Proyecciones Journal of Mathematics 10.22199/issn.0717-6279-4357-4415 Vol. 40, No 6, pp. 1615-1639, December 2021. Universidad Católica del Norte Antofagasta - Chile On asymptotic behavior of solution to a nonlinear wave equation with Space-time speed of propagation and damping terms Paul A. Ogbiyele University of Ibadan, Nigeria and Peter O. Arawomo University of Ibadan, Nigeria Received : August 2020. Accepted : August 2021 Abstract In this paper, we consider the asymptotic behavior of solution to the nonline¡ar damped¢wave equation utt − div a(t, x)∇u + b(t, x)ut = −|u|p−1u t ∈ [0,∞), x ∈ Rn u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ Rn with space-time speed of propagation and damping potential. We ob- tained L2 decay estimates via the weighted energy method and under certain suitable assumptions on the functions a(t, x) and b(t, x). The technique follows that of Lin et al.[8] with modification to the region of consideration in Rn. These decay result extends the results in the literature. Subjclass Primary: 35L05, 35L70; Secondary: 37L15 Keywords: Space-time speed of propagation, Space-time dependent damping, Asymptotic behavior, Weighted energy method. IBADAN UNIVERSITY LIBRARY 1616 Paul A. Ogbiyele and Peter O. Arawomo 1. Introduction In this paper, we are concerned with the asymptotic behavior of solution to the following nonlinear wave equation ( ³ ´ u − div a(t, x)∇u + b(t, x)u = −|u|p−1tt t u, t ∈ [0,∞), x ∈ Rn u(0, x) = u0(x), ut(0, x) = u1(x) x ∈ Rn, (1.1) with space-time dependent coefficients of the form −α (1.2) b(t, x) = b0(1 + |x|2) −β2 (1 + t) and ρ1(1+|x|2 δ ) 2 (1+t)γ |ξ|2 ≤ a(t, x)ξ·ξ ≤ ρ (1+|x|2 δ0 ) 2 (1+t)γ |ξ|2, ξ ∈ Rn (1.3) where a(t, x) = η(t)−1ρ(x) and η(t) = (1 + t)−γ . In addition, b0 > 0, ρ0 > 0, α+ δ ∈ [0, 2) and β + γ ∈ [0, 1), where u = u(t, x). More precisely, α + β + δ + γ ∈ [0, 1). Equations of the form (1.1) arise in the study of nonlinear wave equations describing the motion of body traveling in an in-homogeneous medium. They appear in various aspects of Mathematical Physics, Geophysics and Ocean acoustics. In the case of scalar coefficients and bounded smooth domains Ω, there is an extensive literature on energy dacay results. For the semi-linear wave equation (1.4) utt −∆u+ ut = |u|p, Todorova and Yordanov [18] showed that C 2n = 1 + n is the critical exponent(Fujita exponent) for p <∞ (n < 3) and p < 1 + 2n(n ≥ 3). Nishihara in his paper [11] showed that the decay rate of solution to the damped linear wave equation follows that of self similar solution of its corresponding heat equation for n = 3 and showed this by obtaining Lp − Lq estimates on their difference. For similar results on 1-dimension and 2-dimensions, see Marcati and Nishihara [9] and Hosono and Ogawa [5] respectively, and in any dimension, see Narazaki [10]. Hence, it is expected that the behavior of the solution to equation (1.4) is similar to that of the corresponding heat equation (1.5) ut −∆u = |u|p, IBADAN UNIVERSITY LIBRARY On asymptotic behavior of solution to a nonlinear wave equation ..1.617 −1 1 whose similarity solution ua(t, x) has the form tp−1F (xt − 2 ) with 2 a = lim 2|x|→∞ |x| p−1 f(x) ≥ 0 provided that p < 1 + n . In the case of time dependent potential type of damping, with equations of the form (1.6) utt −∆u+ b(t)u + |u|p−1t u = 0, there are also several results on the decay rate of the solution. Nishihara and Zhai [13], used a weighted energy method similar to those in [18] and obtained decay estimates of the form n kuk2 ≤ −( )(1+β)Ct 4(p−1)(1.7) k k ≤ −( n )(1+β) u Ct 2(p−1)1 under the assumption that b(t) ≈ (1 + t)−β. For Cauchy problem of the form (1.8) u − a2tt (t)∆u+ b(t)ut + c0|u|p−1u = 0, it is well known that the interplay between the coefficient a2(t) and the term b(t)ut induces different effect on the asymptotic behavior of the energy E(t) given by 1 a2(t) (1.9) E(t) = ku 2tk + k∇uk2 1 2 + kukpp.2 2 p For more details see [2, 3, 4, 20] and the references therein. In [1] Bui considered the asymptotic behavior of the nonlinear problem (1.8) with a(t) = (1+ t) and b(t) = µ(1+ )(1+ t)−1, > 0, c0 = 0 and obtained the following estimate ³ ´ ku +( +1)max{µ∗− 1 ,−1}t(t, ·), (1+t) ∇u(t, ·)kL2 ≤ (1+t) 2 ku1kH1+ku2kL2 (1.10) with µ∗ = 12(1− µ− +1). In the case of damped wave equation with space dependent potential type of damping; (1.11) utt −∆u+ b(x)u p−1t + |u| u = 0, where b1(1 + |x|)−α ≤ b(x) ≤ b2(1 + |x|)−α