231481 52.68293 6.157522 183 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1178 J4-1996 53 50 15 23 26.9 19.6 17.2 10.2 8.8 6.2 2.4 2.7 I 0.23 0.269 0.196 0.172 0.041548 0.29444 0.235294 44.34783 5.725553 1179 J4-1996 53 51 15 23.3 27.1 19.9 17.8 10.4 8.9 6.8 2.5 2.8 C 0.233 0.271 0.199 0.178 0.042638 0.307013 0.240385 44.63519 6.157522 1180 J4-1996 53 52 15 22.5 26.6 18.6 16.2 9.4 7.4 5.4 2.4 2.7 I 0.225 0.266 0.186 0.162 0.039761 0.228007 0.255319 41.77778 5.725553 1181 J4-1996 53 53 15 24.2 27.4 21.4 18.9 10.4 8.9 6.6 2.5 2.8 C 0.242 0.274 0.214 0.189 0.045996 0.34249 0.240385 42.97521 6.157522 1182 J4-1996 53 54 15 16.5 18.4 13.3 10.7 9.9 8.4 6.8 2.5 2.8 C 0.165 0.184 0.133 0.107 0.021382 0.127616 0.252525 60 6.157522 1183 J4-1996 53 55 15 16 18.8 13.1 10.1 9.8 7.8 6.4 2.4 2.9 I 0.16 0.188 0.131 0.101 0.020106 0.116589 0.244898 61.25 6.605199 1184 J4-1996 53 56 15 22.5 26.7 18.5 16.1 10.1 8.9 6.8 2.5 2.8 C 0.225 0.267 0.185 0.161 0.039761 0.27274 0.247525 44.88889 6.157522 1185 J4-1996 53 57 15 22.6 25.4 18.6 16.2 10.3 9.1 7.2 2.5 2.8 C 0.226 0.254 0.186 0.162 0.040115 0.272953 0.242718 45.57522 6.157522 1186 J4-1996 53 58 15 22.2 26.6 18.6 16.2 10.1 9.4 7.6 2.5 2.8 C 0.222 0.266 0.186 0.162 0.038708 0.28963 0.247525 45.4955 6.157522 1187 J4-1996 53 59 15 18.2 22.6 16.1 14.4 9.9 8.9 7 2.5 2.8 C 0.182 0.226 0.161 0.144 0.026016 0.204454 0.252525 54.3956 6.157522 1188 J4-1996 53 60 15 25.5 28.1 23.4 19.6 10.4 10.1 8.1 2.5 2.8 C 0.255 0.281 0.234 0.196 0.051071 0.444751 0.240385 40.78431 6.157522 1189 J4-1996 53 61 15 14 17.3 12.1 9.6 8.1 6.8 5.2 2.4 2.6 S 0.14 0.173 0.121 0.096 0.015394 0.086973 0.296296 57.85714 5.309292 1190 J4-1996 53 62 15 22 25.6 18.2 15.7 10.4 9.4 7.6 2.5 2.8 C 0.22 0.256 0.182 0.157 0.038013 0.273999 0.240385 47.27273 6.157522 1191 J4-1996 53 63 15 18.6 22.1 16.4 13.2 9.8 7.9 6.4 2.4 2.6 I 0.186 0.221 0.164 0.132 0.027172 0.179779 0.244898 52.68817 5.309292 1192 J4-1996 53 64 15 18.5 22.4 16.3 13.1 9.4 7.6 6.2 2.4 2.6 I 0.185 0.224 0.163 0.131 0.02688 0.172717 0.255319 50.81081 5.309292 1193 J4-1996 54 1 15 18 23.1 15.8 12.9 10.2 8.8 6.5 2.5 2.8 C 0.18 0.231 0.158 0.129 0.025447 0.195662 0.245098 56.66667 6.157522 1194 J4-1996 54 2 15 21.5 25.4 19.2 16.8 10.9 9.4 8.4 2.5 2.8 C 0.215 0.254 0.192 0.168 0.036305 0.295551 0.229358 50.69767 6.157522 1195 J4-1996 54 3 15 22.5 25.6 20.4 18.2 10.3 8.7 6.4 2.5 2.8 C 0.225 0.256 0.204 0.182 0.039761 0.30193 0.242718 45.77778 6.157522 1196 J4-1996 54 4 15 27.8 29.8 25.6 23.4 10.5 8.9 6.9 2.5 2.7 C 0.278 0.298 0.256 0.234 0.060699 0.472648 0.238095 37.76978 5.725553 1197 J4-1996 54 5 15 15.2 17.7 13.4 11.3 8.6 7.2 5.4 2.4 2.6 I 0.152 0.177 0.134 0.113 0.018146 0.109254 0.27907 56.57895 5.309292 1198 J4-1996 54 6 15 26 29.3 23.8 21.4 10.4 8.6 6.2 2.5 2.8 C 0.26 0.293 0.238 0.214 0.053093 0.403263 0.240385 40 6.157522 1199 J4-1996 54 7 15 15.2 16.4 12.9 10.2 8.4 7.1 5.3 2.4 2.6 I 0.152 0.164 0.129 0.102 0.018146 0.09653 0.285714 55.26316 5.309292 1200 J4-1996 54 8 15 18.2 21.2 16.4 13.8 9.8 8 5.9 2.5 2.7 I 0.182 0.212 0.164 0.138 0.026016 0.17967 0.255102 53.84615 5.725553 1201 J4-1996 54 9 15 21 24.4 18.9 15.5 10.4 9.4 7.2 2.5 2.8 C 0.21 0.244 0.189 0.155 0.034636 0.278631 0.240385 49.52381 6.157522 1202 J4-1996 54 10 15 19.2 22.8 17.8 14.3 9.6 8 6.4 2.5 2.7 I 0.192 0.228 0.178 0.143 0.028953 0.208569 0.260417 50 5.725553 1203 J4-1996 54 11 15 14 16.4 12.2 10.4 8.4 7.3 5.2 2.4 2.6 I 0.14 0.164 0.122 0.104 0.015394 0.092927 0.285714 60 5.309292 1204 J4-1996 54 12 15 15.5 17.9 13.6 11.5 10.2 8 6.3 2.5 2.7 I 0.155 0.179 0.136 0.115 0.018869 0.124878 0.245098 65.80645 5.725553 1205 J4-1996 54 13 15 21 24.3 19.4 17.1 10.4 8.6 6.5 2.5 2.9 C 0.21 0.243 0.194 0.171 0.034636 0.268864 0.240385 49.52381 6.605199 184 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1206 J4-1996 54 14 15 10.5 12.3 8.6 5.4 7.4 5.2 3.4 2.4 2.6 S 0.105 0.123 0.086 0.054 0.008659 0.03242 0.324324 70.47619 5.309292 1207 J4-1996 54 15 15 21.5 23.8 18.9 15.6 10.9 9.2 7 2.5 2.8 C 0.215 0.238 0.189 0.156 0.036305 0.269594 0.229358 50.69767 6.157522 1208 J4-1996 54 16 15 17.8 19.6 15.2 13.5 9.9 7.8 5.6 2.5 2.7 I 0.178 0.196 0.152 0.135 0.024885 0.15219 0.252525 55.61798 5.725553 1209 J4-1996 54 17 15 28.7 31.4 26.4 23.6 11.2 9.5 7.2 2.5 2.8 C 0.287 0.314 0.264 0.236 0.064692 0.53855 0.223214 39.02439 6.157522 1210 J4-1996 54 18 15 10.2 12.6 8.4 6.5 7.6 6.5 4.3 2.4 2.6 S 0.102 0.126 0.084 0.065 0.008171 0.041117 0.315789 74.5098 5.309292 1211 J4-1996 54 19 15 21 23.4 19.2 16.3 11.1 9.4 7 2.5 2.8 C 0.21 0.234 0.192 0.163 0.034636 0.281505 0.225225 52.85714 6.157522 1212 J4-1996 54 20 15 14.4 16.8 11.9 9.2 9.4 7.9 5.2 2.4 2.7 I 0.144 0.168 0.119 0.092 0.016286 0.096515 0.255319 65.27778 5.725553 1213 J4-1996 54 21 15 15.5 17.5 13.2 10.4 9.4 8.9 6.4 2.5 2.8 C 0.155 0.175 0.132 0.104 0.018869 0.129475 0.265957 60.64516 6.157522 1214 J4-1996 54 22 15 22.5 25.1 20.3 18.4 11.1 9.4 7.6 2.5 2.8 C 0.225 0.251 0.203 0.184 0.039761 0.322002 0.225225 49.33333 6.157522 1215 J4-1996 54 23 15 20 23.2 18.4 15.8 10.1 8.9 6.8 2.5 2.8 C 0.2 0.232 0.184 0.158 0.031416 0.249559 0.247525 50.5 6.157522 1216 J4-1996 54 24 15 20.5 24.4 18.1 15.2 10.3 9 6.9 2.5 2.8 C 0.205 0.244 0.181 0.152 0.033006 0.251741 0.242718 50.2439 6.157522 1217 J4-1996 54 25 15 23.2 25.6 21.2 18.9 11.4 9.4 8.1 2.5 2.8 C 0.232 0.256 0.212 0.189 0.042273 0.345799 0.219298 49.13793 6.157522 1218 J4-1996 54 26 15 13.5 15.6 11.4 9.2 8 7.2 5.6 2.4 2.6 S 0.135 0.156 0.114 0.092 0.014314 0.079907 0.3 59.25926 5.309292 1219 J4-1996 54 27 15 25.6 27.4 23.2 20.5 11.1 9.4 8.5 2.5 2.8 C 0.256 0.274 0.232 0.205 0.051472 0.409 0.225225 43.35938 6.157522 1220 J4-1996 54 28 15 15.5 17.4 13.3 10.4 10.2 8.4 6.4 2.4 2.7 I 0.155 0.174 0.133 0.104 0.018869 0.122983 0.235294 65.80645 5.725553 1221 J4-1996 54 29 15 13.5 15.6 9.8 6.7 9.3 7.2 5.6 2.4 2.6 S 0.135 0.156 0.098 0.067 0.014314 0.063373 0.258065 68.88889 5.309292 1222 J4-1996 54 30 15 19.5 22.2 16.2 13.9 10.9 9.2 7.1 2.5 2.7 I 0.195 0.222 0.162 0.139 0.029865 0.20904 0.229358 55.89744 5.725553 1223 J4-1996 54 31 15 34.6 27.4 21.4 19.2 11.8 10.4 8.6 2.6 2.8 C 0.346 0.274 0.214 0.192 0.094025 0.401769 0.220339 34.10405 6.157522 1224 J4-1996 54 32 15 28.2 31.1 26.3 24.4 12.6 10.8 8.8 2.6 3.2 D 0.282 0.311 0.263 0.244 0.062458 0.612045 0.206349 44.68085 8.042477 1225 J4-1996 54 33 15 24.5 27.2 21.6 18.6 12.4 10.6 8.5 2.6 2.8 D 0.245 0.272 0.216 0.186 0.047144 0.409606 0.209677 50.61224 6.157522 1226 J4-1996 54 34 15 23.5 25.6 19.6 17.2 10.4 9.3 7.8 2.5 2.8 C 0.235 0.256 0.196 0.172 0.043374 0.302861 0.240385 44.25532 6.157522 1227 J4-1996 54 35 15 22.5 24.4 19.2 17 10.6 9.5 7.8 2.5 2.8 C 0.225 0.244 0.192 0.17 0.039761 0.293343 0.235849 47.11111 6.157522 1228 J4-1996 54 36 15 21.5 23.4 18.6 16.4 10.4 9.2 7.2 2.5 2.9 C 0.215 0.234 0.186 0.164 0.036305 0.264984 0.240385 48.37209 6.605199 1229 J4-1996 54 37 15 15.5 17.8 13.2 9.4 9.2 7.9 5.6 2.5 2.7 I 0.155 0.178 0.132 0.094 0.018869 0.113975 0.271739 59.35484 5.725553 1230 J4-1996 54 38 15 14.5 16.6 12.4 8.6 9.4 6.1 5.4 2.4 2.6 S 0.145 0.166 0.124 0.086 0.016513 0.077019 0.255319 64.82759 5.309292 1231 J4-1996 54 39 15 18 20.4 16.4 13.3 9.8 8.6 6.8 2.4 2.7 I 0.18 0.204 0.164 0.133 0.025447 0.187873 0.244898 54.44444 5.725553 185 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1232 J4-1996 54 40 15 20 22.6 18.1 16.4 10.4 9.1 7 2.5 2.8 C 0.2 0.226 0.181 0.164 0.031416 0.248977 0.240385 52 6.157522 1233 J4-1996 54 41 15 19.5 21.8 17.2 14.2 10.1 8.6 6.8 2.5 2.8 C 0.195 0.218 0.172 0.142 0.029865 0.209414 0.247525 51.79487 6.157522 1234 J4-1996 54 42 15 12.5 15.1 10.4 8.6 7.9 7.1 5.4 2.4 2.6 S 0.125 0.151 0.104 0.086 0.012272 0.068274 0.303797 63.2 5.309292 1235 J4-1996 54 43 15 16.7 18.2 14.1 11.9 9.8 8.2 6.3 2.5 2.7 I 0.167 0.182 0.141 0.119 0.021904 0.136114 0.255102 58.68263 5.725553 1236 J4-1996 54 44 15 10.6 12.7 8.5 6.1 8.9 7 5.2 2.5 2.7 I 0.106 0.127 0.085 0.061 0.008825 0.04467 0.280899 83.96226 5.725553 1237 J4-1996 54 45 15 10.5 12.8 8.4 6.2 9.1 7.8 5.6 2.5 2.7 I 0.105 0.128 0.084 0.062 0.008659 0.04947 0.274725 86.66667 5.725553 1238 J4-1996 54 46 15 20 22.4 18.2 15.6 10.2 8.6 6.4 2.5 2.8 C 0.2 0.224 0.182 0.156 0.031416 0.233037 0.245098 51 6.157522 1239 J4-1996 54 47 15 19 21.5 17.4 15.2 9.6 7.4 5.8 2.5 2.8 C 0.19 0.215 0.174 0.152 0.028353 0.184464 0.260417 50.52632 6.157522 1240 J4-1996 54 48 15 11.5 14.6 9.4 7.1 10.9 9.5 7.8 2.4 2.9 I 0.115 0.146 0.094 0.071 0.010387 0.076728 0.220183 94.78261 6.605199 1241 J4-1996 54 49 15 18 21.1 16.2 13.3 10.4 8.6 6.8 2.5 2.9 C 0.18 0.211 0.162 0.133 0.025447 0.188208 0.240385 57.77778 6.605199 1242 J4-1996 54 50 15 22.5 25.3 20.1 18.4 10.1 8.2 6.2 2.5 2.8 C 0.225 0.253 0.201 0.184 0.039761 0.278508 0.247525 44.88889 6.157522 1243 J4-1996 54 51 15 20.1 23.4 18.4 15.9 9.4 7.6 5.9 2.5 2.8 C 0.201 0.234 0.184 0.159 0.031731 0.214349 0.265957 46.76617 6.157522 1244 J4-1996 54 52 15 13.2 15.6 11.5 9.4 7.8 6.9 4.8 2.4 2.6 S 0.132 0.156 0.115 0.094 0.013685 0.077741 0.307692 59.09091 5.309292 1245 J4-1996 54 53 15 22.3 25.2 20.1 18.3 10.4 8.6 6.4 2.5 2.8 C 0.223 0.252 0.201 0.183 0.039057 0.291112 0.240385 46.63677 6.157522 1246 J4-1996 54 54 15 17.5 19.6 15.3 13.4 9.8 7.4 5.3 2.5 2.7 I 0.175 0.196 0.153 0.134 0.024053 0.145306 0.255102 56 5.725553 1247 J4-1996 54 55 15 18.2 20.3 15.5 12.4 9.6 7.1 5.4 2.5 2.7 I 0.182 0.203 0.155 0.124 0.026016 0.141904 0.260417 52.74725 5.725553 1248 J4-1996 54 56 15 16.2 18.4 14.4 11.9 8.9 6.9 4.8 2.5 2.7 I 0.162 0.184 0.144 0.119 0.020612 0.118285 0.280899 54.93827 5.725553 1249 J4-1996 54 57 15 8.2 11.2 6.4 3.2 7.8 6.3 3.9 2.4 2.6 S 0.082 0.112 0.064 0.032 0.005281 0.0247 0.307692 95.12195 5.309292 1250 J4-1996 54 58 15 11.5 13.4 10.4 8.4 7.9 7 5.3 2.4 2.6 S 0.115 0.134 0.104 0.084 0.010387 0.062561 0.303797 68.69565 5.309292 1251 J4-1996 54 59 15 11.2 13.1 9.5 7.4 7.8 7.1 5.2 2.4 2.6 S 0.112 0.131 0.095 0.074 0.009852 0.054589 0.307692 69.64286 5.309292 1252 J4-1996 54 60 15 15.8 17.6 13.4 11.9 9.4 8.2 6.1 2.5 2.7 I 0.158 0.176 0.134 0.119 0.019607 0.125543 0.265957 59.49367 5.725553 1253 J4-1996 54 61 15 30 32.5 28.4 25.5 11.6 9.9 7.8 2.5 3.4 D 0.3 0.325 0.284 0.255 0.070686 0.639237 0.215517 38.66667 9.079203 1254 J4-1996 55 1 15 22.1 24.6 20.2 17.6 10.9 9.6 7.2 2.5 2.8 C 0.221 0.246 0.202 0.176 0.03836 0.320076 0.229358 49.32127 6.157522 1255 J4-1996 55 2 15 24 26.3 22.3 19.4 10.8 9.8 7.4 2.5 2.8 C 0.24 0.263 0.223 0.194 0.045239 0.392184 0.231481 45 6.157522 1256 J4-1996 55 3 15 18.5 21.9 15.9 13.5 9.4 8.4 6.2 2.5 2.8 I 0.185 0.219 0.159 0.135 0.02688 0.183967 0.265957 50.81081 6.157522 1257 J4-1996 55 4 15 22 24.4 19.3 16.8 9.8 8.6 6.9 2.5 2.8 C 0.22 0.244 0.193 0.168 0.038013 0.266525 0.255102 44.54545 6.157522 186 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1258 J4-1996 55 5 15 15 17.6 12.8 10.2 9.2 9.6 5.8 2.5 2.7 I 0.15 0.176 0.128 0.102 0.017671 0.134355 0.271739 61.33333 5.725553 1259 J4-1996 55 6 15 17.5 19.4 15.2 13.4 10.1 8.4 6.2 2.5 2.8 C 0.175 0.194 0.152 0.134 0.024053 0.162743 0.247525 57.71429 6.157522 1260 J4-1996 55 7 15 31.8 33.6 29.4 26.8 12.4 10.7 8.4 2.6 3.4 D 0.318 0.336 0.294 0.268 0.079423 0.742982 0.209677 38.99371 9.079203 1261 J4-1996 55 8 15 15.5 17.6 13.2 10.9 9.6 7.2 5.4 2.5 2.7 I 0.155 0.176 0.132 0.109 0.018869 0.106079 0.260417 61.93548 5.725553 1262 J4-1996 55 9 15 24.4 26.8 21.8 19.4 10.4 8.6 6.2 2.5 2.8 C 0.244 0.268 0.218 0.194 0.046759 0.337221 0.240385 42.62295 6.157522 1263 J4-1996 55 10 15 25 27.4 23.4 21.2 10.3 8.4 6.1 2.5 2.8 C 0.25 0.274 0.234 0.212 0.049087 0.372798 0.242718 41.2 6.157522 1264 J4-1996 55 11 15 17.8 20.1 15.3 13.4 9.6 7.8 5.9 2.5 2.8 C 0.178 0.201 0.153 0.134 0.024885 0.155188 0.260417 53.93258 6.157522 1265 J4-1996 55 12 15 17.5 19.8 15.2 13.1 10.3 8.1 6 2.5 2.8 C 0.175 0.198 0.152 0.131 0.024053 0.157751 0.242718 58.85714 6.157522 1266 J4-1996 55 13 15 12.5 15.2 9.8 7.2 9.2 7.6 5.8 2.5 2.7 I 0.125 0.152 0.098 0.072 0.012272 0.06636 0.271739 73.6 5.725553 1267 J4-1996 55 14 15 20.5 22.4 18.1 16.4 10.6 8.5 6.8 2.5 2.8 C 0.205 0.224 0.181 0.164 0.033006 0.23156 0.235849 51.70732 6.157522 1268 J4-1996 55 15 15 15.8 17.6 13.4 11.6 10.4 8.4 6.2 2.5 2.8 C 0.158 0.176 0.134 0.116 0.019607 0.12783 0.240385 65.82278 6.157522 1269 J4-1996 55 16 15 18 20.4 16.2 14.4 10.4 8.2 6 2.5 2.8 C 0.18 0.204 0.162 0.144 0.025447 0.179606 0.240385 57.77778 6.157522 1270 J4-1996 55 17 15 21.5 23.6 18.7 16.3 10.9 9.6 7.2 2.5 2.8 C 0.215 0.236 0.187 0.163 0.036305 0.279151 0.229358 50.69767 6.157522 1271 J4-1996 55 18 15 15 17.8 13.1 10.8 10.2 8.4 6 2.5 2.8 C 0.15 0.178 0.131 0.108 0.017671 0.123142 0.245098 68 6.157522 1272 J4-1996 55 19 15 15.5 17.9 13.4 10.6 10.6 8.5 6.2 2.5 2.8 C 0.155 0.179 0.134 0.106 0.018869 0.128067 0.235849 68.3871 6.157522 1273 J4-1996 55 20 15 25.6 27.8 23.2 20.8 11.2 9.5 7.3 2.5 2.8 C 0.256 0.278 0.232 0.208 0.051472 0.417638 0.223214 43.75 6.157522 1274 J4-1996 55 21 15 15.6 17.8 13.5 11.6 9.8 7.6 5.8 2.5 2.7 I 0.156 0.178 0.135 0.116 0.019113 0.117431 0.255102 62.82051 5.725553 1275 J4-1996 55 22 15 7.5 9.4 6.2 5.4 7.7 5.8 3.4 2.4 2.6 S 0.075 0.094 0.062 0.054 0.004418 0.020596 0.311688 102.6667 5.309292 1276 J4-1996 55 23 15 11.5 13.4 9.4 6.8 8.6 6.2 4.3 2.4 2.6 S 0.115 0.134 0.094 0.068 0.010387 0.04701 0.27907 74.78261 5.309292 1277 J4-1996 55 24 15 23.5 26.6 20.8 18.2 10.9 9.8 7.4 2.5 2.8 C 0.235 0.266 0.208 0.182 0.043374 0.355258 0.229358 46.38298 6.157522 1278 J4-1996 55 25 15 19.5 21.6 16.9 13.8 10.2 8.6 6.4 2.5 2.8 C 0.195 0.216 0.169 0.138 0.029865 0.20257 0.245098 52.30769 6.157522 1279 J4-1996 55 26 15 16.5 18.6 14.1 11.9 10.4 8.6 6.4 2.5 2.8 C 0.165 0.186 0.141 0.119 0.021382 0.144411 0.240385 63.0303 6.157522 1280 J4-1996 55 27 15 20.5 22.8 13.6 15.7 11.2 9.2 7.1 2.5 2.8 C 0.205 0.228 0.136 0.157 0.033006 0.181385 0.223214 54.63415 6.157522 1281 J4-1996 55 28 15 21.5 23.6 19.2 16.6 10.9 9.8 7.4 2.5 2.8 C 0.215 0.236 0.192 0.166 0.036305 0.295956 0.229358 50.69767 6.157522 1282 J4-1996 55 29 15 31.5 33.8 28.9 24.8 12.4 10.6 8.2 2.6 3.4 D 0.315 0.338 0.289 0.248 0.077931 0.707411 0.209677 39.36508 9.079203 1283 J4-1996 55 30 15 15.2 17.4 13.4 11.2 10.4 8.6 6.4 2.5 2.8 C 0.152 0.174 0.134 0.112 0.018146 0.129059 0.240385 68.42105 6.157522 1284 J4-1996 55 31 15 15.2 17.5 13.2 11 10.2 8.5 6.3 2.5 2.7 C 0.152 0.175 0.132 0.11 0.018146 0.125085 0.245098 67.10526 5.725553 187 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1285 J4-1996 55 32 15 12.6 14.8 10.1 8.6 9.6 7.8 6.9 2.5 3.3 I 0.126 0.148 0.101 0.086 0.012469 0.071577 0.260417 76.19048 8.552986 1286 J4-1996 55 33 15 34.2 37.1 31.4 29.2 13.4 11.4 9.1 2.6 2.8 D 0.342 0.371 0.314 0.292 0.091863 0.921154 0.19403 39.18129 6.157522 1287 J4-1996 55 34 15 21.4 23.6 19.2 16.8 11.1 9.6 7.8 2.5 2.6 C 0.214 0.236 0.192 0.168 0.035968 0.290756 0.225225 51.86916 5.309292 1288 J4-1996 55 35 15 18.8 21.4 16.4 14.2 7.8 6.8 4.9 2.4 2.6 S 0.188 0.214 0.164 0.142 0.027759 0.154475 0.307692 41.48936 5.309292 1289 J4-1996 55 36 15 11.3 13.6 9.6 7.4 7.4 6.2 4.1 2.4 3.3 S 0.113 0.136 0.096 0.074 0.010029 0.049373 0.324324 65.48673 8.552986 1290 J4-1996 55 37 15 31.5 33.4 28.8 25.6 12.8 11.5 9.8 2.5 3.4 D 0.315 0.334 0.288 0.256 0.077931 0.766023 0.195313 40.63492 9.079203 1291 J4-1996 55 38 15 29.5 32.2 27.4 23.4 12.6 11.4 9.6 2.6 2.6 D 0.295 0.322 0.274 0.234 0.068349 0.684564 0.206349 42.71186 5.309292 1292 J4-1996 55 39 15 14.6 16.8 12.2 10.1 7.8 6.6 4.8 2.4 2.8 S 0.146 0.168 0.122 0.101 0.016742 0.084632 0.307692 53.42466 6.157522 1293 J4-1996 55 40 15 29.2 30.2 27.4 24.9 11.1 9.8 7.9 2.5 2.8 C 0.292 0.302 0.274 0.249 0.066966 0.581769 0.225225 38.0137 6.157522 1294 J4-1996 55 41 15 15.2 17.8 13.4 11.5 10.4 8.6 6.8 2.5 2.8 I 0.152 0.178 0.134 0.115 0.018146 0.131411 0.240385 68.42105 6.157522 1295 J4-1996 55 42 15 22.5 24.6 20.6 18.4 10.9 9.4 7.9 2.5 2.8 C 0.225 0.246 0.206 0.184 0.039761 0.324983 0.229358 48.44444 6.157522 1296 J4-1996 55 43 15 18.2 21.4 16.4 14.2 10.4 8.8 6.9 2.5 2.8 C 0.182 0.214 0.164 0.142 0.026016 0.199908 0.240385 57.14286 6.157522 1297 J4-1996 55 44 15 13.2 15.6 11.4 9.6 8.9 7.7 5.3 2.5 2.8 I 0.132 0.156 0.114 0.096 0.013685 0.086214 0.280899 67.42424 6.157522 1298 J4-1996 55 45 15 26.2 28.8 24.6 22.5 11.9 10.9 9.2 2.5 2.8 C 0.262 0.288 0.246 0.225 0.053913 0.535956 0.210084 45.41985 6.157522 1299 J4-1996 55 46 15 19.4 21.5 17.8 15.6 10.9 9.5 9.4 2.5 2.8 I 0.194 0.215 0.178 0.156 0.029559 0.245348 0.229358 56.18557 6.157522 1300 J4-1996 55 47 15 12.5 15.1 10.4 8.8 8.8 7.8 5.4 2.4 2.6 S 0.125 0.151 0.104 0.088 0.012272 0.07536 0.272727 70.4 5.309292 1301 J4-1996 56 1 15 27 29.2 24.3 20.8 12.1 10.1 8.1 2.5 2.8 C 0.27 0.292 0.243 0.208 0.057256 0.482197 0.206612 44.81481 6.157522 1302 J4-1996 56 2 15 16 19.8 14.1 12 9.6 7.6 5.6 2.4 2.8 I 0.16 0.198 0.141 0.12 0.020106 0.132441 0.25 60 6.157522 1303 J4-1996 56 3 15 13 15.6 11.1 9.2 9.2 7.2 5.2 2.4 2.6 S 0.13 0.156 0.111 0.092 0.013273 0.077362 0.26087 70.76923 5.309292 1304 J4-1996 56 4 15 22.5 26.4 20.5 18.5 11.8 9.8 7.8 2.5 2.8 C 0.225 0.264 0.205 0.185 0.039761 0.348953 0.211864 52.44444 6.157522 1305 J4-1996 56 5 15 19.5 23.5 17.2 15.5 10.6 8.4 6.4 2.4 2.8 I 0.195 0.235 0.172 0.155 0.029865 0.217257 0.226415 54.35897 6.157522 1306 J4-1996 56 6 15 25.2 27.7 21.7 19.6 12.2 10 8 2.5 2.8 C 0.252 0.277 0.217 0.196 0.049876 0.397282 0.204918 48.4127 6.157522 1307 J4-1996 56 7 15 11 13.1 9 7.2 11.8 9.8 7.8 2.4 2.8 I 0.11 0.131 0.09 0.072 0.009503 0.070228 0.20339 107.2727 6.157522 1308 J4-1996 56 8 15 12.5 16.5 10.4 8.5 10.1 8.1 6.1 2.4 2.8 I 0.125 0.165 0.104 0.085 0.012272 0.082399 0.237624 80.8 6.157522 1309 J4-1996 56 9 15 27 29.1 25 21.6 12.2 10.1 8.1 2.6 2.9 D 0.27 0.291 0.25 0.216 0.057256 0.504161 0.213115 45.18519 6.605199 1310 J4-1996 56 10 15 16.6 19.5 14.5 12.6 10.9 8.9 6.9 2.4 2.8 I 0.166 0.195 0.145 0.126 0.021642 0.160772 0.220183 65.66265 6.157522 188 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1311 J4-1996 56 11 15 20.7 24.7 18.7 16.7 10.6 8.6 7.6 2.5 2.8 C 0.207 0.247 0.187 0.167 0.033654 0.257539 0.235849 51.20773 6.157522 1312 J4-1996 56 12 15 21.1 23.2 19.1 17.2 11.4 9.4 7.4 2.5 2.8 C 0.211 0.232 0.191 0.172 0.034967 0.282183 0.219298 54.02844 6.157522 1313 J4-1996 56 13 15 25.2 28.4 23.1 20.2 11.8 9.8 7.8 2.5 2.8 C 0.252 0.284 0.231 0.202 0.049876 0.429621 0.211864 46.8254 6.157522 1314 J4-1996 56 14 15 15.5 19.5 13.6 11.6 9.8 7.8 5.8 2.4 2.8 I 0.155 0.195 0.136 0.116 0.018869 0.128102 0.244898 63.22581 6.157522 1315 J4-1996 56 15 15 22 24 20.1 18.1 11.2 9.2 7.2 2.5 2.8 C 0.22 0.24 0.201 0.181 0.038013 0.303436 0.223214 50.90909 6.157522 1316 J4-1996 56 16 15 21 25.3 19.1 17.2 12.1 10 8 2.5 2.8 C 0.21 0.253 0.191 0.172 0.034636 0.313527 0.206612 57.61905 6.157522 1317 J4-1996 56 17 15 20.5 23.6 18.3 16.4 11.6 9.6 7.6 2.5 2.8 C 0.205 0.236 0.183 0.164 0.033006 0.272122 0.215517 56.58537 6.157522 1318 J4-1996 56 18 15 16.5 19.5 14.4 12.5 8.5 6.5 4.5 2.4 2.8 I 0.165 0.195 0.144 0.125 0.021382 0.116221 0.282353 51.51515 6.157522 1319 J4-1996 56 19 15 13.5 17.6 11.5 9.4 8.4 6.4 4.4 2.4 2.8 S 0.135 0.176 0.115 0.094 0.014314 0.07767 0.285714 62.22222 6.157522 1320 J4-1996 56 20 15 24 27.2 21.1 19.2 11.9 9.9 7.9 2.5 2.8 C 0.24 0.272 0.211 0.192 0.045239 