and b1, b2 > 0, Todorova and Yordanov [19] investigated the decay rate of the energy when 0 ≤ α < 1. They obtained several decay rate types for solutions of (1.11) depending on p and α. These decay rates take the form IBADAN UNIVERSITY LIBRARY 1618 Paul A. Ogbiyele and Peter O. Arawomo ³ ´ ³ −1 − p+1 ´ (1.12) ku k + k∇uk , kuk = O t +δp−1 , t 2(p− +δ1)t 2 2 p+1 if 1 < p < 1 + 2αn−α and ³ ´ ³ α 1 n α p+1 n ´ k k k∇ k k k −(1+ ) − + +δ −(1+ ) + +δu + u , u = O t 2 p 1 2(p+1) 2 2(p−1) 4t 2 2 p+1 , t (1.13) if 1 + 2α 2(4−α)n−α < p < 1 + (n−α)(4−α) , for t > 1, where δ is a constant. Nishihara[12] also considered the asymptotic behavior of solution to the semi-linear wave equation (1.11) with b(x) satisfying | |2 −α(1.14) b1(1 + x ) 2 ≤ α b(x) ≤ b 2 −2(1 + |x| ) 2 and obtained decay rates of the following type ⎧⎪⎪⎪⎪ − n−2α⎨ C(1 + t) 2(2−α) if 1 + 2 n+2n−α ≤ p < n−22 1 n k C(1 + t) − ( )− 2−α p−1 4 if 1 + 2α < p ≤ 1 + 2 u(t, ·)k n−α n−α2 ≤ ⎪⎪⎪⎪ − 2 ( 1 )−n 1⎩ C(1 + t) 2−α p−1 4 [log(t+ 2)] 2 if p = 1 + 2αn−α− 1 + α C(1 + t) p−1 2(2−α) if 1 < p < 1 + 2αn−α (1.15) where α ∈ [0, 1). Ikehata and Inoue [6] studied nonlinear wave equations with b(x) = b0(1 + |x|)−1 and showed that solutions to (1.11) depend on the coefficient b0 and their decay estimate takes the form (1.16) kuk = O(t−1+µ) kutk22 + k∇uk2 = O(t−1+µ2 ) where 1 < µ+ b0 < 1 + b0 if 0 < b0 ≤ 1 0 ≤ µ < 1 if b0 ≥ 1. Moreover, for damped wave equations with space-time dependent po- tential type of damping utt −∆u+ b(t, x)ut + |u|p−1u = 0, t > 0, x ∈ Rn(1.17) u(0, x) = u n0(x), ut(0, x) = u1(x), x ∈ R , Lin et al. [8] considered decay rates of solution to (1.17) and showed using the weighted energy method that the L2 norm of the solution decays as IBADAN UNIVERSITY LIBRARY On asymptotic behavior of solution to a nonlinear wave equation ..1.619 ⎧⎪⎪⎪⎨ −( 1 − α )(1+β)C(1 + t) p−1 2(2−α) if α(p+1)p−1 > n ku(t.·)k2 ≤ ⎪⎪⎩⎪ −( 1 α C(1 + t) p− − 1 2(2− )(1+β)α) log(t+ 2), if α(p+1)p−1 = n −(1+β) 1 + 1+β− − (N−α 2 ) C(1 + t) p 1 2(2 α) p−1 if α(p+1)p−1 < n (1.18) For nonlinear wave equations with variable coefficients which exhibit a dissipative term with a space dependent potential (1.19) utt −∇ · (b(x)∇u) +∇ · (b(x)ut) = 0, x ∈ Rn, t > 0 under the assumption that (1.20) b0(1 + |x|)β|ξ|2 ≤ b(x)ξ · ξ ≤ b (1 + |x|)β|ξ|21 , ξ ∈ Rn, where b0 > 0, b1 > 0 and β ∈ [0, 2). R. Ikehata et al. [7] obtained long time asymptotics for solutions to (1.19)-(1.20) as a combination of solutions of wave and diffusion equations under certain assumptions on b in an exterior domain, see also [15]. Said-Houari [17] considered a viscoelastic wave equation with space- time dependent damping potential and an absorbing term R u ttt −∆u+ 0 g(t− s)∆u(s)ds+ b(t, x)u + |u|p−1t u = 0, t > 0, x ∈ Rn u(0, x) = u0(x), u n t(0, x) = u1(x) x ∈ R (1.21) and by using a weighted energy method, they showed that the L2 decay rates are the same as those in [8]. More recently, Roberts[16] under the assumption that b0(1+|x|)β ≤ b(x) ≤ b1(1+|x|)β and a0(1+|x|)−α ≤ a(x) ≤ a1(1+|x|)−α with (1.22) α < 1, 0 ≤ β < 2, 2α+ β < 2, obtained energy decay estimates of solution to the dissipative non-linear wave equation u − div(b(x)∇u) + a(x)u + |u|p−1u = 0, x ∈ Rntt t , t > 0(1.23) u(0, x) = u0(x) ∈ H1(Rn), ut(0, x) = u1(x) ∈ L2(Rn), IBADAN UNIVERSITY LIBRARY 1620 Paul A. Ogbiyele and Peter O. Arawomo using a modification of the weighted multiplier technique introduced by Todorova and Yordanov[14]. In this paper, by using the weighted L2-energy method similar to that of [8], we obtain decay estimates of the energy of the solution to (1.1), where a(t, x) and b(t, x) have the form in (1.2)-(1.3) above. In [8], the space Rn was divided into two zones Z(t;L, t n 2 20) := {x ∈ R |(t0 + t) ≥ L+ |x| } and Zc(t;L, t ) = Rn0 \Z(t;L, t0). To obtain boundedness on certain esti- mates on Z, a further division of Z was required. Here, we split the domain into two zones Ω(t, L, t0) = {x ∈ Rn : (t + t)A0 ≥ L+ |x|2} and Ωc(t, L, t0) = R n\Ω(t, L, t0) which depend on the weighted function for A = 2(1+β+γ)2−(α+δ) and positive constants L, t0. With this choice, we overcome the challenge of splitting the first zone in order to obtain boundedness for every estimate on Ω(t;L, t0) in the proof. 