0.374429 0.210084 49.58333 6.157522 1321 J4-1996 56 21 15 14.2 17.1 12.1 10.3 9.2 4.4 5.1 2.4 2.8 I 0.142 0.171 0.121 0.103 0.015837 0.056682 0.26087 64.78873 6.157522 1322 J4-1996 56 22 15 14.3 16.8 12.3 10.1 8.4 4.5 4.4 2.4 2.8 I 0.143 0.168 0.123 0.101 0.016061 0.058281 0.285714 58.74126 6.157522 1323 J4-1996 56 23 15 19.5 23.1 17.4 15.5 8.5 6.8 4.5 2.5 2.8 C 0.195 0.231 0.174 0.155 0.029865 0.17668 0.294118 43.58974 6.157522 1324 J4-1996 56 24 15 24.5 26.5 21.4 19.5 10.8 4.6 6.8 2.5 2.8 C 0.245 0.265 0.214 0.195 0.047144 0.175484 0.231481 44.08163 6.157522 1325 J4-1996 56 25 15 14.2 17.4 12.1 10.2 8.6 6.6 4.6 2.4 2.8 I 0.142 0.174 0.121 0.102 0.015837 0.085741 0.27907 60.56338 6.157522 1326 J4-1996 56 26 15 21 23.2 19.1 17.2 11.2 9.2 2.4 2.5 2.8 C 0.21 0.232 0.191 0.172 0.034636 0.276179 0.223214 53.33333 6.157522 1327 J4-1996 56 27 15 16.5 19.5 14.5 12.4 10.5 8.5 6.5 2.4 2.8 I 0.165 0.195 0.145 0.124 0.021382 0.15299 0.228571 63.63636 6.157522 1328 J4-1996 56 28 15 20.2 22.1 18.1 16.2 12.2 10.2 8.2 2.5 2.8 C 0.202 0.221 0.181 0.162 0.032047 0.275219 0.204918 60.39604 6.157522 1329 J4-1996 56 29 15 27.5 29.6 25.4 23.5 12.1 10.1 8.1 2.5 2.8 C 0.275 0.296 0.254 0.235 0.059396 0.530031 0.206612 44 6.157522 1330 J4-1996 56 30 15 26.6 29.6 24.6 22.4 11.8 9.8 7.8 2.5 2.8 C 0.266 0.296 0.246 0.224 0.055572 0.487286 0.211864 44.3609 6.157522 1331 J4-1996 56 31 15 24.5 26.6 22.1 20.5 11.4 9.4 7.4 2.5 2.8 C 0.245 0.266 0.221 0.205 0.047144 0.379159 0.219298 46.53061 6.157522 1332 J4-1996 56 32 15 11 13.4 9.1 7 8.2 5.2 3.2 2.4 2.6 S 0.11 0.134 0.091 0.07 0.009503 0.038104 0.292683 74.54545 5.309292 1333 J4-1996 56 33 15 15.2 17.4 13.2 11.1 9.4 7.4 5.4 2.4 2.8 I 0.152 0.174 0.132 0.111 0.018146 0.108773 0.255319 61.84211 6.157522 1334 J4-1996 56 34 15 20 24.2 18.1 16.1 10.6 8.6 6.8 2.5 2.8 C 0.2 0.242 0.181 0.161 0.031416 0.242629 0.235849 53 6.157522 1335 J4-1996 56 35 15 17 19.1 15.2 13.1 9.6 7.6 5.6 2.4 2.6 I 0.17 0.191 0.152 0.131 0.022698 0.145304 0.25 56.47059 5.309292 1336 J4-1996 56 36 15 19.5 21.5 17.4 15.4 10.8 8.8 6.8 2.4 2.6 I 0.195 0.215 0.174 0.154 0.029865 0.220068 0.222222 55.38462 5.309292 1337 J4-1996 56 37 15 20.6 22.6 18.6 16.1 11.4 9.4 7.4 2.5 2.8 C 0.206 0.226 0.186 0.161 0.033329 0.265017 0.219298 55.33981 6.157522 1338 J4-1996 56 38 15 21.5 23.5 19.5 17.4 11.8 9.8 7.8 2.5 2.8 C 0.215 0.235 0.195 0.174 0.036305 0.304799 0.211864 54.88372 6.157522 189 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1339 J4-1996 56 39 15 18.5 21.5 16.5 14.6 10.4 8.4 6.4 2.4 2.6 I 0.185 0.215 0.165 0.146 0.02688 0.194007 0.230769 56.21622 5.309292 1340 J4-1996 56 40 15 17.5 19.5 15.4 13.5 10.1 8.1 6.1 2.4 2.6 I 0.175 0.195 0.154 0.135 0.024053 0.160224 0.237624 57.71429 5.309292 1341 J4-1996 56 41 15 11 13.1 9.1 7.2 8.2 6.2 4.2 2.4 2.6 S 0.11 0.131 0.091 0.072 0.009503 0.045017 0.292683 74.54545 5.309292 1342 J4-1996 56 42 15 24 26.1 22.1 20.1 12.2 10.2 8.2 2.5 2.8 C 0.24 0.261 0.221 0.201 0.045239 0.405742 0.204918 50.83333 6.157522 1343 J4-1996 56 43 15 18.2 24.2 16.1 14.1 10.4 8.4 6.4 2.4 2.6 I 0.182 0.242 0.161 0.141 0.026016 0.200261 0.230769 57.14286 5.309292 1344 J4-1996 56 44 15 24.7 26.7 22.5 20.7 12.6 10.6 8.6 2.5 2.8 C 0.247 0.267 0.225 0.207 0.047916 0.439347 0.198413 51.01215 6.157522 1345 J4-1996 56 45 15 16 18.1 14.1 12 9.6 7.6 5.6 2.4 2.6 I 0.16 0.181 0.141 0.12 0.020106 0.126031 0.25 60 5.309292 1346 J4-1996 56 46 15 18 20.2 16.1 14.1 9.9 7.9 5.9 2.4 2.6 I 0.18 0.202 0.161 0.141 0.025447 0.169975 0.242424 55 5.309292 1347 J4-1996 56 47 15 14.5 18.6 12.5 10.5 9.6 7.6 5.6 2.4 2.6 S 0.145 0.186 0.125 0.105 0.016513 0.107563 0.25 66.2069 5.309292 1348 J4-1996 56 48 15 24.3 26.5 20.1 18.3 12.8 10.8 8.4 2.5 2.8 C 0.243 0.265 0.201 0.183 0.046377 0.375084 0.195313 52.6749 6.157522 1349 J4-1996 56 49 15 23.2 25.2 21.2 19.2 11.8 9.8 7.8 2.5 2.8 C 0.232 0.252 0.212 0.192 0.042273 0.359373 0.211864 50.86207 6.157522 1350 J4-1996 56 50 15 15 17.2 13 11.1 9.2 7.2 5.2 2.4 2.8 S 0.15 0.172 0.13 0.111 0.017671 0.103206 0.26087 61.33333 6.157522 1351 J4-1996 56 51 15 26 28.1 24.2 22.1 11.6 9.6 7.6 2.5 2.8 C 0.26 0.281 0.242 0.221 0.053093 0.454976 0.215517 44.61538 6.157522 1352 J4-1996 56 52 15 20.5 22.6 18.5 16.5 11.9 9.9 7.9 2.5 2.8 C 0.205 0.226 0.185 0.165 0.033006 0.27888 0.210084 58.04878 6.157522 1353 J4-1996 56 53 15 15 19.2 13.2 11.1 11.6 9.6 7.6 2.5 2.8 C 0.15 0.192 0.132 0.111 0.017671 0.14939 0.215517 77.33333 6.157522 1354 J4-1996 56 54 15 17.6 19.8 15.6 13.5 11.6 9.6 7.6 2.5 2.8 C 0.176 0.198 0.156 0.135 0.024328 0.194493 0.215517 65.90909 6.157522 1355 J4-1996 56 55 15 23 25.4 21.1 19.2 12.1 10.1 8.1 2.4 2.8 C 0.23 0.254 0.211 0.192 0.041548 0.369476 0.198347 52.6087 6.157522 1356 J4-1996 56 56 15 17.2 19.4 15.2 13.1 10.8 8.8 6.8 2.4 2.6 I 0.172 0.194 0.152 0.131 0.023235 0.169577 0.222222 62.7907 5.309292 1357 J4-1996 56 57 15 13.5 15.8 11.5 9.2 9.6 7.6 5.6 2.4 2.6 I 0.135 0.158 0.115 0.092 0.014314 0.085882 0.25 71.11111 5.309292 1358 J4-1996 56 58 15 16.5 19.5 14.5 12.6 9.8 7.8 5.8 2.5 2.6 I 0.165 0.195 0.145 0.126 0.021382 0.140901 0.255102 59.39394 5.309292 1359 J4-1996 56 59 15 22.7 26.8 20.7 18.6 11.4 9.4 7.4 2.5 2.8 C 0.227 0.268 0.207 0.186 0.040471 0.341841 0.219298 50.22026 6.157522 1360 J4-1996 56 60 15 17.8 19.6 15.8 13.8 11.5 9.5 7.5 2.5 2.8 C 0.178 0.196 0.158 0.138 0.024885 0.19563 0.217391 64.60674 6.157522 1361 J4-1996 56 61 15 17.3 19.3 15.6 13.3 11.5 9.3 7.3 2.5 2.8 C 0.173 0.193 0.156 0.133 0.023506 0.185383 0.217391 66.47399 6.157522 1362 J4-1996 56 62 15 20.1 22.2 18.1 16.1 11.4 9.4 7.4 2.5 2.8 C 0.201 0.222 0.181 0.161 0.031731 0.253781 0.219298 56.71642 6.157522 1363 J4-1996 57 1 15 22 24.2 19.6 14.6 10.2 9.4 7.8 2.6 2.8 C 0.22 0.242 0.196 0.146 0.038013 0.287366 0.254902 46.36364 6.157522 1364 J4-1996 57 2 15 17.1 19.8 14.7 11.8 9.5 8.6 6.2 2.4 2.6 I 0.171 0.198 0.147 0.118 0.022966 0.157112 0.252632 55.55556 5.309292 1365 J4-1996 57 3 15 17 19.6 14.5 11.5 9.6 8.7 6.3 2.4 2.6 I 0.17 0.196 0.145 0.115 0.022698 0.154586 0.25 56.47059 5.309292 1366 J4-1996 57 4 15 18 21.2 15.2 12.1 9.8 8.9 6.8 2.4 2.6 I 0.18 0.212 0.152 0.121 0.025447 0.177082 0.244898 54.44444 5.309292 190 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1367 J4-1996 57 5 15 17.4 20.1 14.4 11.4 9.6 8.8 6.5 2.4 2.6 I 0.174 0.201 0.144 0.114 0.023779 0.157054 0.25 55.17241 5.309292 1368 J4-1996 57 6 15 15 19.1 13.6 10.1 9.6 8.7 6.4 2.4 2.6 I 0.15 0.191 0.136 0.101 0.017671 0.137418 0.25 64 5.309292 1369 J4-1996 57 7 15 24 29.6 21.8 18.4 10.4 9.4 7.9 2.6 2.9 C 0.24 0.296 0.218 0.184 0.045239 0.383371 0.25 43.33333 6.605199 1370 J4-1996 57 8 15 24.5 27.9 21.2 17.6 10.6 9.8 7.4 2.6 2.8 C 0.245 0.279 0.212 0.176 0.047144 0.370212 0.245283 43.26531 6.157522 1371 J4-1996 57 9 15 13.7 16.8 11.4 9.4 8.5 7.4 5.2 2.4 2.6 I 0.137 0.168 0.114 0.094 0.014741 0.086253 0.282353 62.0438 5.309292 1372 J4-1996 57 10 15 16.2 19.1 14.1 11.2 9.2 7 6.4 2.4 2.6 I 0.162 0.191 0.141 0.112 0.020612 0.117789 0.26087 56.79012 5.309292 1373 J4-1996 57 11 15 21.5 23.6 18.6 14.2 10.1 8.9 6.9 2.6 2.8 C 0.215 0.236 0.186 0.142 0.036305 0.249596 0.257426 46.97674 6.157522 1374 J4-1996 57 12 15 26.1 29.1 23.4 18.9 10.4 9.4 7.9 2.6 2.8 C 0.261 0.291 0.234 0.189 0.053502 0.417649 0.25 39.84674 6.157522 1375 J4-1996 57 13 15 9.4 11.2 8.2 6.4 7.4 6.8 4.8 2.3 2.6 S 0.094 0.112 0.082 0.064 0.00694 0.038752 0.310811 78.7234 5.309292 1376 J4-1996 57 14 15 21.5 24.3 19.4 11.6 10.5 9.6 7.8 2.6 2.8 C 0.215 0.243 0.194 0.116 0.036305 0.280292 0.247619 48.83721 6.157522 1377 J4-1996 57 15 15 18.5 20.6 16.2 11.4 10.2 8.9 6.2 2.5 2.8 C 0.185 0.206 0.162 0.114 0.02688 0.186876 0.245098 55.13514 6.157522 1378 J4-1996 57 16 15 13.2 17.2 11.1 9.1 8.6 7.9 5.2 2.4 2.6 I 0.132 0.172 0.111 0.091 0.013685 0.090121 0.27907 65.15152 5.309292 1379 J4-1996 57 17 15 20 23.4 18.6 14.2 10.4 9.7 7.4 2.6 2.8 C 0.2 0.234 0.186 0.142 0.031416 0.270838 0.25 52 6.157522 1380 J4-1996 57 18 15 12.5 14.9 10.2 8.4 8.7 7.8 5.3 2.4 2.6 I 0.125 0.149 0.102 0.084 0.012272 0.072363 0.275862 69.6 5.309292 1381 J4-1996 57 19 15 17 19.6 14.4 11.1 8.9 7.7 5.4 2.4 2.6 I 0.17 0.196 0.144 0.111 0.022698 0.134741 0.269663 52.35294 5.309292 1382 J4-1996 57 20 15 13 17.8 11.2 9.1 8.8 7.8 5.6 2.4 2.6 I 0.13 0.178 0.112 0.091 0.013273 0.092036 0.272727 67.69231 5.309292 1383 J4-1996 57 21 15 24.2 27.9 21.8 16.2 10.4 9.3 7.9 2.6 2.8 C 0.242 0.279 0.218 0.162 0.045996 0.358126 0.25 42.97521 6.157522 1384 J4-1996 57 22 15 18 20.2 16.4 11.4 7.8 6.9 5.8 2.3 2.5 S 0.18 0.202 0.164 0.114 0.025447 0.145763 0.294872 43.33333 4.908739 1385 J4-1996 57 23 15 17 19.5 14.3 10.4 7.7 6.7 5.6 2.3 2.5 S 0.17 0.195 0.143 0.104 0.022698 0.114572 0.298701 45.29412 4.908739 1386 J4-1996 57 24 15 19.5 21.6 17 12.1 8.9 7.9 6.2 2.4 2.6 I 0.195 0.216 0.17 0.121 0.029865 0.182931 0.269663 45.64103 5.309292 1387 J4-1996 57 25 15 15.6 19.1 13.4 9.6 7.4 6.8 5.8 2.3 2.5 S 0.156 0.191 0.134 0.096 0.019113 0.104608 0.310811 47.4359 4.908739 1388 J4-1996 57 26 15 20 23.3 17.9 12.4 8.8 7.8 7.4 2.4 2.6 I 0.2 0.233 0.179 0.124 0.031416 0.201987 0.272727 44 5.309292 1389 J4-1996 57 27 15 25.2 28.1 23.1 16.4 10.4 9.6 8.2 2.6 2.8 C 0.252 0.281 0.231 0.164 0.049876 0.401245 0.25 41.26984 6.157522 1390 J4-1996 57 28 15 19.2 22.4 16.4 11.5 9.4 8.6 6.4 2.4 2.6 I 0.192 0.224 0.164 0.115 0.028953 0.192484 0.255319 48.95833 5.309292 1391 J4-1996 57 29 15 13.5 16.8 11.2 9.2 8.5 7.4 5.2 2.3 2.5 S 0.135 0.168 0.112 0.092 0.014314 0.084141 0.270588 62.96296 4.908739 1392 J4-1996 57 30 15 23.5 26.4 20.4 15.2 10.4 9.4 8.1 2.4 2.8 C 0.235 0.264 0.204 0.152 0.043374 0.319013 0.230769 44.25532 6.157522 1393 J4-1996 57 31 15 28.5 30.4 25.4 17.1 10.9 9.8 8.4 2 2.8 C 0.285 0.304 0.254 0.171 0.063794 0.487113 0.183486 38.24561 6.157522 1394 J4-1996 57 32 15 22 26.6 20.1 15.1 11.1 9.9 8 2.5 2.8 C 0.22 0.266 0.201 0.151 0.038013 0.330665 0.225225 50.45455 6.157522 191 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1395 J4-1996 57 33 15 14.3 16.6 11.8 9.6 9.4 8.4 6.4 2.4 2.6 I 0.143 0.166 0.118 0.096 0.016061 0.101674 0.255319 65.73427 5.309292 1396 J4-1996 57 34 15 21.5 23.6 18.4 12.6 10.2 9.1 6.8 2.6 2.8 C 0.215 0.236 0.184 0.126 0.036305 0.246571 0.254902 47.44186 6.157522 1397 J4-1996 57 35 15 9.5 10.9 7.6 6.4 8.4 6.5 4.8 2.4 2.6 S 0.095 0.109 0.076 0.064 0.007088 0.033252 0.285714 88.42105 5.309292 1398 J4-1996 57 36 15 17 19.4 14.6 11.2 9.6 7.9 5.6 2.4 2.6 I 0.17 0.194 0.146 0.112 0.022698 0.140064 0.25 56.47059 5.309292 1399 J4-1996 57 37 15 27.8 29.6 24.8 16.6 10.4 9.4 7.8 2.6 2.8 C 0.278 0.296 0.248 0.166 0.060699 0.444426 0.25 37.41007 6.157522 1400 J4-1996 57 38 15 13 15.9 11.4 8.4 8.1 6.8 5.2 2.4 2.6 S 0.13 0.159 0.114 0.084 0.013273 0.075056 0.296296 62.30769 5.309292 1401 J4-1996 57 39 15 11.5 13.2 9.6 7.4 8.4 6.8 4.9 2.4 2.5 S 0.115 0.132 0.096 0.074 0.010387 0.053197 0.285714 73.04348 4.908739 1402 J4-1996 57 40 15 16.5 18.4 12.9 9.4 9.4 7.9 6.2 2.5 2.6 I 0.165 0.184 0.129 0.094 0.021382 0.112982 0.265957 56.9697 5.309292 1403 J4-1996 57 41 15 26 28.9 23.6 15.5 10 9.4 7.8 2.6 2.8 C 0.26 0.289 0.236 0.155 0.053093 0.406457 0.26 38.46154 6.157522 1404 J4-1996 57 42 15 25.8 27.6 22.8 16.1 10.1 9.2 7.6 2.6 2.9 C 0.258 0.276 0.228 0.161 0.052279 0.373366 0.257426 39.14729 6.605199 1405 J4-1996 57 43 15 27.8 29.7 24.2 16.6 10.2 9.8 8.8 2.6 2.8 C 0.278 0.297 0.242 0.166 0.060699 0.449013 0.254902 36.69065 6.157522 1406 J4-1996 57 44 15 12.5 14.4 9.9 7.5 8.5 6.9 5.2 2.4 2.6 S 0.125 0.144 0.099 0.075 0.012272 0.059219 0.282353 68 5.309292 1407 J4-1996 57 45 15 12 15.1 9.8 7.4 8.4 6.8 4.8 2.4 2.5 S 0.12 0.151 0.098 0.074 0.01131 0.059365 0.285714 70 4.908739 1408 J4-1996 57 46 15 21.5 24.2 18.8 12.5 10.3 9.4 7.3 2.6 2.8 C 0.215 0.242 0.188 0.125 0.036305 0.265243 0.252427 47.90698 6.157522 1409 J4-1996 57 47 15 26.5 28.9 23.8 15.6 10.4 9.6 7.6 2.6 2.8 C 0.265 0.289 0.238 0.156 0.055155 0.420261 0.25 39.24528 6.157522 1410 J4-1996 57 48 15 13 15.6 10.6 9.1 9.2 7.9 5.8 2.4 2.6 I 0.13 0.156 0.106 0.091 0.013273 0.080206 0.26087 70.76923 5.309292 1411 J4-1996 57 49 15 15 17.8 12.4 9.4 9.4 8.4 6.9 2.4 2.6 I 0.15 0.178 0.124 0.094 0.017671 0.112181 0.255319 62.66667 5.309292 1412 J4-1996 57 50 15 12.5 15.6 10.2 8.9 8.6 7.6 4.8 2.4 2.5 S 0.125 0.156 0.102 0.089 0.012272 0.073492 0.27907 68.8 4.908739 1413 J4-1996 57 51 15 17.8 20.1 14.7 11.3 9.4 8.3 5.8 2.4 2.8 I 0.178 0.201 0.147 0.113 0.024885 0.151677 0.255319 52.80899 6.157522 1414 J4-1996 57 52 15 12.8 15.6 10.1 8.9 8.4 6.7 4.9 2.4 2.6 S 0.128 0.156 0.101 0.089 0.012868 0.064077 0.285714 65.625 5.309292 1415 J4-1996 57 53 15 22.2 24.8 18.4 12.4 10.2 8.9 7.8 2.6 2.9 C 0.222 0.248 0.184 0.124 0.038708 0.247336 0.254902 45.94595 6.605199 1416 J4-1996 57 54 15 19 21.8 16.8 11.2 10.1 8.6 6.9 2.6 2.9 C 0.19 0.218 0.168 0.112 0.028353 0.194712 0.257426 53.15789 6.605199 1417 J4-1996 57 55 15 13.2 15.6 10.8 8.4 9.5 7.9 5.6 2.4 2.6 I 0.132 0.156 0.108 0.084 0.013685 0.08071 0.252632 71.9697 5.309292 1418 J4-1996 57 56 15 21.2 24.2 18.6 12.4 10.5 9.4 7.4 2.6 2.9 C 0.212 0.242 0.186 0.124 0.035299 0.261256 0.247619 49.5283 6.605199 1419 J4-1996 57 57 15 19 22.3 15.8 10.9 9.6 8.9 6.8 2.6 2.9 C 0.19 0.223 0.158 0.109 0.028353 0.188109 0.270833 50.52632 6.605199 1420 J4-1996 57 58 15 9.2 11.2 7.6 6.4 7.4 6.2 5.8 2.4 2.8 S 0.092 0.112 0.076 0.064 0.006648 0.032255 0.324324 80.43478 6.157522 1421 J4-1996 57 59 15 24.2 26.8 21.9 15.2 9.6 8.8 6.2 2.6 2.9 C 0.242 0.268 0.219 0.152 0.045996 0.330338 0.270833 39.66942 6.605199 1422 J4-1996 57 60 15 23.7 25.9 20.4 14.4 10 9.1 6.8 2.6 2.9 C 0.237 0.259 0.204 0.144 0.044115 0.302896 0.26 42.19409 6.605199 1423 J4-1996 57 61 15 18 21.2 15.7 10.2 10.1 8.9 5.9 2.5 2.9 C 0.18 0.212 0.157 0.102 0.025447 0.179346 0.247525 56.11111 6.605199 1424 J4-1996 57 62 15 28 32.4 25.6 16 10.4 9.4 7.9 2.6 2.8 C 0.28 0.324 0.256 0.16 0.061575 0.483225 0.25 37.14286 6.157522 192 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1425 J4-1996 57 63 15 20 22.8 18.2 12.1 10.2 9.2 6.9 2.6 2.9 C 0.2 0.228 0.182 0.121 0.031416 0.239797 0.254902 51 6.605199 1426 J4-1996 57 64 15 15.8 17.2 13.1 9.1 9.3 7.4 5.8 2.4 2.6 I 0.158 0.172 0.131 0.091 0.019607 0.103171 0.258065 58.86076 5.309292 1427 J4-1996 57 65 15 17.5 19.6 14.6 11 9.4 7.6 5.9 2.4 2.6 I 0.175 0.196 0.146 0.11 0.024053 0.135079 0.255319 53.71429 5.309292 1428 J4-1996 58 1 15 14.2 16.9 12.6 10.1 8.1 6.8 5.4 2.4 2.6 S 0.142 0.169 0.126 0.101 0.015837 0.091029 0.296296 57.04225 5.309292 1429 J4-1996 58 2 15 31 33.4 28.8 14.6 11.9 10.2 8.8 2.8 3.4 D 0.31 0.334 0.288 0.146 0.075477 0.620387 0.235294 38.3871 9.079203 1430 J4-1996 58 3 15 15 17.2 13.2 10.6 9.2 8.4 6.2 2.4 2.6 I 0.15 0.172 0.132 0.106 0.017671 0.121519 0.26087 61.33333 5.309292 1431 J4-1996 58 4 15 20 22.6 18.5 11.7 10.1 9.6 7.2 2.6 2.8 C 0.2 0.226 0.185 0.117 0.031416 0.25342 0.257426 50.5 6.157522 1432 J4-1996 58 5 15 20.5 22.4 17.8 10.9 9.9 9.4 7.4 2.7 2.8 C 0.205 0.224 0.178 0.109 0.033006 0.232302 0.272727 48.29268 6.157522 1433 J4-1996 58 6 15 22.5 24.6 20.1 12.1 10.2 9.8 8.2 2.6 2.8 C 0.225 0.246 0.201 0.121 0.039761 0.303721 0.254902 45.33333 6.157522 1434 J4-1996 58 7 15 23.5 26.4 20.9 12.4 9.8 9.4 8.1 2.6 2.8 C 0.235 0.264 0.209 0.124 0.043374 0.319668 0.265306 41.70213 6.157522 1435 J4-1996 58 8 15 22 24.7 20.3 11.8 10.2 9.5 7.9 2.7 2.9 C 0.22 0.247 0.203 0.118 0.038013 0.298164 0.264706 46.36364 6.605199 1436 J4-1996 58 9 15 15 17.6 13.1 9.8 9 8.2 5.9 2.4 2.6 I 0.15 0.176 0.131 0.098 0.017671 0.117239 0.266667 60 5.309292 1437 J4-1996 58 10 15 21.8 24.2 19.4 11.8 10.2 9.6 7.8 2.6 2.8 C 0.218 0.242 0.194 0.118 0.037325 0.28027 0.254902 46.78899 6.157522 1438 J4-1996 58 11 15 24 26.5 21.6 12.6 10.6 9.8 8.4 2.5 2.8 C 0.24 0.265 0.216 0.126 0.045239 0.349856 0.235849 44.16667 6.157522 1439 J4-1996 58 12 15 14.4 16.8 12.3 9.8 9.2 8.2 5.6 2.4 2.6 I 0.144 0.168 0.123 0.098 0.016286 0.10556 0.26087 63.88889 5.309292 1440 J4-1996 58 13 15 22.5 25.1 19.8 11.8 10.4 9.9 8.1 2.6 2.8 C 0.225 0.251 0.198 0.118 0.039761 0.302907 0.25 46.22222 6.157522 1441 J4-1996 58 14 15 23.5 26.7 20.9 11.9 10.3 9.9 8.4 2.6 2.9 C 0.235 0.267 0.209 0.119 0.043374 0.337161 0.252427 43.82979 6.605199 1442 J4-1996 58 15 15 14.6 16.3 12.2 9.6 9.4 8.3 5.6 2.5 2.9 I 0.146 0.163 0.122 0.096 0.016742 0.103563 0.265957 64.38356 6.605199 1443 J4-1996 58 16 15 22.2 24.6 19.8 11.8 10.4 9.6 7.9 2.6 3 C 0.222 0.246 0.198 0.118 0.038708 0.290605 0.25 46.84685 7.068583 1444 J4-1996 58 17 15 32.5 34.7 29.6 14.6 12.4 10.8 9.8 2.8 3.4 D 0.325 0.347 0.296 0.146 0.082958 0.695816 0.225806 38.15385 9.079203 1445 J4-1996 58 18 15 19.2 21.8 16.4 10.4 10.6 9.2 6.4 2.6 2.8 C 0.192 0.218 0.164 0.104 0.028953 0.199818 0.245283 55.20833 6.157522 1446 J4-1996 58 19 15 18.3 20.8 16.4 10.4 10.2 9.1 6.1 2.6 2.9 C 0.183 0.208 0.164 0.104 0.026302 0.192572 0.254902 55.7377 6.605199 1447 J4-1996 58 20 15 23.6 25.8 20.1 11.5 10.4 9.4 7.1 2.6 2.8 C 0.236 0.258 0.201 0.115 0.043744 0.297024 0.25 44.0678 6.157522 1448 J4-1996 58 21 15 21.5 24.7 19.2 11.4 10.6 9.4 7.4 2.6 2.8 C 0.215 0.247 0.192 0.114 0.036305 0.272498 0.245283 49.30233 6.157522 1449 J4-1996 58 22 15 28.5 30.2 25.7 14.1 11.8 10.6 9.9 2.8 3.5 D 0.285 0.302 0.257 0.141 0.063794 0.520716 0.237288 41.40351 9.621128 1450 J4-1996 58 23 15 24.2 26.8 21.3 13.6 10.4 9.6 8.4 2.6 2.9 C 0.242 0.268 0.213 0.136 0.045996 0.341549 0.25 42.97521 6.605199 1451 J4-1996 58 24 15 29 31.6 26.8 14.6 12.2 10.7 9.8 2.8 3.4 D 0.29 0.316 0.268 0.146 0.066052 0.572111 0.229508 42.06897 9.079203 1452 J4-1996 58 25 15 17.5 19.8 13.9 9.4 9.4 8.7 6.2 2.6 2.8 I 0.175 0.198 0.139 0.094 0.024053 0.142722 0.276596 53.71429 6.157522 193 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1453 J4-1996 58 26 15 25 27.8 22.8 14.8 10.4 9.4 8.2 2.6 2.9 C 0.25 0.278 0.228 0.148 0.049087 0.377903 0.25 41.6 6.605199 1454 J4-1996 58 27 15 19.5 21.8 16.9 11.4 10.6 9.4 6.8 2.6 2.9 C 0.195 0.218 0.169 0.114 0.029865 0.21504 0.245283 54.35897 6.605199 1455 J4-1996 58 28 15 18.5 20.5 16.2 11.3 10.2 9.2 6.1 2.6 2.9 C 0.185 0.205 0.162 0.113 0.02688 0.192407 0.254902 55.13514 6.605199 1456 J4-1996 58 29 15 20.5 23.4 17.6 12.1 10.4 9.4 6.8 2.6 2.8 C 0.205 0.234 0.176 0.121 0.033006 0.237849 0.25 50.73171 6.157522 1457 J4-1996 58 30 15 15.8 18.1 18.4 9.6 9.3 8.4 5.6 2.4 2.6 I 0.158 0.181 0.184 0.096 0.019607 0.195063 0.258065 58.86076 5.309292 1458 J4-1996 58 31 15 25 27.6 22.6 11.6 10.4 9.4 8.2 2.6 2.8 C 0.25 0.276 0.226 0.116 0.049087 0.361676 0.25 41.6 6.157522 1459 J4-1996 58 32 15 31 34.1 29.1 14.8 11.9 10.8 10.1 2.8 3.4 D 0.31 0.341 0.291 0.148 0.075477 0.674214 0.235294 38.3871 9.079203 1460 J4-1996 58 33 15 17.2 19.8 14.4 10.8 8.9 7.9 5.2 2.6 2.8 I 0.172 0.198 0.144 0.108 0.023235 0.138376 0.292135 51.74419 6.157522 1461 J4-1996 58 34 15 11.5 13.6 9.6 8.4 7.4 5.9 4.8 2.4 2.6 S 0.115 0.136 0.096 0.084 0.010387 0.048204 0.324324 64.34783 5.309292 1462 J4-1996 58 35 15 17 19.8 14.8 11.2 9.4 8.1 6.2 2.5 2.8 I 0.17 0.198 0.148 0.112 0.022698 0.147766 0.265957 55.29412 6.157522 1463 J4-1996 58 36 15 14.5 16.2 11.9 9.6 10.6 8.9 6.8 2.6 2.9 C 0.145 0.162 0.119 0.096 0.016513 0.107302 0.245283 73.10345 6.605199 1464 J4-1996 58 37 15 15.8 17.9 13.3 11 9.2 8.2 6.9 2.4 2.8 I 0.158 0.179 0.133 0.11 0.019607 0.123328 0.26087 58.22785 