2. Preliminaries In this section, we state some basic assumptions used in this paper. First, we introduce the following notations. Lp(Rn), 1 ≤ p ≤ ∞, the Lebesgue space with norm k · k and H1p ρ(Rn)Zthe Sobolev space defined by (2.1) H1 n 2n ρ(R ) := {u ∈ Ln−2+δ : (1 + |x|2 δ ) |∇u|22 dx <∞}. Rn Lemma 2.1. (Caffarelli-Kohn-Nirenberg) There exist a constant C > 0 such that the inequality (2.2) k|x|σukLr ≤ Ck|x|δ∇ukθ 1−θLqk|x| ukLp holds for all u ∈ C∞(Rn0 ) if³and only if the following relations hold:1 σ 1 δ − 1´ ³1 ´ (2.3) + = θ + + (1− θ) + r n q n p n with p, q ≥ 1. r > 0, 0 ≤ θ ≤ 1. δ − d ≤ 1 if θ > 0 and 1 + δ−1p n = 1 r + σ n Remark 1. When σ = δ = = 0, the Lemma is referred to as the Gagliardo-Nirenberg inequality. IBADAN UNIVERSITY LIBRARY On asymptotic behavior of solution to a nonlinear wave equation ..1.621 We define the weighted function ψ(t, x) as follows: 2−(α+δ) (L+ |x|2) 2 (2.4) ψ(t, x) = λ (t0 + t)1+β+γ for a small positive constant λ = b0(1+β+γ)2ρ (2−(α+δ))2 and t0 ≥ L ≥ 1. Moreover,0 we have 2−(α+δ) 2 2 ψt(t, x) = −λ(1 + β + γ) (L+|x| )(t0+t)2+β+γ −α−δ ∇ − (L+|x| 2) 2ψ(t, x) = λ(2 (α+ δ)) x (t0+t)1+β+γ 2 −α−δ 2 |∇ψ(t, x)|2 = λ2(2− (α+ δ))2 (L+|x| ) |x| (t +t)2+2β+2γ0 and consequently, we have a(t, x)|∇ψ|2 1 (2.5) − ≤ b(t, x).( ψt(t, x)) 2 In the sequel, we will denote the function ψ(t, x) by ψ for simplicity. To begin, we state the following lemmas which will be needed in the proof of the main result. First, we define the functions E(t) and H(t) associated to problem (1.1) by h i (2.6) E(t) := e2ψη(t) 1 |u |2 + a(t,x)2 t 2 |∇u|2 + 1 p+1 p+1 |u| and h H 2ψ b(t, x) i (2.7) (t) := e η(t) uut + |u|2 2 respectively. Then for the function E(t) in (2.6), we have the following result. Lemma 2.2. Let u be a solution of (1.1), then the function E(t) defined in (2.6), satisfies h i d E(t) ≤ ∇ · (e2ψρh(x)∇uu ) + e2ψη(it) − b(t,x) + ψh |u |2i+ e2ψ ηt(t)dt t 4 t t 2 |u 2t| +e2ψη(t) −γ + 2ψt |u|p+1(p+1)(1+t) p+1 + e2ψ ρ(x)ψt 3 |∇u|2. (2.8) IBADAN UNIVERSITY LIBRARY 1622 Paul A. Ogbiyele and Peter O. Arawomo Proof. Multiplying (1.1) by e2ψut and using (2.5), we obtain ∙ h i¸ d e2ψ 1 |u |2 + a(t,x)dt 2 t 2 |∇u|2 +h 1p+1 |u|p+1 i 2ψ = ∇ · (e2ψha(t, x)∇uu 2ψ 2 e at(t,x) 2t) + ei ψt − b(t, x) |ut| + 2 |∇u| (2.9) e2ψa(t,x) 2h e2ψa(t,x)|∇ψi|2+ ψ |∇u|2 −∇ψu − |u |2 + 2e2ψψt p+1ψ t t t |u|t ψt p+1 2ψ ≤ ∇ · (e2ψha(t, x)∇uu 2ψ 1 2 e at(t,x) 2t) + ei ψt − 2b(t, x) |ut| + 2 |∇u| +e 2ψa(t,x) 2 2ψψ 2e ψt p+1ψ t|∇u|−∇ψut + p+1 |u| ,t where we have used (2.10) e2ψut · b(t, x)u = e2ψb(t, x)|u |2t t . By employing Schwartz inequality, we observe that h i e2ψa(t,x) 2 ψ ψt|∇u|−h∇ψutt i 2ψ (2.11) = e a(t,x)ψ h|ψt|2|∇u|2 − 2ψ 2 2tut∇u ·∇ψi+ |∇ψ| |ut|t ≤ e 2ψa(t,x) 1 |ψ |2ψ t |∇u|2 − 1 |∇ψ|2|u 2t| . t 3 2 Hence, using (2.5) in (2.11) and substituting the resulting estimate in (2.9), we obtain ∙ h i¸ d e2ψ 1 |u |2 + a(t,x) |∇u|2 +h 1 |u|p+1dt 2 t 2 p+1 i (2.12) ≤ ∇ · (eh2ψa(t, x)∇uu ) +i e2ψ ψ − b(t,x) |u |2 + 2e2ψψt |u|p+1t t 4 t p+1 +e2ψ at(t,x) + a(t,x)ψt2 3 |∇u|2 and multiplying (2.12) by η(t), we get ∙ h i¸ d dt e 2ψη(t) 12 |u |2 + a(t,x) 2 t 2 |∇u| h+ 1 |u|p+1p+1 i ≤ ∇ · (e2ψρh(x)∇uu ) + e2ψη(it) − b(t,x)t 4 + ψh 2 2ψ ηt(t) 2t |ut|i+ e 2 |ut| +e2ψη(t) −γ + 2ψt |u|p+1 + e2ψ ρ(x)ψt(p+1)(1+t) p+1 3 |∇u|2. (2.13) 2 Now, for the function H(t), we have the following lemma. IBADAN UNIVERSITY LIBRARY On asymptotic behavior of solution to a nonlinear wave equation ..1.623 Lemma 2.3. Let u be a solution of (1.1), then the function H(t) defined in (2.7), satisfies d dtH(t) ≤ ∇ · (e2ψρ(x)u∇u) + e2ψη∙(t)|u |2 + 2e2ψt η¸(t)ψtuut − e2ψη(t)|u|p+1 e2ψ− ρ(x) |∇u|2 + e2ψ4 η(t) bt(t,x) b(t,x)ψt 2 2 + 3 |u| +e2ψ ηt(t)b(t,x)2 |u|2 + e2ψηt(t)uut (2.14) Proof. Multiplying (1.1) by e2ψu and using the estimate (2.5), we get ∙ h i¸ d e2ψ uu + b(t,x)dt t 2 |u|2 = ∇ · (e2ψa(t, x)u∇u) + e2ψ|u |2 + 2e2ψt ψtuut + e2ψ bt(t,x)2 |u|2 2 −e2ψa(ht, x)|∇u|2 − a (t,x)|∇ψ|2 2 2ψψ b(t,xi) |∇u| e − e2ψ|u|p+1(2.15) t + b(t,x) |ψ u+ a(t,x)∇ψ 2 ψ t b(t,x) |∇u| e2ψt ≤ ∇ · (e2ψa(t, x)u∇u) + eh2ψ|u |2 + 2e2ψψ uu i+ e2ψ bt(t,x) 2t t t 2 |u| e2ψ− a(t,x) 2 2 |∇u|2 + b(t,x) |ψ u− a(t,x)∇ψ |∇u| e2ψ − e2ψ|u|p+1ψ tt b(t,x) where we have used ∙ ¸ 2ψ e2ψb(t, x)uut = d e b(t,x) dt 2 |u|2 − e2ψψ 2tb(t, x)|u|(2.16) −e2ψ bt(t,x)2 |u|2. Using Schwartz inequality for the second to the last term on the right hand side of (2.15), we hhave the following esh i timate b(t,x) a(t,x)∇ψ 2 (2.17) ψ |ψtu+ t b(t,x) |∇u| i b(t,x) 1 |a(t,x)|2|∇ψ|2≤ 2 2 2ψt 3 |ψt| |u| − 2|b(t,x)|2 |∇u| . In a similar way, using (2.5) in (2.17), and substituting the resulting estimate in (2.15), we get ∙ h i¸ d e2ψ uu + b(t,x) 2dt t 2 |u| (2.18)≤ ∇ · (e2ψa(t, x)u∇u) + e2ψ|u |2 + 2e2ψψ uu + e2ψ bt(t,x) 2t t t 2 |u| 2ψ −e a(t,x) |∇u|2 + e2ψ b(t,x)ψt |u|2 − e2ψ|u|p+14 3 IBADAN UNIVERSITY LIBRARY 1624 Paul A. Ogbiyele and Peter O. Arawomo and multiplying (2.18) by η(t), we obtain ∙ h i¸ d e2ψη(t) uu + b(t,x) |u|2dt t 2 ≤ ∇ · (e2ψρ(x)u∇u) + e2∙ψη(t)|u |2 + 2e2¸ψη(t)ψ uu − e2ψη(t)|u|p+1t t t e2ψ− ρ(x) |∇u|2 + e2ψη(t) bt(t,x) + b(t,x)ψt |u|24 2 3 +e2ψ ηt(t)b(t,x) |u|22 + e2ψηt(t)uut. (2.19) 2 3. Main result In this section, we consider the long time behavior of the solution to (1.1). The result here is obtained via a weighted energy method and the technique follows that of Lin et al.[8]. For local existence result, the compactness condition on the support of the initial data is replaced by the following condition: Z ∙ αA h i ¸β+ I := η(0) t 2 2 2 2 2ψ(0,x)0 Z 0 |u1| + a(0, x)|∇u0| + b(0, x)|u0| e dx Ω(0;L,t0) ∙ h i ¸ 1 αA + η(0) (L+ |x|2) (β+ )A 2 |u 2 2 21| + a(0, x)|∇u0| + b(0, x)|u0| Ωc(0;L,t0) e2ψ(0,x)dx < +∞. (3.1) With respect to the size of (1 + |x|2) and (1 + t) and considering the weighted function ψ, we partition the space Rn into the following zones: Ω(t, L, t0) = {x ∈ Rn : (t0 + t)A ≥ L+ |x|2} and Ωc(t, L, t0) = R n\Ω(t, L, t0) which is a modification of the zones as inspired by Lin et. al. [8], where A = 2(1+β+γ)2−(α+δ) . Since α+ β + δ + γ ∈ [0, 1), it follows that A < 2. Theorem 3.1. Let u be the solution of (1.1) and let a(t, x), b(t, x) satisfy (1.2) and (1.3) for 2 < p+1 < 2nn−2+δ when n ≥ 2. Suppose that (u0, u1) ∈ H1 n 2ρ(R ) ∩ L (Rn) and (??) holds. Then there exist a unique solution u of (1.1) with u ∈ L∞([0,∞);H1ρ(Rn)) and u ∈ L∞t ([0,∞);L2(Rn)) which satisfies the following estimate IBADAN UNIVERSITY LIBRARY On asymptotic behavior of solution to a nonlinear wave equation ..1.625 ⎪⎪⎪⎧⎨ −2(1+β) α(1+β+γ)+C(1 + t) p−1 2−(δ+α) , if α(p+1)(p−1) > n ⎪⎪ −2(1+β) α(1+β+γ)(3.2)kuk2 ≤ +⎪ C(1 + t) p−1 2−(δ+α) log(2 + t), if α(p+1) L2 ⎩ (p−1) = n−2(1+β)+ 1+β+γ (n− 2α )C(1 + t) p−1 2−(δ+α) p−1 , if α(p+1)(p−1) < n. Remark 2. The existence result can be proved using the same technique as in [8] where in this case the Caffarelli-Kohn-Nirenberg inequality is used instead of the Gagliardo-Nirenberg inequality, with the additional consid- δ eration of the inequality |x|δ ≤ (1 + |x|2) 2 . Hence, we omit the proof here. Proof. [Proof of Theorem 3.1] We split the proof into three parts, the first part considers the case x ∈ Ω(t, L, t0), the second part covers the case x ∈ Ωc(t, L, t0) and the third part combines the two results . We state the result in each of the zones in the form of a lemma. Case 1: (x ∈ Ω(t, L, t0)). In this region, we define a functionEψ(Ω(t, L, t0)) by αA (3.3) Eψ(Ω(t, L, t β+ 0)) := (t0 + t) 2 E(t) + νH(t) where ν is a small positive constant to be determined later, and the func- tions HE(t;Ω(t;L, t0)), H1(t) and H2(t) by R (3.4)HE(t;Ω(t;L, t0)) := Ω(t;L,t )Eψ(Ω(t, L, t0))dx0 R ¯̄̄ h iN−1 H (t) := 2π1 0 Eψ( Ω(t,qL, t A 20)) √ (t + t) − L dθ|x| 0= (t0+t)A−L × ddt (t0 + t)A − L (3.5) Z h i αA (3.6) H (t) := e2ψ (t + t)β+2 0 2 ρ(x)∇uut + νρ(x)u∇u ·−→n dS ∂Ω(t;L,t0) where −→n is the unit outward normal vector of ∂Ω(t;L, t0). Then we state the next lemma. IBADAN UNIVERSITY LIBRARY 1626 Paul A. Ogbiyele and Peter O. Arawomo Lemma 3.2. Let u be a solution of (1.1) and the functions E(t) and H(t) be defined as in (2.6) and (2.7) above, then for x ∈ Ω(t, L, t0), the function Eψ(Ω(t, L, t0)) satisfies d dtEψ(Ω(t,hL, t0)) i ≤ ∇ · (e2ψ ∙ αA(t0 + t)β+ 2 ρ(x)∇uut +¸µνρ(x)u∇u ) ¶ (3.7)−k ∙e2ψ ¸ αA0 η(t) 1 + (t0 + t)β+ 2 (−ψt) |ut|2 + a(t, x)|∇u|2 + |u|p+1 −k 10 (t +t) + (−ψ 2ψt) e η(t)b(t, x)|u|2 − k0e2ψη(t)|u|p+10 where k0 is a positive constant to be determined later. Furthermore, we have ³ i ³ ´ d dt (t⎧ m⎪⎪0 + t) HE(t;Ω(t;L, t0)) − (t0 + t) m H1(t) +H2(t) ⎪⎨ − − (1+β)(p+1)C(1 + t)m γ p−1 , if α(p+1)(p−1) > n(3.8) ⎪⎪ (1+β)(p+1)≤ ⎪ C(1 + t)m−γ− p−1 log(2 + t), if α(p+1)⎩ (p−1) = n− − (1+β)(p+1) 1+β+γ −α(p+1)m γ + (n )C(1 + t) p−1 2−(δ+α) p−1 , if α(p+1)(p−1) < n. αA Proof. Multiplying (2.8) by (t + t)β+0 2 , we obtain ∙ ¸ d αA dt (t0 + t) β+ 2 E(t) ≤∙∇ · αA αA(e2ψ(t0 + t)β+ ρ(x)∇uu ) + ηt(t)2 t 2 (t0 + t)β+ 2 |ut¸|2 αA (3.9)+∙ (β+ ) − b(t,x) β+αA β+αA2 (t 2ψαA 4 0 + t) ¸2 + (t0 + t) 2 ψt e η(t)|u |22(t +t)1−(β+ ) t0 2 αA +∙ (β+ )2 ψt β+αA 2ψ 2αA + 3 (t0 + t) 2 e ρ(x)|∇u|2(t0+t)1−(β+ 2 ) ¸ (β+αA )−γ 2ψ β+αA+ 2 t− αA + p+1(t0 + t) 2 e 2ψη(t)|u|p+1. (p+1)(t +t)1 (β+ 2 )0 Observe