6.157522 1465 J4-1996 58 38 15 21.2 24.1 19.1 10.1 10.4 8.8 7.4 2.5 2.9 C 0.212 0.241 0.191 0.101 0.035299 0.246748 0.240385 49.0566 6.605199 1466 J4-1996 58 39 15 22.5 25.4 19.8 16.2 10.5 8.7 7.6 2.5 3 C 0.225 0.254 0.198 0.162 0.039761 0.281946 0.238095 46.66667 7.068583 1467 J4-1996 59 1 15 22.5 24.2 19.5 14.1 10.2 9.6 7.2 2.4 2.8 C 0.225 0.242 0.195 0.141 0.039761 0.289711 0.235294 45.33333 6.157522 1468 J4-1996 59 2 15 17 19.6 15.2 11.6 9.4 8.4 6.8 2.4 2.5 I 0.17 0.196 0.152 0.116 0.022698 0.158653 0.255319 55.29412 4.908739 1469 J4-1996 59 3 15 22.5 24.3 20.1 14.6 10.4 9.7 9.2 2.4 2.8 C 0.225 0.243 0.201 0.146 0.039761 0.307235 0.230769 46.22222 6.157522 1470 J4-1996 59 4 15 12 14.2 10.6 9.8 8.3 7.4 5.4 2.4 2.5 S 0.12 0.142 0.106 0.098 0.01131 0.07237 0.289157 69.16667 4.908739 1471 J4-1996 59 5 15 16.2 18.4 14.3 10.1 9.2 8.3 6.6 2.4 2.6 I 0.162 0.184 0.143 0.101 0.020612 0.136735 0.26087 56.79012 5.309292 1472 J4-1996 59 6 15 25 27.6 23.8 15.4 10.2 9.6 7.8 2.5 2.8 C 0.25 0.276 0.238 0.154 0.049087 0.410252 0.245098 40.8 6.157522 1473 J4-1996 59 7 15 23.2 26.1 21.6 16.4 10.1 9.5 7.2 2.6 2.8 C 0.232 0.261 0.216 0.164 0.042273 0.350234 0.257426 43.53448 6.157522 1474 J4-1996 59 8 15 14.2 18.8 12.1 9.4 9.1 7.3 5.4 2.4 2.6 I 0.142 0.188 0.121 0.094 0.015837 0.098179 0.263736 64.08451 5.309292 1475 J4-1996 59 9 15 21 23.7 19.6 14.1 10.1 9.1 7.2 2.6 2.9 C 0.21 0.237 0.196 0.141 0.034636 0.273632 0.257426 48.09524 6.605199 1476 J4-1996 59 10 15 13.5 16.1 11.6 9.8 9.8 7.2 5.8 2.4 2.6 I 0.135 0.161 0.116 0.098 0.014314 0.084209 0.244898 72.59259 5.309292 1477 J4-1996 59 11 15 17.5 19.8 15.8 10.9 9.1 7.8 6.2 2.4 2.6 I 0.175 0.198 0.158 0.109 0.024053 0.154113 0.263736 52 5.309292 1478 J4-1996 59 12 15 16.4 19.1 14.2 10.1 9.2 7.5 6.1 2.4 2.6 I 0.164 0.191 0.142 0.101 0.021124 0.125014 0.26087 56.09756 5.309292 1479 J4-1996 59 13 15 16.2 18.8 14 10 8.9 7 5.9 2.5 2.7 I 0.162 0.188 0.14 0.1 0.020612 0.113386 0.280899 54.93827 5.725553 1480 J4-1996 59 14 15 20.8 22.4 18.4 16.4 10.1 9.4 7.9 2.6 2.8 C 0.208 0.224 0.184 0.164 0.033979 0.261467 0.257426 48.55769 6.157522 194 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1481 J4-1996 59 15 15 15.8 17.6 13.4 10.4 10 9.2 7.2 2.4 2.8 C 0.158 0.176 0.134 0.104 0.019607 0.136825 0.24 63.29114 6.157522 1482 J4-1996 59 16 15 24.5 28.6 21.8 16.5 10.4 9.9 8.4 2.4 2.8 C 0.245 0.286 0.218 0.165 0.047144 0.387628 0.230769 42.44898 6.157522 1483 J4-1996 59 17 15 13.8 17.1 11.4 9.7 8.2 7.6 5.6 2.4 2.6 S 0.138 0.171 0.114 0.097 0.014957 0.090166 0.292683 59.42029 5.309292 1484 J4-1996 59 18 15 13.4 17 11.3 9.8 8 7.1 5.1 2.4 2.6 S 0.134 0.17 0.113 0.098 0.014103 0.083255 0.3 59.70149 5.309292 1485 J4-1996 59 19 15 25 28.1 23.6 15.4 10.2 9.9 8.6 2.6 2.8 C 0.25 0.281 0.236 0.154 0.049087 0.421767 0.254902 40.8 6.157522 1486 J4-1996 59 20 15 15.5 18.1 12.2 9.4 8.9 6.9 5.2 2.4 2.6 I 0.155 0.181 0.122 0.094 0.018869 0.091344 0.269663 57.41935 5.309292 1487 J4-1996 59 21 15 21.5 23.8 19.4 15.1 10.3 9.8 7.6 2.4 2.7 C 0.215 0.238 0.194 0.151 0.036305 0.295034 0.23301 47.90698 5.725553 1488 J4-1996 59 22 15 24 27.2 21.8 17.4 10.4 9.9 7.9 2.4 2.6 C 0.24 0.272 0.218 0.174 0.045239 0.381458 0.230769 43.33333 5.309292 1489 J4-1996 59 23 15 13.8 17.1 11.4 9.8 8.9 7.4 5.2 2.4 2.6 I 0.138 0.171 0.114 0.098 0.014957 0.087982 0.269663 64.49275 5.309292 1490 J4-1996 59 24 15 13.5 16.8 11.1 8.9 8.8 7.1 5 2.4 2.6 I 0.135 0.168 0.111 0.089 0.014314 0.079397 0.272727 65.18519 5.309292 1491 J4-1996 59 25 15 15.2 17.6 13.2 9.4 8.8 7.2 5.4 2.4 2.6 I 0.152 0.176 0.132 0.094 0.018146 0.103209 0.272727 57.89474 5.309292 1492 J4-1996 59 26 15 22.5 24.6 20.1 16.4 10.1 9.8 8.1 2.6 2.8 C 0.225 0.246 0.201 0.164 0.039761 0.319442 0.257426 44.88889 6.157522 1493 J4-1996 59 27 15 31 33.5 28.8 18.4 13.2 11.8 10.4 2.8 3.4 D 0.31 0.335 0.288 0.184 0.075477 0.738106 0.212121 42.58065 9.079203 1494 J4-1996 59 28 15 14 17.1 13.7 10.4 9.4 7.6 5.4 2.5 2.6 I 0.14 0.171 0.137 0.104 0.015394 0.114539 0.265957 67.14286 5.309292 1495 J4-1996 59 29 15 14.5 17.2 12.8 9.6 9.2 7.4 5.1 2.5 2.6 I 0.145 0.172 0.128 0.096 0.016513 0.101066 0.271739 63.44828 5.309292 1496 J4-1996 59 30 15 12.2 14.6 10.1 8.6 9.3 7.4 5.1 2.5 2.6 S 0.122 0.146 0.101 0.086 0.01169 0.067337 0.268817 76.22951 5.309292 1497 J4-1996 59 31 15 17.8 19.8 15.1 11.4 10.1 7.9 6.2 2.6 2.9 C 0.178 0.198 0.151 0.114 0.024885 0.148295 0.257426 56.74157 6.605199 1498 J4-1996 59 32 15 14.5 16.8 12.7 9.3 9.2 7.6 5.4 2.5 2.6 I 0.145 0.168 0.127 0.093 0.016513 0.100866 0.271739 63.44828 5.309292 1499 J4-1996 59 33 15 15 17.6 13.1 9.6 9.1 7.4 5.1 2.4 2.7 I 0.15 0.176 0.131 0.096 0.017671 0.105425 0.263736 60.66667 5.725553 1500 J4-1996 59 34 15 12.6 15.1 10.2 8.5 8.4 6.8 4.6 2.4 2.6 S 0.126 0.151 0.102 0.085 0.012469 0.06377 0.285714 66.66667 5.309292 1501 J4-1996 59 35 15 13 15.2 11.6 9.8 7.4 6.4 5.1 2.4 2.9 S 0.13 0.152 0.116 0.098 0.013273 0.072493 0.324324 56.92308 6.605199 1502 J4-1996 59 36 15 26.5 28.6 24.2 11.4 10.9 10.4 9.2 2.6 2.8 C 0.265 0.286 0.242 0.114 0.055155 0.447952 0.238532 41.13208 6.157522 1503 J4-1996 59 37 15 10.5 12.8 8.9 6.2 7.4 6.6 5.4 2.4 2.6 S 0.105 0.128 0.089 0.062 0.008659 0.044849 0.324324 70.47619 5.309292 1504 J4-1996 59 38 15 13.2 16.4 10.4 8.4 8.9 8.2 6.4 2.6 2.8 I 0.132 0.164 0.104 0.084 0.013685 0.082882 0.292135 67.42424 6.157522 1505 J4-1996 59 39 15 16.2 18.4 14.2 11.2 10.4 9.9 8.9 2.7 2.9 C 0.162 0.184 0.142 0.112 0.020612 0.164653 0.259615 64.19753 6.605199 1506 J4-1996 59 40 15 19.2 21.9 15.8 10.8 10.9 10.1 9 2.7 2.9 C 0.192 0.219 0.158 0.108 0.028953 0.210848 0.247706 56.77083 6.605199 1507 J4-1996 59 41 15 11 13.6 9.4 8.1 8.1 7.2 6.1 2.4 2.6 S 0.11 0.136 0.094 0.081 0.009503 0.056927 0.296296 73.63636 5.309292 1508 J4-1996 59 42 15 13.1 16.4 10.2 9.4 9 8.9 8.1 2.4 2.6 I 0.131 0.164 0.102 0.094 0.013478 0.090111 0.266667 68.70229 5.309292 195 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1509 J4-1996 59 43 15 12.8 15.1 10.9 8.9 7.8 6.6 5.4 2.4 2.6 S 0.128 0.151 0.109 0.089 0.012868 0.0676 0.307692 60.9375 5.309292 1510 J4-1996 59 44 15 12.6 14.6 10.7 9.1 7.9 6.8 5.2 2.4 2.6 S 0.126 0.146 0.107 0.091 0.012469 0.067109 0.303797 62.69841 5.309292 1511 J4-1996 59 45 15 15.5 17.4 13.6 11.2 9.1 8.6 7.9 2.6 2.9 I 0.155 0.174 0.136 0.112 0.018869 0.131491 0.285714 58.70968 6.605199 1512 J4-1996 59 46 15 18.8 21.2 16.1 12.1 10.2 9.6 8.4 2.6 2.9 C 0.188 0.212 0.161 0.121 0.027759 0.20517 0.254902 54.25532 6.605199 1513 J4-1996 59 47 15 14.2 16.5 12.1 10.1 9.2 8.3 7.6 2.5 2.8 I 0.142 0.165 0.121 0.101 0.015837 0.10429 0.271739 64.78873 6.157522 1514 J4-1996 59 48 15 15.2 17.6 13.2 11.1 10.1 9.6 6.1 2.6 2.9 C 0.152 0.176 0.132 0.111 0.018146 0.141991 0.257426 66.44737 6.605199 1515 J4-1996 59 49 15 20 24.8 18.1 13.4 10.4 9.9 7.4 2.6 2.9 C 0.2 0.248 0.181 0.134 0.031416 0.272794 0.25 52 6.605199 1516 J4-1996 59 50 15 10.2 12.9 8.9 7.4 8.5 7.4 6.1 2.5 2.8 I 0.102 0.129 0.089 0.074 0.008171 0.052115 0.294118 83.33333 6.157522 1517 J4-1996 59 51 15 9.8 11.4 8.4 7.1 8.6 7.5 6.1 2.5 2.8 I 0.098 0.114 0.084 0.071 0.007543 0.045417 0.290698 87.7551 6.157522 1518 J4-1996 59 52 15 20.2 22.6 18.4 13 10.2 9.6 8.1 2.6 2.9 C 0.202 0.226 0.184 0.13 0.032047 0.2556 0.254902 50.49505 6.605199 1519 J4-1996 59 53 15 12.3 14.9 9.8 8.2 9.1 8.4 5.9 2.5 2.8 I 0.123 0.149 0.098 0.082 0.011882 0.074045 0.274725 73.98374 6.157522 1520 J4-1996 59 54 15 12 15.1 9.9 8.1 9 8.1 5.8 2.5 2.8 I 0.12 0.151 0.099 0.081 0.01131 0.0727 0.277778 75 6.157522 1521 J4-1996 59 55 15 13.6 16.1 10.1 8.6 9.4 8.1 6 2.5 2.9 I 0.136 0.161 0.101 0.086 0.014527 0.07859 0.265957 69.11765 6.605199 1522 J4-1996 59 56 15 22.5 24.2 19.1 14.2 10.3 9.5 8.1 2.6 3 C 0.225 0.242 0.191 0.142 0.039761 0.279365 0.252427 45.77778 7.068583 1523 J4-1996 60 1 15 21.5 23.4 19.2 12.1 10.1 9.8 8.4 2.6 3.1 C 0.215 0.234 0.192 0.121 0.036305 0.278183 0.257426 46.97674 7.547676 1524 J4-1996 60 2 15 21.5 23.6 18.9 11.8 10.4 9.9 8.3 2.6 3 C 0.215 0.236 0.189 0.118 0.036305 0.275385 0.25 48.37209 7.068583 1525 J4-1996 60 3 15 19.6 21.6 17.4 10.4 10.6 8.9 6.8 2.5 2.9 C 0.196 0.216 0.174 0.104 0.030172 0.208042 0.235849 54.08163 6.605199 1526 J4-1996 60 4 15 12.2 15.7 10.3 9.1 8.9 7.4 5.9 2.4 2.7 I 0.122 0.157 0.103 0.091 0.01169 0.073004 0.269663 72.95082 5.725553 1527 J4-1996 60 5 15 12.5 13.9 10.1 8.8 8.8 7.1 5.6 2.4 2.8 I 0.125 0.139 0.101 0.088 0.012272 0.063077 0.272727 70.4 6.157522 1528 J4-1996 60 6 15 21 23.8 19.2 11.4 10.5 9.4 8.6 2.5 2.8 C 0.21 0.238 0.192 0.114 0.034636 0.267127 0.238095 50 6.157522 1529 J4-1996 60 7 15 27 29.5 25.4 18.4 10.3 10.2 9.8 2.6 2.9 C 0.27 0.295 0.254 0.184 0.057256 0.505959 0.252427 38.14815 6.605199 1530 J4-1996 60 8 15 13.6 17.1 11.4 9.1 7.6 5.8 4.9 2.4 2.5 S 0.136 0.171 0.114 0.091 0.014527 0.067955 0.315789 55.88235 4.908739 1531 J4-1996 60 9 15 24.6 26.8 21.9 16.4 10.9 10.6 9.7 2.5 2.9 C 0.246 0.268 0.219 0.164 0.047529 0.403168 0.229358 44.30894 6.605199 1532 J4-1996 60 10 15 18.5 21.1 16.1 11 10.4 9.4 8.1 2.6 2.8 C 0.185 0.211 0.161 0.11 0.02688 0.197248 0.25 56.21622 6.157522 1533 J4-1996 60 11 15 26.5 29 24.3 17.4 13.1 11.8 10.3 2.9 3.5 D 0.265 0.29 0.243 0.174 0.055155 0.541499 0.221374 49.43396 9.621128 1534 J4-1996 60 12 15 21.7 23.6 18.8 12.1 10.4 9.5 8.4 2.6 2.9 C 0.217 0.236 0.188 0.121 0.036984 0.263275 0.25 47.92627 6.605199 1535 J4-1996 60 13 15 18.5 21.3 16.4 11.2 9.9 8.9 6.2 2.5 2.8 C 0.185 0.213 0.164 0.112 0.02688 0.192805 0.252525 53.51351 6.157522 1536 J4-1996 60 14 15 12.2 15.2 10.1 8.9 7.6 5.9 4.3 2.4 2.5 S 0.122 0.152 0.101 0.089 0.01169 0.055474 0.315789 62.29508 4.908739 196 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1537 J4-1996 60 15 15 6.2 8.9 4.1 3.2 7.2 5.1 3.1 2.4 2.6 S 0.062 0.089 0.041 0.032 0.003019 0.01046 0.333333 116.129 5.309292 1538 J4-1996 60 16 15 25.2 27.9 23.1 17.2 10.9 10.2 9.9 2.8 2.9 C 0.252 0.279 0.231 0.172 0.049876 0.428417 0.256881 43.25397 6.605199 1539 J4-1996 60 17 15 18.5 21.1 16.4 11.3 10.9 9.8 8 2.6 2.8 C 0.185 0.211 0.164 0.113 0.02688 0.211503 0.238532 58.91892 6.157522 1540 J4-1996 60 18 15 20.5 23.4 18.1 12.4 10.9 9.7 8.2 2.5 2.9 C 0.205 0.234 0.181 0.124 0.033006 0.255439 0.229358 53.17073 6.605199 1541 J4-1996 60 19 15 25.2 27.6 23.2 15.1 10.7 9.8 8.9 2.6 3 C 0.252 0.276 0.232 0.151 0.049876 0.403155 0.242991 42.46032 7.068583 1542 J4-1996 60 20 15 20.5 23.1 17.8 12.3 10.5 9.6 8.4 2.6 2.9 C 0.205 0.231 0.178 0.123 0.033006 0.245328 0.247619 51.21951 6.605199 1543 J4-1996 60 21 15 19 21.8 16.9 11.3 9.6 8.4 7.6 2.4 2.6 I 0.19 0.218 0.169 0.113 0.028353 0.191913 0.25 50.52632 5.309292 1544 J4-1996 60 22 15 21.1 23.4 18.6 12.6 10.2 9.5 8 2.4 2.7 C 0.211 0.234 0.186 0.126 0.034967 0.259921 0.235294 48.34123 5.725553 1545 J4-1996 60 23 15 18.2 21.4 16.4 11 10.4 9.7 8.1 2.4 2.8 C 0.182 0.214 0.164 0.11 0.026016 0.210114 0.230769 57.14286 6.157522 1546 J4-1996 60 24 15 17.6 20.8 15.7 9.8 10.1 9.2 7.8 2.5 2.8 C 0.176 0.208 0.157 0.098 0.024328 0.182405 0.247525 57.38636 6.157522 1547 J4-1996 60 25 15 12.3 15.4 10.9 8.9 7.6 6.8 5 2.4 2.8 S 0.123 0.154 0.109 0.089 0.011882 0.070463 0.315789 61.78862 6.157522 1548 J4-1996 60 26 15 25 27.7 23.4 15.1 10.9 10.4 9.2 2.5 2.9 C 0.25 0.277 0.234 0.151 0.049087 0.433666 0.229358 43.6 6.605199 1549 J4-1996 60 27 15 22.7 24.8 20.2 14.3 10.1 9.9 8.9 2.4 2.9 C 0.227 0.248 0.202 0.143 0.040471 0.317716 0.237624 44.49339 6.605199 1550 J4-1996 60 28 15 18 21.5 16.4 11.1 9.9 9.4 7.6 2.5 2.9 C 0.18 0.215 0.164 0.111 0.025447 0.204416 0.252525 55 6.605199 1551 J4-1996 60 29 15 12 15.3 10.4 8.4 8.1 7.4 5.2 2.4 2.5 S 0.12 0.153 0.104 0.084 0.01131 0.071418 0.296296 67.5 4.908739 1552 J4-1996 60 30 15 15.2 17.8 13.6 9.4 9.4 8.4 7.4 2.5 2.7 I 0.152 0.178 0.136 0.094 0.018146 0.125904 0.265957 61.84211 5.725553 1553 J4-1996 60 31 15 14.5 16.9 12.4 9.7 9.6 8.5 6.9 2.5 2.7 I 0.145 0.169 0.124 0.097 0.016513 0.110679 0.260417 66.2069 5.725553 1554 J4-1996 60 32 15 12.7 16.1 9.6 7.6 8.3 7.1 5.1 2.4 2.5 S 0.127 0.161 0.096 0.076 0.012668 0.06372 0.289157 65.35433 4.908739 1555 J4-1996 60 33 15 15.2 17.7 13.1 10.4 9.7 8.8 7.6 2.6 2.8 I 0.152 0.177 0.131 0.104 0.018146 0.12762 0.268041 63.81579 6.157522 1556 J4-1996 60 34 15 18.5 21.1 15.6 11.2 10.5 9.6 8.2 2.6 3 C 0.185 0.211 0.156 0.112 0.02688 0.194036 0.247619 56.75676 7.068583 1557 J4-1996 60 35 15 17 19.6 15.1 13.2 9.1 8.4 6.1 2.5 2.8 I 0.17 0.196 0.151 0.132 0.022698 0.161683 0.274725 53.52941 6.157522 1558 J4-1996 60 36 15 23.6 26.2 20.6 17.8 10.4 9.6 8.2 2.7 2.9 C 0.236 0.262 0.206 0.178 0.043744 0.339382 0.259615 44.0678 6.605199 1559 J4-1996 60 37 15 16.5 18.6 14.2 11.2 10.3 9.2 7.8 2.6 2.9 C 0.165 0.186 0.142 0.112 0.021382 0.153902 0.252427 62.42424 6.605199 1560 J4-1996 60 38 15 16 18.2 14.6 11.4 9.8 8.9 6.8 2.6 2.8 C 0.16 0.182 0.146 0.114 0.020106 0.153063 0.265306 61.25 6.157522 1561 J4-1996 60 39 15 12.2 14.5 10.4 9.6 8.9 8.1 5.8 2.4 2.6 I 0.122 0.145 0.104 0.096 0.01169 0.077936 0.269663 72.95082 5.309292 1562 J4-1996 60 40 15 20 22.6 18.6 15.6 9.4 8.8 6.8 2.5 2.8 C 0.2 0.226 0.186 0.156 0.031416 0.246275 0.265957 47 6.157522 1563 J4-1996 60 41 15 18.2 20.4 16.2 14.3 8.9 7.8 5.9 2.4 2.8 I 0.182 0.204 0.162 0.143 0.026016 0.170552 0.269663 48.9011 6.157522 1564 J4-1996 60 42 15 21.2 23.1 19.4 15.9 9.5 8.9 6.8 2.4 2.8 C 0.212 0.231 0.194 0.159 0.035299 0.267003 0.252632 44.81132 6.157522 197 UNIVERSITY OF IBADAN LIBRARY CROWN S/N STAND ID PLOT TREE AGE DBH(cm) DB(cm) DM(cm) DT(cm) THT MHT SQ CL CD LAYER DBH(m) DB(m) DM(m) DT(m) BA SV CR SC CPA 1565 J4-1996 60 43 15 19.2 21.4 17.6 15.8 9.3 8.8 7.2 2.5 2.8 C 0.192 0.214 0.176 0.158 0.028953 0.224237 0.268817 48.4375 6.157522 1566 J4-1996 60 44 15 26.2 28.8 24.1 18.4 12.4 10.6 9.2 2.8 3.4 D 0.262 0.288 0.241 0.184 0.053913 0.484422 0.225806 47.32824 9.079203 1567 J4-1996 60 45 15 15 17.4 13.8 9.8 7.6 6.4 4.8 2.4 2.6 S 0.15 0.174 0.138 0.098 0.017671 0.097227 0.315789 50.66667 5.309292 1568 J4-1996 60 46 15 15 17.8 12.9 9.6 7.8 6.5 4.9 2.4 2.5 S 0.15 0.178 0.129 0.096 0.017671 0.091436 0.307692 52 4.908739 1569 J4-1996 60 47 15 19.6 21.4 17.2 14.8 8.8 7.6 5.9 2.4 2.6 I 0.196 0.214 0.172 0.148 0.030172 0.185076 0.272727 44.89796 5.309292 1570 J4-1996 60 48 15 14.2 16.4 12.8 9.6 7.7 6.4 5 2.4 2.6 S 0.142 0.164 0.128 0.096 0.015837 0.085156 0.311688 54.22535 5.309292 1571 J4-1996 60 49 15 15 17.4 13.1 10.1 8.9 7.8 6.4 2.5 2.7 I 0.15 0.174 0.131 0.101 0.017671 0.111414 0.280899 59.33333 5.725553 S 1572 J4-1996 60 50 15 6.8 8.4 4.3 3.4 7.6 5.4 3.2 2.4 2.6 0.068 0.084 0.043 0.034 0.003632 0.011033 0.315789 111.7647 5.309292 1573 J4-1996 60 51 15 31 34.3 28.8 19.8 13.4 11.8 10.4 2.9 3.4 D 0.31 0.343 0.288 0.198 0.075477 0.754744 0.216418 43.22581 9.079203 1574 J4-1996 60 52 15 15.2 17.6 13.1 10.2 8.9 7.8 5.6 2.6 2.9 I 0.152 0.176 0.131 0.102 0.018146 0.112336 0.292135 58.55263 6.605199 1575 J4-1996 60 53 15 15 17.8 13.2 10.1 8.9 7.9 5.5 2.5 2.8 I 0.15 0.178 0.132 0.101 0.017671 0.115387 0.280899 59.33333 6.157522 1576 J4-1996 60 54 15 28 31.2 26.1 19.7 10.1 9.1 7.8 2.5 2.9 C 0.28 0.312 0.261 0.197 0.061575 0.486763 0.247525 36.07143 6.605199 1577 J4-1996 60 55 15 14 16.8 12.4 9.4 8.8 7.8 6 2.4 2.8 I 0.14 0.168 0.124 0.094 0.015394 0.100636 0.272727 62.85714 6.157522 1578 J4-1996 60 56 15 15.2 17.4 13.2 10.1 8.9 7.8 6 2.5 2.8 I 0.152 0.174 0.132 0.101 0.018146 0.112489 0.280899 58.55263 6.157522 1579 J4-1996 60 57 15 19.2 21.8 17.4 14.7 9.7 8.6 6.8 2.6 2.9 C 0.192 0.218 0.174 0.147 0.028953 0.214157 0.268041 50.52083 6.605199 1580 J4-1996 60 58 15 11 13.5 9.4 7.4 7.8 6.8 5.1 2.4 2.6 S 0.11 0.135 0.094 0.074 0.009503 0.052557 0.307692 70.90909 5.309292 1581 J4-1996 60 59 15 13 17.1 11.5 8.9 7.5 6.1 4.9 2.4 2.6 S 0.13 0.171 0.115 0.089 0.013273 0.071913 0.32 57.69231 5.309292 1582 J4-1996 60 60 15 21.6 23.6 19.4 15.1 10.4 9.8 8.2 2.4 2.9 C 0.216 0.236 0.194 0.151 0.036644 0.293818 0.230769 48.14815 6.605199 1583 J4-1996 60 61 15 13.6 17.8 11.2 8.9 7.6 6.4 5 2.4 2.6 S 0.136 0.178 0.112 0.089 0.014527 0.075215 0.315789 55.88235 5.309292 1584 J4-1996 60 62 15 19 22.2 17.2 14.2 8.4 7.8 6.4 2.4 2.8 I 0.19 0.222 0.172 0.142 0.028353 0.191731 0.285714 44.21053 6.157522 1585 J4-1996 60 63 15 11.7 14.2 9.5 7.5 7.8 6.1 4.8 2.4 2.6 S 0.117 0.142 0.095 0.075 0.010751 0.049418 0.307692 66.66667 5.309292 1586 J4-1996 60 64 15 11.7 14.4 9.6 7.4 7.6 6 4.9 2.4 2.6 S 0.117 0.144 0.096 0.074 0.010751 0.04954 0.315789 64.95726 5.309292 1587 J4-1996 60 65 15 21.5 24.3 18.4 15.9 10.2 9.6 8.4 2.5 2.9 C 0.215 0.243 0.184 0.159 0.036305 0.276151 0.245098 47.44186 6.605199 1588 J4-1996 60 66 15 14.5 16.8 11.9 8.9 9.8 8.4 6.5 2.4 2.6 I 0.145 0.168 0.119 0.089 0.016513 0.102027 0.244898 67.58621 5.309292 1589 J4-1996 60 67 15 18 20.4 15.9 13.8 9.9 8.4 6.6 2.4 2.6 I 0.18 0.204 0.159 0.138 0.025447 0.177891 0.242424 55 5.309292 1590 J4-1996 60 68 15 18.5 21.1 16.2 13.9 9.7 8.3 6.4 2.4 2.6 I 0.185 0.211 0.162 0.139 0.02688 0.183415 0.247423 52.43243 5.309292 1591 J4-1996 60 69 15 28.8 31.1 25.8 19.4 11.9 10.4 9.8 2.9 3.4 D 0.288 0.311 0.258 0.194 0.065144 0.545377 0.243697 41.31944 9.079203 1592 J4-1996 60 70 15 8.5 11.4 6.9 5.5 7.6 6.5 4.6 2.4 2.6 S 0.085 0.114 0.069 0.055 0.005675 0.029835 0.315789 89.41176 5.309292 198 UNIVERSITY OF IBADAN LIBRARY Appendix 2: Whole stand level data used in the computation and data analysis S/N PLOT AGE AV.DBH AV.THT AV.MHT AVSQ AV.CL AV.CD BA.HA SV.HA AV.CR AV.SC CPA.HA SI 1 1 37 30 16.37 14.45 12.43 2.51 2.85 46.075 595.75 0.16 57.85 3516.75 25.00276 2 2 37 32.92 16.58 14.75 12.66 2.54 2.91 28.25 372.75 0.16 53.74 2004 25.26525 3 3 37 34.85 16.87 14.94 12.85 2.55 2.84 29.75 394.5 0.15 53.6 1742.75 25.29806 4 4 37 34.51 17.41 15.45 13.54 2.57 2.91 35.25 487.75 0.15 52.8 166.25 25.134 5 5 37 44.48 18.6 16.8 14.8 2.6 2.98 23.75 336.75 0.14 42.23 1050.25 24.80588 6 6 37 36.06 17.65 15.79 14.03 2.57 2.84 40.25 556.25 0.15 50.74 2392.75 25.00276 7 7 37 34.99 17.14 14.92 14.26 2.54 2.9 24 320.75 0.15 52.86 1489.75 24.93713 8 8 37 39.58 17.56 15.69 13.65 2.57 2.91 36 482.75 0.15 46.79 1829.75 25.46388 9 9 36 44.67 18.65 16.66 14.63 2.6 3.1 28.25 381.75 0.14 42.68 1323.25 25.46388 10 10 36 32.51 17.56 15.58 13.56 2.55 2.89 23.75 317.75 0.15 56.01 1807.5 24.14108 11 11 36 46.52 17.56 15.52 13.46 2.6 3.16 22.25 298.25 0.15 39.6 982.75 23.54582 12 12 36 27.34 16.44 14.35 12.34 2.54 2.8 22.25 282.25 0.16 63.19 2157.5 25.36467 13 13 36 32.81 17.06 15.15 13.52 2.54 2.92 33.25 442.25 0.15 56.75 2354.75 25.19932 14 14 36 30.75 16.53 14.52 12.47 2.52 2.88 25.5 341.25 0.15 58.89 1967.5 25.39774 15 15 36 40.7 18.18 16.16 14.18 2.58 3.05 33.75 454.25 0.14 46.1 1830.75 24.73634 16 16 36 34.24 16.91 14.89 12.83 2.54 2.88 22.5 302.5 0.15 52.43 1467.25 27.44284 17 17 35 26.67 17.46 15.23 13.22 2.55 2.87 32.75 423 0.15 72.62 3393 24.1417 18 18 35 27.89 15.81 13.79 11.34 2.54 2.88 24 287.25 0.16 61.64 2283.25 24.54184 19 19 35 28.06 16.57 14.55 12.55 2.55 2.85 23.75 308.75 0.16 64.08 2247 25.17539 20 20 35 22.6 14.58 12.54 10.46 2.47 2.75 43.25 506.5 0.17 71.41 5506.75 22.47445 21 21 35 22.65 14.03 12.01 9.59 2.48 2.74 35.25 405 0.18 67.49 4573.5 23.20804 22 22 35 24.46 14.85 12.81 10.72 2.5 2.8 34.25 386.5 0.17 64.23 4175.75 23.30807 23 23 35 27.93 15.29 13.29 11.19 2.52 2.83 23.5 273.75 0.17 59.33 2204.5 23.94163 24 