that β + αA2 ≤ β + α < 1 since A < 2 and α+ β + δ + γ < 1. Now, multiplying (2.14) by ν (where ν < b0) and adding the resulting estimate to (3.9), we get IBADAN UNIVERSITY LIBRARY On asymptotic behavior of solution to a nonlinear wave equation ..1.627 ∙ ¸ d αA(t0 + t)hβ+ 2dt E(t) + νH(t) i ≤∙∇ · αA(e2ψ (t0 + t)β+ 2 ρ(x)∇uut + νρ(x)u∇u ) ¸ (β+αA )−γ(1− ν ) +∙ 2 b0 + ν − b0 + ( 1b0−3ν) β+αAαA 4 b (t0 + t) 2 ψt e2ψη(t)|ut|22(t0+t)1−(β+ 2 ) 1 0(3.10) ¸ ∙ (β+ αA ) − ν¸ ψ β+αA+ 2 + t (t0 + t) 2αA 4 3 e2ψρ(x)|∇u|22(t0+t)1−(β+ 2 ) +∙ν −β + (1− 1)2(t +t) 3 ψ e2ψt η(t)b(t, x)|u|20 ¸ (β+αA )−γ − 2ψ αA+ 2 tαA ν + p+1(t + t) β+ 2 e2ψ0 η(t)|u|p+1, (p+1)(t 1−(β+ )0+t) 2 where we have used Schwartz inequality to obtain the following estimates for the third and last term on the right hand side of (2.14) respectively: | α2ψ u u| ≤ 1b(t,x)(−ψt) |u|2 + 3(−ψt)t t 3 b (1 + t)β(1 + |x|2) 2 |u 2t|(3.11) 1 0 ≤ − 1b(t,x)ψt |u|2 − 3ψ β+αAt 2 23 1b (t0 + t) |ut|0 and | | ≤ −b(t,x)η αη (t)u u t(t) |u|2 − ηt(t) β 2t t 22 2b (1 + t) (1 + |x| ) |u 2t|(3.12) 0 ≤ −b(t,x)η αAt(t)2 |u|2 − ηt(t) 2b (t + t) β+ 2 |u |20 t . 0 By a suitable choice of ν sufficiently small as mentioned earlier, we can now choose a positive constant k0 such that the estimates below are satisfied (β+αA )−γ(1− ν ) 2 b0 + ν − b0αA 4 ≤ −k1−(β+ ) 0 2t 20 αA αA (3.13) (β+ )2 − αA − ν ≤ − (β+ )−γ4 k0, 21 (β+ ) 1−(β+αA − ν ≤ −2k) 0 2t 20 (p+1)t 2 0 ν 1− 1 ≥ k , ( 1b0−3ν) 1 23 0 b ≥ k0, 3 ≥ k0, (p+1) ≥ k0, ν β ≥ k0, 1 0 2 this gives the desired estimate (3.7). We now integrate the estimate (3.7) over Ω(t;L, t0) to obtain d (3.14) HE(t;Ω(t;L, t0))−H1(t)−H2(t) ≤ −H3(t;Ω(t;L, t0)), dt IBADAN UNIVERSITY LIBRARY 1628 Paul A. Ogbiyele and Peter O. Arawomo where H3 (t;Ω(tZ;L, t0)) ∙ 2ψ αA αA:= k0 e η(t) (1 + (−ψt)(t0 + t)β+ 2 )|ut|2 + (1 + (−ψ )(t + t)β+t 0 2 ) Ω(t;L,t0) a(³t, x)|∇u|2 ´ ¸ αA + −ψt + 1t +t b(t, x)|u|2 + (1 + (−ψ )(t + t) β+ 2 )|u|p+1 + |u|p+1t 0 dx. 0 (3.15) Define the function HE by Z HE(t;Ω(t;L, t0)) := η(t) (3.16)∙ h Ω(t;L,t0) i ¸ β+αA(t0 + t) 2 |ut|2 + a(t, x)|∇u|2 + |u|p+1 + b(t, x)|u|2 e2ψdx. It can be proved easily that for positive constants k1, k2, the following inequality is satisfied: (3.17) k1HE ≤ HE(t;Ω(t;L, t0)) ≤ k2HE . Now, multiplying (3.14) by (t0 + t) m for m a constant which will be determined later, we obtain ³ i ³ ´ d m m dt (t0 + t) H∙E(t;Ω(t;L, t0)) − (t0 + t) H1(t) +H2((3.18) ¸t) ≤ (t + t)m m0 t +tHE(t;Ω(t;L, t0))−H3(t;Ω(t;L, t0)) .0 The term on the right hand side is estimated as m t +t HE(t;Ω(t;L, t0))−H3(t;Ω(t;L, t0))0 ≤ mZk2t +tHE(t;Ω(t;∙L, t0))−H3(t;Ω(t;L0 ¸h, t0)) i ≤ e2ψη(t) mk2 − k |u |2αA 0 t + a(t, x)|∇u|2 + |u|p+1 dxZ ∙(ht +t)1i−(β+ )0 2Ω(t;L,t0) ¸ + e2ψη(t) mk2 2 p+1t0+t b(t, x)u − k0|u| dx, Ω(t;L,t0) (3.19) IBADAN UNIVERSITY LIBRARY On asymptotic behavior of solution to a nonlinear wave equation ..1.629 where we have used ψt ≤ 0. From (3.13), it can be easily seen that we can choose t0 large enough, such that mk2 k0− αA < 2 . Therefore, the first term on the right hand side of1 (β+ 2 )t0 (3.19) yields Z ∙ ¸h i e2ψη(t) mk2 − k |u |2 + a(t, x)|∇u|2 + |u|p+1 dx (tZ+t)1−(β+αA ) 0 t0 2Ω(t;L,t0) ≤ −k0 e2ψη(t)(|u |2 + a(t, x)|∇u|2 + |u|p+12 t )dx ≤ 0. Ω(t;L,t0) (3.20) To estimate the second term on the right hand of (3.19), we apply Young’s inequality to obtain Z ∙h i ¸ e2ψη(t) mk2 b(t, x)u2 − k |u|p+1t +t 0 dx0 Ω(t;L,t0) Z ∙h i ¸ ≤ 2ψ mk −αe η(t) 21+β b0(1 + |x|2) 2 |u|2 − k0|u|p+1 dxZ ∙ (1+t)Ω(t;L,t0) ¸−(1+β)(p+1) −α(p+1) ≤ e2ψη(t) C(1 + t) p−1 (1 + |x|2) 2(p−1) − kp|u|p+1 dx Ω(t;L,t0) − (1+β)(p+1) R −α(p+1)≤ Cη(t)(1 + t) p−1 e2ψ(1 + |x|2) 2(p−1) dx Ω(t;L,t0) −α(p+1) − (1+β)(p+1) R A ³ ´≤ − (t0+t) 2Cη(t)(1 + t) 1 + r2 2(p−1)p 1 0 rn−1dr (3.21) where C = C(m, b0, k2, p) and kRp = kp(k³0, p). D´efine J byA −α(p+1)− (1+β)(p+1)− −γ (t +t) 2J := C(1 + t) 0 1 + r2 2(p−1)p 1 rn−10 dr. Thus, if α(p+1)(p−1) > n, it follows that − (1+β)(p+1)(3.22) J ≤ C(1 + t) p− −γ1 , if α(p+1)(p−1) = n, we have (3.23) J ≤ C(1 + t)− (1+β)(p+1) − −γp 1 log(2 + t) and if α(p+1)(p−1) < n, we obtain IBADAN UNIVERSITY LIBRARY 1630 Paul A. Ogbiyele and Peter O. Arawomo (1+β)(p+1) (3.24) ≤ − − −γ+ 1+β+γ α(p+1) − (n− )J C(1 + t) p 1 2 (δ+α) p−1 . Combining (3.19) - (3.24), we have m t +⎧⎪⎪tHE(t;Ω(t;L, t0))−H3(t;Ω(t;L, t0))0 ⎨⎪⎪ (1+β)(p+1)C(1 + t)− − −γp 1 , if α(p+1)(p−1) > n(3.25) ⎪⎪ − (1+β)(p+1)≤ ⎪⎪ C(1 + t) p− −γ 1 log(2 + t), if α(p+1)⎩ (p−1) = n− (1+β)(p+1)− −γ+ 1+β+γ α(p+1)− (n− )C(1 + t) p 1 2 (δ+α) p−1 , if α(p+1)(p−1) < n. Hence, we have that ³ i ³ ´ d m m dt (t⎪⎪⎧0 + t) HE(t;Ω(t;L, t0)) − (t0 + t) H1(t) +H2(t)⎪⎪ − − (1+β)(p+1)C(1 + t)m γ p−1 , if α(p+1)(p−1) > n (3.26) ⎨⎪⎪ − − (1+β)(p+1)≤ ⎪⎪ C(1 + t) m γ p−1 ⎩ log(2 + t), if α(p+1) (p−1) = n − − (1+β)(p+1)m γ + 1+β+γ −α(p+1) C(1 + t) p−1 2− (n (δ+α) p− )1 , if α(p+1)(p−1) < n. n o 2 Case 2: For the region Ωc(t;L, t0) = x|(t + t)A0 ≤ L + |x|2 , we define another function Eψ(Ω c(t, L, t0)) by 1 αA (3.27) E cψ(Ω (t, L, t0)) := (L+ |x|2) (β+ )A 2 E(t) + νH(t), where ν is a small positive constant to be determined later. In addition, define R H (t;ΩcE (t;L, t0)) := c Ωc(t;L,t )Eψ(Ω (t, L, t0))dx0 (3.28) ¯̄̄ h iN−1 H∗ R 1 (t) := 2π 0 Eψ( Ω c(tq, L, t0)) √ (t0 + t)A − L 2 dθ|x|= (t +t)A0 −L × ddt (t A0 + t) − L (3.29) IBADAN UNIVERSITY LIBRARY On asymptotic behavior of solution to a nonlinear wave equation ..1.631 Z h i H∗ 1 αA 2 (t) := e 2ψ (L+|x|2) (β+ ) −→A 2 ρ(x)∇uut+νρ(x)u∇u · n dS ∂Ωc(t;L,t0) (3.30) where −→n is the unit outward normal vector of ∂Ωc(t;L, t0). We can now state the next lemma. Lemma 3.3. Let u be a solution of (1.1) and the functions E(t) and H(t) be defined as in (2.6) and (2.7) above, then for x ∈ Ωc(t;L, t0), the function E (Ωcψ (t, L, t0)) satisfies d dtE (Ω c ψ (th, L, t0)) i ≤ ∇ · (e2ψ ∙ 1 αA(L+ |x|2) (β+ )A 2 ρ(x)∇uut +¸µνρ(x)u∇u ) ¶ − 2ψ 1 αAk0∙e η(t) 1 + (L+¸ |x|2) (β+ )A 2 (−ψt) |ut|2 + a(t, x)|∇u|2 + |u|p+1 −k 1 + (− 1ψ ) e2ψη(t)b(t, x)|u|2 − k [1 + (L+ |x|2)− [1−(β+αA )]0 A 2(t +t) t 0 ]0 e2ψη(t)|u|p+1 (3.31) where k0 is a positive constant to be determined later. Moreover, we have that h i ³ ´ d (t + t)mH (t;Ωc(t;L, t )) − (t + t)mdt 0 E 0 0 H1(t) +H2(t) ≤ 0. (3.32) 1 αA Proof. Multiplying (2.8) by (L+ |x|2) (β+ )A 2 , we obtain ∙ ¸ d 1(L+ |x|2) (β+αA )A 2dt E(t) ≤ ∇ ·∙ 1 αA 1 αA(e2ψ(L+ |x|2) (β+ )A 2 ρ(x)∇uut) + e2ψ ηt(t)2 (L+ |¸x|2) (β+ )A 2 |ut|2 +η∙(t) − b(t,x)(L+ |x|2 1) (β+αA ) 1 (β+αA )A¸ 24 + (L+ |x|2)A 2 ψ 2ψt e |ut|2 1 αA + (L+ |x|2 1) (β+αA )ψA 2 t 2ψh 3 e ρ(x)|∇u| 2 − (β+ )A 2 2ψ 1− 1 e x · ρ(x)∇uu(β+αA ) t (L+|x|2) A 2 1 − | |2 (β+ αA i 2ψ γ(L+ x )A 2 ) 2ψ 1 αA+e η(t) t(p+1)(1+t) + p+1(L+ |x|2) (β+ ) A 2 |u|p+1. (3.33) IBADAN UNIVERSITY LIBRARY 1632 Paul A. Ogbiyele and Peter O. Arawomo Adding (3.33) to ν× (2.19), we obtain d dtEψ(Ω c(th, L, t0)) i ≤ ∇ · 1(e2ψ (L+ |x|2) (β+αA )A 2 ρ(x)∇uut + νρ(x)u∇u ) − 1 αA 2ψ 2 1 (β+αA )−1A 2A(β∙+ 2 )e (L+ |x| ) x · ρ(x)∇uut + νe2ψ η¸t(t)b(t,x)2 |u|2 +η∙(t) ν − b(t,x) | |2 1(L+ x ) (β+¸αA )A 2 + (L+ |x|2 1 αA4 ) (β+ )A 2 ψt e2ψ|u 2t| + −ν 2 1 (β+αA ) ψ 2ψ 2 2ψ η (t) 2 1t t (β+αA )A 2 A 2 24∙+ (L+ |x| ) 3 e ρ(x)|∇u| + e 2 ¸(L+ |x| ) |ut|1 αA 2 (β+ )A 2 1 αA +η(∙t) −ν − γ(L¸+|x| ) + 2ψt (L+ |x|2) (β+ )A 2 2ψ p+1(p+1)(1+t) p+1 e |u| +ν −β + ψt 2ψ2(t +t) 3 e η(t)b(t, x)|u|2 + 2νe2ψη(t)ψtuut + νe2ψηt(t)uut.0 (3.34) For the second term on the right hand of (3.34), by using Schwartz inequality, we obtain | 1 αA | |2 1(β + )(L+ x ) (β+αA )−1A 2A 2 x · ρ(x)∇uut| ≤ 1 1 αA 1A(β + αA 2 )(L+ |x|2) (β+ )− A 2 2 |ut|ρ(x)|∇u| 1 (β+αA(3.35) ≤ )ρ(x) 1 (β+αA ) A 2 − 1 αA ρ(x)|∇u| 2 + A 2 2 1 (β+1+ ) 1 αA |ut| 2(L+|x|2) A 2 2(L+| |2 [1−(β+x )A 2 )] 1 ≤ (β+ αA )ρ 10 2 (β+ αA ) A 2 A 2 2 − 1 (α+δ)A ρ(x)|∇u| + 1 [1−(β+αA |u)] t| 2(L+|x|2)1 (β+1+ 2 )A 2(L+|x|2)A 2 and observe here that 1 (β + 1 + (α+δ)A) = 2(β+1)+γ(α+δ)A 2 2(1+β+γ) < 1. Also, by using the Schwartz inequality, we obtain the following estimates for the second to the last term and the last term on the right hand side of (3.34) respectively: |2ψ uu | ≤ 2 (−ψ )b(t, x)|u|2 + 3 (−ψ )(1 + t)β 2 αt t t t (1 + |x| ) 2 |u |2t (3.36) 3 2b0 ≤ − 23 (ψ )b(t, x)|u|2 − 3 t b (ψt)(L+ | |2 1 (β+αAx ) )A 2 |u 2t| 2 0 and |η (t)u u| ≤ b(t,x)(−ηt(t)) |u|2 + (−ηt(t)) αt t 2 2b (1 + t)β(1 + |x|2) 2 |u 2t|(3.37) 0 ≤ −b(t,x)η (t) | |2 − η (t) | |2 1 (β+αAt t )A 2 22 u 2b (L+ x ) |ut| .0 Therefore, substituting the estimates (3.35) - (3.37) in (3.34), we get IBADAN UNIVERSITY LIBRARY On asymptotic behavior of solution to a nonlinear wave equation ..1.633 d dtEψ(Ω c(th, L, t0)) i ≤ ∇ ·∙(e2ψ 1 αA(L+ |x|2) (β+ )A 2 ρ(x)∇uut + νρ(x)u∇u )1 (β+αA ¸∙ )−γ(1− ν ) +η(t) ν + A 2 b0 − b0 + (1− 3ν )(L+¸|x|2 1 αA) (β+ )A 2 2ψ1 ψ e |u 2[1−(β+αA )] 4 b t t|2LA 2 2 0 1 −ν∙ (β+ αA )ρ0 | |2 1 (β+αA+ 4 + A 2 (α+δ)A + (L+ x ) )ψ A 2 t e2ψ3 ρ(x)|∇u|21− 1 (β+1+ 2 )2L A ¸ +η(∙t) − − ¸ γ 2ψ 2 1 (β+αAν t )A 2 2ψ p+11 αA + p+1(L+ |x| ) e |u|[1−(β+ )](p+1)(L+|x|2)A 2 +ν −β + (1− 2)ψ e2ψ2(t +t) 3 t η(t)b(t, x)|u|2.0 (3.38) Now, just as in the Case 1, we choose a suitable value for ν which is sufficiently small and a positive constant k0 such that the estimates we have below are satisfied. 