24 35 28.36 15.94 13.88 11.69 2.54 2.84 28.5 332 0.16 58.52 2696.5 24.65859 25 25 27 26.94 13.65 12.11 10.46 2.49 2.69 28.25 325.75 0.19 53.99 2573 25.42348 26 26 27 26.45 14.13 12.05 10.02 2.5 2.8 70.25 712.5 0.18 56.85 7257 25.78771 27 27 27 25.33 14.72 12.69 10.6 2.49 2.78 41.25 439.25 0.17 61.87 4547 26.0791 28 28 27 24.64 15.25 13.29 11.15 2.5 2.82 30.25 378.5 0.17 67.34 3608.25 25.64202 29 29 27 21.61 13.81 11.63 9.65 2.48 2.76 35 360.5 0.18 68.74 5080.25 24.69501 30 30 27 23.5 13.99 11.99 9.81 2.49 2.77 25 275 0.18 63.36 3171.5 26.47975 31 31 27 24.43 14.41 12.26 10.19 2.48 2.75 47.25 502.75 0.18 63.24 5349.25 25.09567 32 32 27 22.18 13.23 11.56 8.61 2.47 2.74 29.75 314 0.19 63.59 4006.25 21.67926 33 33 21 25.68 10.8 9.88 8.9 2.54 2.83 27.75 213.75 0.24 42.79 3339 18.99478 34 34 21 21.67 10.12 9.1 7.79 2.56 2.87 21 159.75 0.25 48 3580.5 19.72691 35 35 21 24.92 9.87 8.65 6.78 2.57 2.87 29.75 216.25 0.26 41.42 3769.25 21.43522 36 36 21 25.19 10.58 9.65 8.2 2.58 2.98 35.75 293.5 0.25 43.69 4778 20.215 37 37 21 21.14 9.46 8.22 6.61 2.61 2.94 42 307.75 0.28 47.69 7364 21.39455 38 38 21 22.62 10.19 8.78 7.13 2.68 3.04 33.75 251.5 0.27 47.18 5661 21.67926 39 39 21 19.98 9.9 8.71 7.18 2.67 2.96 29.75 232.25 0.28 54.22 5715.25 20.66241 40 40 21 21.65 10.19 8.74 7.44 2.82 3.05 41.5 263 0.28 50.92 7541.75 26.5192 41 41 20 16.97 13.83 11.66 9.48 2.49 2.77 17.25 161.5 0.18 86.84 4217.75 30.6055 42 42 20 20.04 15.02 12.96 10.8 2.51 2.8 30.75 362 0.17 82.34 5239.75 29.56307 199 UNIVERSITY OF IBADAN LIBRARY S/N PLOT AGE AV.DBH AV.THT AV.MHT AVSQ AV.CL AV.CD BA.HA SV.HA AV.CR AV.SC CPA.HA SI 43 43 20 19.54 15.52 15.71 11.57 2.51 2.8 21.25 289.75 0.16 82.19 41898.75 28.52065 44 44 20 17.84 15.14 13.23 11.17 2.47 2.73 19.75 235.5 0.16 89.64 4265.75 29.02101 45 45 20 19.97 15.09 13.14 10.85 2.47 2.73 20.5 237.25 0.17 80.08 3504.75 29.85495 46 46 20 19.22 14.33 12.43 10.32 2.46 2.72 25.25 289.25 0.18 77.59 4651.5 28.35386 47 47 20 20.31 14.7 12.82 10.76 2.47 2.73 26.75 300 0.17 75.73 4528.75 26.5192 48 48 20 15.73 13.55 11.5 12.48 2.43 2.65 16.5 169.75 0.18 88.75 4417 30.6641 49 49 18 23.93 15.66 13.65 11.63 2.52 2.81 18.75 236.5 0.17 67.73 2486.5 28.14558 50 50 18 19.69 14.51 12.9 10.91 2.48 2.75 12 135.25 0.17 76.4 2235.5 29.91296 51 51 18 21.76 14.99 12.99 11.04 2.48 2.76 12.75 153.75 0.17 71.81 1948.75 27.26188 52 52 18 18.39 13.98 11.98 9.98 2.47 2.74 9 96.25 0.18 78.51 1916.25 22.8225 53 53 18 19.33 9.95 8.59 6.77 2.49 2.77 50 356.25 0.25 54.27 9679.5 24.01324 54 54 15 18.63 9.87 8.29 6.36 2.48 2.75 45 322.25 0.25 56.13 9096 25.40244 55 55 15 19.66 10.31 8.74 6.68 2.49 2.82 39 310.25 0.25 55.97 7392.75 24.65823 56 56 15 19.19 10.74 8.57 6.65 2.46 2.76 47.25 362.75 0.23 57.94 9258.5 21.38369 57 57 15 18.6 9.47 8.38 6.51 2.47 2.7 47.5 332 0.26 53.95 9326.75 23.96363 58 58 15 20.92 10.17 9.14 7.3 2.58 2.88 35.5 267.75 0.26 50.43 6412.5 22.22713 59 59 15 16.79 9.43 8.38 6.67 2.49 2.74 33.5 244.25 0.27 58.96 8278 25.20398 60 60 15 17.91 9.52 8.46 6.93 2.5 2.79 47.75 359.25 0.27 56.43 10825.25 12.7 200 UNIVERSITY OF IBADAN LIBRARY Appendix 3:Model summary for location parameter in diameter distribution model Regression Summary for Dependent Variable: LNA R= .80181975 R²= .64291491 Adjusted R²= .61910924 F(2,30)=27.007 p<.00000 Std.Error of estimate: 0.03055 St. Err. of St. Err. BETA BETA B of B t(30) p-level Intercept 1.293075 0.02656 48.68562 4.12E-30 AV_DBH -0.52213 0.12557 -0.00495 0.001191 -4.15809 0.000247 LNQMD2 0.919651 0.12557 0.573474 0.078302 7.32383 3.71E-08 Appendix 4:Model summary for scale parameter in diameter distribution model Regression Summary for Dependent Variable: LNB R= .99434614 R²= .98872425 Adjusted R²= .98797254 F(2,30)=1315.3 p<.00000 Std. Error of estimate: 0.01415 St. Err. St. Err. BETA of BETA B of B t(30) p-level Intercept -1.05769 0.08324 -12.7066 1.32E-13 LNA 0.0101 0.025841 0.026337 0.067382 0.39087 0.698656 LNQMD2 0.987639 0.025841 1.605931 0.042018 38.22037 5.24E-27 Appendix 5:Model summary for shape parameter in diameter distribution model Regression Summary for Dependent Variable: LN_A_C_ R= .80186885 R²= .64299365 Adjusted R²= .61919322 F(2,30)=27.016 p<.00000 Std.Error of estimate: 0.02936 St. Err. St. Err. BETA of BETA B of B t(30) p-level Intercept 1.320864 0.025529 51.74065 6.78E-31 AV_DBH -0.52263 0.125556 -0.00477 0.001145 -4.16253 0.000244 LNQMD2 0.91966 0.125556 0.551276 0.075262 7.324708 3.7E-08 201 UNIVERSITY OF IBADAN LIBRARY Appendix 6a:Model summary for location parameter in stem quality distribution model Regression Summary for Dependent Variable: LNA R= 0.71633006; R²=0.51312875; Adjusted R²=0.46276276 F(3,29)=10.188 p<.00010 ;Std.Error of estimate:0.03628 St. Err. St. Err. BETA of BETA B of B t(29) p-level Intercept 0.799109 0.180278 4.432644 0.000122 AV_MHT -0.07372 0.341109 -0.00154 0.007103 -0.21613 0.8304 CPA_HA 0.2828 0.139631 2.05E-06 1.01E-06 2.025344 0.052123 LNINVSAG 0.760862 0.342787 1.274663 0.574266 2.219637 0.034422 Appendix 6b: Model summary for location parameter in stem quality distribution model STEM QUALITY Regression Summary for Dependent Variable: LNA R= .72408007 R²= .52429194 Adjusted R²= .47508077 F(3,29)=10.654 p<.00007 Std.Error of estimate: 0.03586 St. Err. St. Err. BETA of BETA B of B t(29) p-level Intercpt 0.909002 0.164947 5.510871 6.14E-06 AV_MHT 1.485519 0.672029 0.030933 0.013994 2.210498 0.035115 AV_SQ -1.3574 0.614543 -0.03107 0.014064 -2.2088 0.035245 LNINVSAG 0.521397 0.314853 0.873489 0.527468 1.656003 0.108504 Appendix 6c:Model summary for location parameter in stem quality distribution model Regression Summary for Dependent Variable: LNA R= .73264719 R²= .53677191 Adjusted R²= .47059646 F(4,28)=8.1113 p<.00018 Std.Error of estimate:0.03601 St. Err. St. Err. BETA of BETA B of B t(28) p-level Intercept 0.758615 0.239626 3.165821 0.003712 LNTHT 0.830075 0.955716 0.458239 0.527598 0.868537 0.392484 AV_MHT 1.124189 0.792815 0.023409 0.016509 1.417971 0.167233 AV_SQ -1.5147 0.643187 -0.03467 0.01472 -2.355 0.025764 LNINVSAG 0.197444 0.488977 0.330775 0.819177 0.403789 0.689435 202 UNIVERSITY OF IBADAN LIBRARY Appendix 6d:Model summary for location parameter in stem quality distribution model Regression Summary for Dependent Variable: LNA R=0.84176076; R²=0.70856117; Adjusted R²=0.67841233 F(3,29)=23.502 p<.00000 Std.Error of estimate:0.02807 St. Err. St. Err. BETA of BETA B of B t(29) p-level Intercept 0.955965 0.08078 11.83414 1.27E-12 LNTHT 0.132026 0.348897 0.072884 0.192607 0.378411 0.707882 AV_SC 0.596645 0.116487 0.002315 0.000452 5.121998 1.81E-05 LNINVSAG 0.23475 0.349712 0.393274 0.585868 0.671268 0.507362 Appendix 6e:Model summary for location parameter in stem quality distribution model Regression Summary for Dependent Variable: LNA R= 0.73264719; R²=0.53677191; Adjusted R²= 0.47059646 F(4,28)=8.1113 p<.00018 Std.Error of estimate:0.03601 St. Err. St. Err. BETA of BETA B of B t(28) p-level Intercept 0.758615 0.239626 3.165821 0.003712 LNTHT 0.830075 0.955716 0.458239 0.527598 0.868537 0.392484 AV_MHT 1.124189 0.792815 0.023409 0.016509 1.417971 0.167233 AV_SQ -1.5147 0.643187 -0.03467 0.01472 -2.355 0.025764 LNINVSAG 0.197444 0.488977 0.330775 0.819177 0.403789 0.689435 Appendix 7: Model summary for scale parameter in stem quality distribution model Regression Summary for Dependent Variable: LNB R= .99740581 R²= .99481835 Adjusted R²= .99428232 F(3,29)=1855.9 p<.00000 Std.Error of estimate: .00976 St. Err. St. Err. BETA of BETA B of B t(29) p-level Intercept -2.47077 0.028087 -87.9689 9.19E-37 LNTHT -0.1508 0.046522 -0.21708 0.066968 -3.24152 0.002984 AV_SC 0.01168 0.015532 0.000118 0.000157 0.75197 0.458129 LNINVSAG 1.134945 0.046631 4.957948 0.203703 24.33908 7.55E-21 203 UNIVERSITY OF IBADAN LIBRARY Appendix 8:Model summary for shape parameter in stem quality distribution model Regression Summary for Dependent Variable: LN_A_C_ R=0.84188924; R²= 0.70877749; Adjusted R²=0.67865102 F(3,29)=23.527 p<.00000 Std.Error of estimate:0.02697 St. Err. St. Err. BETA of BETA B of B t(29) p-level Intercept 0.996961 0.077624 12.84349 1.71E-13 LNTHT 0.13222 0.348767 0.070165 0.185081 0.379106 0.707371 AV_SC 0.597233 0.116443 0.002227 0.000434 5.128949 1.77E-05 LNINVSAG 0.234029 0.349582 0.376885 0.562975 0.669452 0.508502 Appendix 9: Model summary for mean quadratic diameter model Quadratic mean diameter model Regression Summary for Dependent Variable: LNQMD2 R=0.99026818; R²=0.98063107; Adjusted R²=0.98000627 F(1,31)=1569.5 p<.00000 Std.Error of estimate: .01828 St. Err. St. Err. BETA of BETA B of B t(31) p-level Intercept 1.802311 0.011574 155.7245 0 INVS_AGE -0.99027 0.024996 -9.7158 0.245244 -39.6169 4.04E-28 Appendix 10:Model summary for mean stem volume model Regression Summary for Dependent Variable: AV_SQ R=0.97657135; R²=0.95369160; Adjusted R²= .94890108 F(3,29)=199.08 p<.00000 Std.Error of estimate:0.48889 St. Err. St. Err. BETA of BETA B of B t(29) p-level Intercept -16.987 1.120003 -15.1669 2.52E-15 LNTHT 1.035852 0.052238 24.98628 1.260063 19.82939 2.07E-18 AV_SC -0.20292 0.066015 -0.0344 0.011191 -3.07389 0.004569 SI 0.047763 0.074617 0.040471 0.063225 0.640113 0.527125 204 UNIVERSITY OF IBADAN LIBRARY Appendix 11:Model summary for annual stem quality model Regression Summary for Dependent Variable: LNSQ R=0.98576346; R²= .97172961; Adjusted R²=0.96880508 F(3,29)=332.27 p<.00000 Std.Error of estimate: .01779 St. Err. St. Err. BETA of BETA B of B t(29) p-level Intercept 1.595713 0.472949 3.373961 0.002119 LNTHT 1.053312 0.036544 1.183012 0.041044 28.82283 6.77E-23 AV_SC 