1 (β+αA )−γ(1− ν ) 1 (β+αA ν + A 2 b0 − b0 ≤ −k ν )ρA 2 01 αA 4 0, − 4 + 1 (α+δ)A ≤ −k0, 2L [1−(β+ 2 )]A 2L1− (β+1+ )A 2 ν (1− 2)3 ≥ k0, 2 p+1 ≥ k0, 1 3 ≥ k0, (1− 3ν b ) ≥ k0, ν ≥ 2k0,2 0 βv ≥ k , γ2 0 p+1 ≥ k0, (3.39) which gives the desired estimate. Therefore by integrating the estimate (3.31) over Ωc(t, L, t0), we obtain d (3.40) HE(t;Ω c(t;L, t0))−H∗1 (t)−H∗2 (t) ≤ −H (t;Ωc3 (t;L, t0))dt where H3(t;Ω c(Zt;L, t0)) ∙h i 1 αA := k η(t)e2ψ 1 + (−ψ )(L+ |x|2) (β+ ) h 0 A 2 (3.41) Ωc(t;L,t0) i t |u³ 2t| + a(t, x)´|∇u|2 + |u|p+1 ¸ − 1 αA+ ψt + 1t +t b(t, x)|u|2 + [1 + (L+ |x|2) − [1−(β+ )] A 2 ]|u|p+1 dx 0 Define the function H cE by IBADAN UNIVERSITY LIBRARY 1634 Paul A. Ogbiyele and Peter O. Arawomo H cE Z ∙ h i ¸ | |2 1 (β+αA= η(t) (L+ x ) )A 2 |u |2t + a(t, x)|∇u|2 + |u|p+1 + b(t, x)|u|2 e2ψdx. Ωc(t;L,t0) (3.42) It can be proved in a similar way as in Case 1 that for positive constants k∗ ∗1, k2, the following inequality holds. (3.43) k∗1H cE ≤ HE(t;Ωc(t;L, t0)) ≤ k∗H c2 E . Multiplying (3.40) by (t0 + t) m for the same constant m as in Case 1, we have h i ³ ´ d m c m ∗ ∗ dt (t0 + t) H (3.44) ∙E(t;Ω (t;L, t0)) − (t0 + t) H1 (t) +H2 (t¸) ≤ (t + t)m m H c c0 t +t E(t;Ω (t;L, t0))−H3(t;Ω (t;L, t0)) .0 The term on the right hand side is estimated as m t +t HE(t;Ω c(t;L, t0))−H3(t;Ωc(t;L, t0)) 0 ≤ mkZ∗2H ct +t E −H∙ c3(t;Ω (t;L, t0))0 ¸ ∗ 1| |2 (β+ αA ) h i ≤ 2ψ mk2(L+ x )A 2e 2 1 (β+αA )A 2(t0+t) − k0 1 + (−ψt)(L+ |x| ) Ωc(t;L,t0) Z h i×η(t) |u∙|2µ+ a(t, x)|∇u|2 +¶ |u|p+1t dx ¸ 2ψ mk ∗ + e η(t) 2t +t − k (−ψ 2 p+10 t) b(t, x)u − k0|u| dx.0 Ωc(t;L,t0) (3.45) It can be seen from (3.39) that we can suitably choose k0 such that mk∗2 ≤ λk0(1 + β + γ). Therefore the first term on the right hand side of (3.45) yields IBADAN UNIVERSITY LIBRARY On asymptotic behavior of solution to a nonlinear wave equation ..1.635 Z ∙ ∗ 2−(δ+α) ¸ 2ψ | |2 1 (β+αA mk 2 e (L + x ) )A 2 2(t +t) − 2 k0λ(1 + β + γ) (L+|x| ) h 0 i (t0+t)2+β+γΩc(t;L,t0) Z ×η(t) |u |2t + a(t, x∙)|∇u|2 + |u|p+1 dx1 ¸ (L+|x|2 (β+ αA ) ≤ 2ψ )A 2e mk∗ h (t0+t) 2 − k0λ(1 + β + γ) Ωc(t;L,t0) i ×η(t) |ut|2 + a(t, x)|∇u|2 + |u|p+1 dx ≤ 0. (3.46) Likewise, for the second term on the right hand side of (3.45), we have Z ∙µ ∗ 2−(α+δ) ¶ ¸ 2ψ mke η(t) 2 − k λ(1 + β + γ) (L+|x| 2) 2 2 t +t 0 2+β+γ b(t, x)u − k0|u|p+1 dx0 (t0+t) Ωc(t;LZ,t0) ∙µ ¶ ¸ ∗ ≤ e2ψ mkη(t) 2 − k0λ(1+β+γ) 2t0+t (t0+t) b(t, x)u dx ≤ 0. Ωc(t;L,t0) (3.47) Consequently, we have h i ³ ´ (3.48d) (t + t)mdt 0 HE(t;Ω c(t;L, t0)) − (t + t)m0 H∗1 (t) +H∗2 (t) ≤ 0. 2 Case 3. With t > L and H = H∗0 1 1 , H2 = H ∗ 2 , then it follows from (3.26) and (3.48) that ³ h i´ d m dt (t⎪⎪⎧0 + t) H c E(t;Ω(t;L, t0)) +HE(t;Ω (t;L, t0)) ⎨⎪ − − (1+β)(p+1)C(1 + t)m γ p−1 , if α(p+1)(p−1) > n(3.49) ⎪⎪ − − (1+β)(p+1)≤ ⎪ C(1 + t)m γ p−1 log(2 + t), if α(p+1)⎩⎪ (p−1) = n− − (1+β)(p+1)m γ + 1+β+γ α(p+1)− − (n− )C(1 + t) p 1 2 (δ+α) p−1 , if α(p+1)(p−1) < n. Choosing ⎨⎧ (1+β)(p+1) α(p+1) m = ⎩ p−1 − 1 + γ + if (p−1) > n(1+β)(p+1) 1+β+γ p−1 − 2−(δ+α)(n− α(p+1) p−1 )− 1 + γ + if α(p+1) (p−1) < n, (3.50) IBADAN UNIVERSITY LIBRARY 1636 Paul A. Ogbiyele and Peter O. Arawomo for 0 < < 1 and integrating (3.49) over [0, t], we obtain h i HE(t; Ω(⎪⎧⎪t;L, t0)) +HE(t;Ω c(t;L, t0)) ⎨⎪⎪ (1+β)(p+1)C(1 + t)− +1−γp−1 , if α(p+1)(p−1) > n⎪ (1+β)(p+1)≤ ⎪⎪⎩ C(1 + t) − − +1−γp 1 log(2 + t), if α(p+1)(p−1) = n − (1+β)(p+1)+ 1+β+γ −α(p+1)(n )+1−γ C(1 + t) p−1 2−(δ+α) p−1 , if α(p+1)(p−1) < n. (3.51) In particulZar, we have Z A := ⎧ e2ψb(t, x)|u|2dx+ e2ψb(t, x)|u|2dxΩ⎪⎪⎪(t;L,t c 0) Ω (t;L,t0) ⎨ (1+β)(p+1)C(1 + t)− − +1p 1 , if α(p+1)(3.52) (p−1) > n⎪⎪ (1+β)(p+1)≤ ⎪⎪⎩ C(1 + t) − +1 p−1 log(2 + t), if α(p+1)(p−1) = n − (1+β)(p+1) 1+β+γ α(p+1) C(1 + t) p− + (n− )+1 1 2−(δ+α) p−1 , if α(p+1)(p−1) < n. 2−(δ+α) 2 2 Now, set y = (L+|x| )1+β+γ . Since the following estimate(t0+t) ∙ 2−(δ+α) ¸ −α 2 2−(δ+α) −α (1 + |x|2 −α −α 2 (1+β+γ)) 2 ≥ (L+ |x|2) = (L+|x| )2 (t + t) 2−(δ+α) (t +t)1+β+γ 00 (3.53) holds, then for y > 0, we have that − α (3.54) e2λyy 2−(δ+α) ≥ C. Therefore, we obtain Z −β− α (1+β+γ) (3.55) A ≥ C(1 + t) 2−(δ+α) u2dx RN which gives the desired estimate. 2 Remark 3. The decay result in Theorem 3.1 coincides with that of [8] for the case δ = γ = 0 and with that of [13] for the case δ = γ = α = 0. IBADAN UNIVERSITY LIBRARY On asymptotic behavior of solution to a nonlinear wave equation ..1.637 [1] TP.hB.. DN.. tBhuesi,i s",W Taevche models w Riethfe trimene-cdeespendent speed and dissipation", [2] sTp. eBe.d N o., fB Mup. ir Roaupnzadhg nMic. aRl eUisnsivigersity Bergakademie Freiberg, 2013. pp. 9–45. aantisokny aanndd ,Vd “.i TsTshuiepr auitnnioetennr , piElnad ysw . bCaevhteaw mem:e onBd itreiklmsh"eä, -udisnee penFoanalysis r, 2d0e1n4t, urier [3] Mwi. tDh ’Atibmbeic-cdoe paenndd eMn.t Rs.p ,E evbeodel.r 3ta,9 n”9dA, ndcolaa.m s1s,p pionpfg . d”,i sJMan. aRly. sEisb aenrtd aanpdp liWca.t iNo.n sNascimento, “A clas3si1fi5 si-p3a3t2iv, e2 0w1a3v. e equations ournal of mathematical [4] with time-dependent vmola. 2ss3 , annod. 1s1p, epepd. 8o4f7 -p8r8oc8pa,ta 2igo0an1t i8ofo.nr” ,w ave models Advances in Td.i fHfeorseonntial equations,[5] solutionso o afn 2d- dTi.m Oegnaswioan ,v a”olLl n.a 2rog0ne3l i,tn niemoa.er 1 bd, ea8hm2a-p1vei1od8r ,w aanvd p q Ro.f Idkieffhearetan,t iYa.l Ienqouuaet,i o”Tnos,tal energy decay for sem 2i0li0 e 4 eL. qu−atLioness”t,i mate of Journal [6] nwoit.1h, pa pc. r1it3ic9a6l- 1p4o0te1n, t2i0al0 8ty. pe of damping”, near wave equations Nonlinear analysis, vol. 69, [7] Rdn.ao Im.k 8ep, hi npagpta . i,3 nG3 .H5 T2ilo-b3de3or6rt o8sv,p a2a,0 ca1en3sd”, B. Yordanov, ”Wave equations witvho strong Journal of differential equations, l. 254, [8] Jw. aLvine, eKq. uNaitsiohnihsa wrai,t ha nsdp aJc. eZ . -htiami, e” Ld2e-peestnidmeantte sd aomf psoinlugt itoenrms ”fo, r damped Journal of Pd.ifMfearercnatitai la enqduations[9] dcoimmepnrseisosniballe dK. Nis ,h vihoal.r 2a4, 8”T, nhoe. L2p, p−pL. q4e0s3t-i4m2a2t,e 2s 0o1f0 s.olutions to one- Teq. uNaatrioaznas,k vi,o”l.L 1 fla9mo1wp, endoth . r2wo, aupvgpeh. 4 e4pq5ou-ra4ot6uio9sn, 2sm 0a0end3di.a ”t, heir application to the Journal of differential [10] applications top v−soeLlm.q 5i 6-el,is nntieoma. r2a t, eppsrp o.f ob5rl8e 5dm-a6”m,2 p6e, 2d0 w04av. e equations and their Journal of the Mathematical Society of Japan, IBADAN UNIVERSITY LIBRARY 1638 Paul A. Ogbiyele and Peter O. Arawomo [11] eKq. uNatiisohnih ianr a3,-d”iLmpe−nsiLoqnaels tsipmaactee as nodf thsoeilru taiponpsli ctaot iotnh”e, damped wave Mathematische Kze. it[12] spaN sch ceis h riihfta, rvao, l.” 2D4e4ca, pyp p. 6dependent porto 3 ep 1 ne - tr 6 iat 4ie9s, 2f0or0 3.l and the dampe1402-1418, 2010. absorbed d wsaevmei leinqeuaart iont ewrmit”h, Communications in partial differential equations, vol. 35, no. 8, pp. [13] Kde. pNeinshdiehnatr ad aamndp e dJ. wZ aPn. dR aapdpul,i cGa.t iTonosd, ovroolv. 3 ha6avie, ”eAqa, 0a,n ndo . su 2yam,t pioppnt.ost”i,c behaviors of solutions for time Journal of mathematical analysis [14] equations with varia vbolel. 3c6o2eBffi,. ncYoior 4d1an2o-4v2, 1”,D 2e0c0a9..e 5n,t ps”p, . 22 y estimates for wave Tra7n9s-a2c2t9io9n, s2 0o0f the American Mathematical Society, 9. [15] 2HP5.i l0bR,e anrdotu . s,1 p1Ga,c. peTso adnodr oavpap, liacnadti oBn.s ”Y, ordanov, ”Diffusion phenomenon in Journal of differential equations, vol. [16] v2Ma0r.1 i9aRb, oAlber etcr. otIsDe,ffi p”.D 4e2c0a0y- 4. 9c1i,e 2n0ts1”9, e 2s1ti8m, 2a0te1. s 1 .for nonlinear wave equations with Electronic journal of differential equations, vol. [17] Be.q Suaaid-Houari, ”Asymptotic behaviors of solution2012t.ion with space-time dependen,t vodla. m38p7in sg f orte vri mathematical analysis and applications , no. 2, mspcp”o,. e1laJ0sto8u8ic- 1w1a0ve rnal o5f, [18] Yep.qp Tu. 4aot6di4oo-nr o4 wv8ai9t ,ha 2 nd0da0 mB1..p Yinogr”d, anov, ”Critical exponent for a nonlinear wJournal of differential equations, vol. 174, noa.v 2e [19] GLp.ao sTteioendctkoiaarlo,” v,W ain,. BLi. tYtmoradanov, ”Nonlinear dissipative wave equations with MK.a t Contr Yhaegmdajitainca, l ”SPoacriaemt onyl , m2an0ed0th Rod. sT rinig gPiDaEn-i,d yEndasm. Picraolv sidysetnecmes, , RFI.: AAnmcoerniac,a nI. [20] solution to nonli,n veoalr. e2wtric 7r,e pspo.n 3a1n7c-e3 37.6a0v, en eoq. 1u,a ptipo.n 2s5”1,a -n2d6 8n, o2n0e0x1is. tence of the global Journal of mathematical analysis and applications IBADAN UNIVERSITY LIBRARY On asymptotic behavior of solution to a nonlinear wave equation ..1.639 Paul A. Ogbiyele Department of Mathematics, University of Ibadan, Ibadan, 200284, Nigeria e-mail: paulogbiyele@yahoo.com Corresponding author and Peter O. Arawomo Department of Mathematics, University of Ibadan, Ibadan, 200284, Nigeria e-mail: po.arawomo@ui.edu.ng IBADAN UNIVERSITY LIBRARY