1.068569 0.302827 0.008435 0.00239 3.528647 0.001414 LNAGE -1.20182 0.305158 -1.38127 0.350723 -3.93835 0.000473 Appendix 12a:Model summary for annual stem volume model Regression Summary for Dependent Variable: LNASV R= .96320365 R²= .92776128 Adjusted R²= .92294536 F(2,30)=192.64 p<.00000 Std.Error of estimate: .04150 St. Err. St. Err. BETA of BETA B of B t(30) p-level Intercept 2.3383 0.08853 26.41254 2.49E-22 LNABA -0.93581 0.052379 -4.20597 0.235419 -17.8659 1.54E-17 LNQMD2 -0.07164 0.052379 -0.08285 0.060578 -1.36763 0.181587 Appendix 12b:Model summary for annual stem volume model Regression Summary for Dependent Variable: LNASV R= .99986103 R²= .99972207 Adjusted R²= .99969332 F(3,29)=34772. p<0.0000 Std.Error of estimate: .00024 St. Err. St. Err. BETA of BETA B of B t(29) p-level Intercept -0.77599 0.001754 -442.489 0 SI 0.000384 0.003433 2.06E-06 1.84E-05 0.111998 0.911597 INVS_AGE 0.000496 0.00317 0.000515 0.00329 0.156455 0.876759 LNABA 1.00011 0.003487 0.953155 0.003323 286.8124 0 205 UNIVERSITY OF IBADAN LIBRARY Appendix 13:Model summary for annual basal area model Regression Summary for Dependent Variable: LNABA R= .97177399 R²= .94434469 Adjusted R²= .93858724 F(3,29)=164.02 p<.00000 Std.Error of estimate: .00824 St. Err. St. Err. BETA of BETA B of B t(29) p-level Intercept 0.566043 0.024144 23.44408 2.13E-20 LNASV -0.9464 0.044034 -0.21057 0.009797 -21.4924 2.31E-19 CPA_HA 0.013492 0.044864 6.56E-08 2.18E-07 0.30074 0.765758 SI -0.14822 0.045074 -0.00193 0.000587 -3.28834 0.002645 Appendix 14:Model summary for site index model Regression Summary for Dependent Variable: SI R= .70725507 R²= .50020973 Adjusted R²= .44850729 F(3,29)=9.6748 p<.00014 Std.Error of estimate: 1.8955 St. Err. St. Err. BETA of BETA B of B t(29) p-level Intercept 3.40603 5.775266 0.589762 0.559918 LNTHT 0.697453 0.137285 19.85485 3.908183 5.080326 2.03E-05 LNASV -0.09354 0.136621 -1.59713 2.332598 -0.6847 0.49897 CPA_HA 0.281731 0.131948 0.000105 4.93E-05 2.135176 0.041322 Appendix 15: Model summary for stem quality model Regression Summary for Dependent Variable: LNSQ R= .84343458 R²= .71138188 Adjusted R²= .68152484 F(3,29)=23.826 p<.00000 Std.Error of estimate: .01539 St. Err. St. Err. BETA of BETA B of B t(29) p-level Intercept 0.081078 0.015476 5.238869 1.31E-05 AGE 0.561262 0.174233 0.002116 0.000657 3.221334 0.003142 NUMTREE -0.33171 0.119399 -2.3E-05 8.35E-06 -2.77817 0.009487 AV_THT 0.143399 0.160261 0.00149 0.001666 0.894781 0.378271 206 UNIVERSITY OF IBADAN LIBRARY Appendix 16:Model summary for mean diameter at breast height model Regression Summary for Dependent Variable: AN_DBH R= .85140606 R²= .72489228 Adjusted R²= .69643287 F(3,29)=25.471 p<.00000 Std.Error of estimate: .01396 St. Err. St. Err. BETA of BETA B of B t(29) p-level Intercept 0.149551 0.147036 1.017106 0.317514 LNABA 0.568544 0.352358 0.433137 0.268439 1.613538 0.117458 LNASV -0.24895 0.352351 -0.0422 0.059725 -0.70654 0.485494 CPA_HA -0.25627 0.097615 -9.5E-07 3.62E-07 -2.62531 0.013674 Appendix 17: Model summary for yield (stem volume) model YIELD MODEL stem volume LNSV=b0 +b1iNVAGE+B2lnba Regression Summary for Dependent Variable: LNASV R= .96311529 R²= .92759105 Adjusted R²= .92276379 F(2,30)=192.16 p<.00000 Std.Error of estimate: .04155 St. Err. St. Err. BETA of BETA B of B t(30) p-level Intercept 2.487795 0.026909 92.45355 2.07E-38 INVS_AGE -0.06894 0.051448 -0.78224 0.583779 -1.33996 0.190321 LNABA -0.9404 0.051448 -4.22661 0.231231 -18.2787 8.23E-18 Appendix 18: Model summary for basal area model Basal area Regression Summary for Dependent Variable: LNABA R= .96170056 R²= .92486796 Adjusted R²= .91985916 F(2,30)=184.65 p<.00000 Std.Error of estimate: .00942 St. Err. St. Err. BETA of BETA B of B t(30) p-level Intercept 0.542121 0.028942 18.73116 4.19E-18 INVS_AGE -0.04281 0.053383 -0.10808 0.134773 -0.80193 0.428901 LNASV -0.97576 0.053383 -0.2171 0.011877 -18.2787 8.23E-18 207 UNIVERSITY OF IBADAN LIBRARY Appendix 19: Model summary for stem quality model stem quality Model: v10=b0*v6^b1*exp(b2*v29+b3*v20) Dep. var: LNSQ Loss: (OBS-PRED)**2 Final loss: .007398252 R=.83014 Variance explained: 68.912% 2 R 0.6891 SE 0.002966 B0 B1 B2 B3 Estimate 0.000435 1.802428 -10.7634 7.774891 Appendix 19b:Model summary for stem quality model Model: v10=b0*v6*exp(b1*v3+b2*v29+b3*v20) Dep. var: LNSQ Loss: (OBS-PRED)**2 Final loss: .005280468 R=.88211 Variance explained: 77.811% SE 0.002506 2 R 0.7781 B0 B1 B2 B3 Estimate 0.017478 -0.35421 -8.48903 4.224069 Appendix 20:Model summary for stem number model NUMBER OF STEM Model: v3=b0+b1*v19+b2*v29+b3*v33 (percentile m_oyebade.sta) Dep. var: LNN0TREE Loss: (OBS-PRED)**2 Final loss: .782069063 R=.63783 Variance explained: 40.682% SE 0.029478 2 R 0.4068 B0 B1 B2 B3 Estimate 7.692037 -5.59722 -32.73 -3.86569 208 UNIVERSITY OF IBADAN LIBRARY Appendix 21:Model summary for tree number model Regression Summary for Dependent Variable: LNN0TREE R= .70824140 R²= .50160588 Adjusted R²= .45004787 F(3,29)=9.7290 p<.00013 Std.Error of estimate: .15053 St. Err. St. Err. BETA of BETA B of B t(29) p-level Intercept 4.031605 1.084822 3.716376 0.000859 LNASV -0.04698 0.163728 -0.69731 2.430244 -0.28693 0.776207 LNTHT -0.59275 0.149968 -1.37432 0.347711 -3.95249 0.000455 SI 0.266448 0.144899 0.021189 0.011523 1.838849 0.076198 Appendix 22a:Model summary for mean crown projection area model CPA lnCPA=b0exp(b1lnCR+lnAGE) Model: v24=b0*exp(b1*v21+b2*v27) Dep. var: LNCPA Loss: (OBS-PRED)**2 Final loss: 1.106299996 R=.73084 Variance explained: 53.413% SE 0.03506 2 R 0.5341 B0 B1 B2 Estimate 0.69112 -0.81246 -3.10459 Appendix 22b:Model summary for mean crown projection area model Regression Summary for Dependent Variable: LNCPA R= .73541160 R²= .54083023 Adjusted R²= .51021891 F(2,30)=17.668 p<.00001 Std.Error of estimate: .19065 St. Err. St. Err. BETA of BETA B of B t(30) p-level Intercept 5.326754 0.620584 8.583458 1.41E-09 LNTHT -0.7287 0.127789 -2.26746 0.397636 -5.70236 3.21E-06 LNAGE 0.390208 0.127789 4.111648 1.346521 3.053534 0.004709 209 UNIVERSITY OF IBADAN LIBRARY Appendix 23: Model summary for mean crown ratio model CROWN RATIO Regression Summary for Dependent Variable: LNCR R= .96638878 R²= .93390728 Adjusted R²= .92707010 F(3,29)=136.59 p<.00000 Std.Error of estimate: .03634 St. Err. St. Err. BETA of BETA B of B t(29) p-level Intercept -2.13786 0.219899 -9.72201 1.25E-10 LNTHT 0.318216 0.071184 0.489111 0.109413 4.470322 0.00011 LNCPA -0.12335 0.070452 -0.06093 0.0348 -1.75084 0.090547 LNAGE -0.93205 0.056457 -4.85121 0.293851 -16.5091 2.76E-16 Appendix 24a:Model summary for mean crown ratio model Regression Summary for Dependent Variable: LNCR R= .96276734 R²= .92692096 Adjusted R²= .92204902 F(2,30)=190.26 p<.00000 Std.Error of estimate: .03757 St. Err. of St. Err. BETA BET B of B t(30) p-level Intercept -2.46242 0.122293 -20.1353 5.59E-19 LNTHT 0.408101 0.05098 0.627267 0.078359 8.005049 6.18E-09 LNAGE -0.98018 0.05098 -5.10173 0.265348 -19.2266 2.03E-18 Appendix 24b:Model summary for mean crown ratio model Regression Summary for Dependent Variable: LNCR R= .96546204 R²= .93211695 Adjusted R²= .92759141 F(2,30)=205.97 p<.00000 Std.Error of estimate: .03621 St. Err. St. Err. BETA of BETA B of B t(30) p-level Intercept -1.87116 0.086836 -21.5481 8.3E-20 LNSQ 0.415869 0.049257 2.052016 0.243047 8.44287 2.02E-09 LNAGE -0.98591 0.049257 -5.13156 0.256377 -20.0157 6.6E-19 210 UNIVERSITY OF IBADAN LIBRARY Appendix 24c: Model summary for mean crown ratio model MEAN CROWN RATIO MODEL Regression Summary for Dependent Variable: LNCR R= .91112367 R²= .83014635 Adjusted R²= .81882277 F(2,30)=73.311 p<.00000 Std.Error of estimate: .05728 St. Err. St. Err. BETA of BETA B of B t(30) p-level Intercept -1.87888 0.138999 -13.5172 2.69E-14 AV_SQ 0.246127 0.076036 0.015313 0.004731 3.236973 0.002944 LNAGE -0.91338 0.076036 -4.75405 0.39576 -12.0124 5.44E-13 Appendix 25:Model summary for stem volume growth model STEM VOLUME GROWTH MODEL Regression Summary for Dependent Variable: LNASV R= .99986143 R²= .99972289 Adjusted R²= .99970441 F(2,30)=54114. p<0.0000 Std.Error of estimate: .00024 St. Err. St. Err. BETA of BETA B of B t(30) p-level Intercept -0.77549 0.001602 -484.082 0 LNABA 0.999574 0.003148 0.952644 0.003 317.5001 0 LNAGE -0.0011 0.003148 -0.00058 0.001665 -0.34986 0.728887 Appendix 26:Model summary for mean stem quality model Mean stem quality model Regression Summary for Dependent Variable: LNSQ R= .99924970 R²= .99849997 Adjusted R²= .99839997 F(2,30)=9984.8 p<.00000 Std.Error of estimate: .00109 St. Err. St. Err. BETA of BETA B of B t(30) p-level Intercept -0.29323 0.003551 -82.5802 6.06E-37 LNTHT 0.996717 0.007304 0.310479 0.002275 136.4629 1.81E-43 LNAGE 0.009927 0.007304 0.010472 0.007705 1.359184 0.184219 211 UNIVERSITY OF IBADAN LIBRARY Appendix 27a: Model summary for mean total height growth model MEAN TOTAL GROWTH MODEL Model: v7=b0*exp(b2*v27+b3*v33) Dep. var: LNTHT Loss: (OBS-PRED)**2 Final loss: .094808217 R=.78322 Variance explained: 61.343% SE 0.009933 2 R 0.6134 B0 B2 B3 Estimate 0.812507 -0.08403 0.397243 Appendix 27b: Model summary for mean total growth model in height Regression Summary for Dependent Variable: AV_THT R= .86121543 R²= .74169203 Adjusted R²= .72447149 F(2,30)=43.070 p<.00000 Std.Error of estimate: 1.3773 St. Err. St. Err. BETA of BETA B of B t(30) p-level Intercept 14.00094 1.474908 9.492757 1.52E-10 AV_SC 0.45255 0.092808 0.093074 0.019088 4.876188 3.3E-05 INVS_AGE -0.72423 0.092808 -144.235 18.48319 -7.80357 1.04E-08 212 UNIVERSITY OF IBADAN LIBRARY