Please use this identifier to cite or link to this item: http://ir.library.ui.edu.ng/handle/123456789/1774
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOladokun, V. O.-
dc.contributor.authorCharles-Owaba, O. E.-
dc.contributor.authorNwaozuru, C. S.-
dc.date.accessioned2018-10-10T13:48:33Z-
dc.date.available2018-10-10T13:48:33Z-
dc.date.issued2006-
dc.identifier.issn1735-5702-
dc.identifier.otherJournal of Industrial Engineering International 2(3), pp. 19-26-
dc.identifier.otherui_art_oladokun_application_2006-
dc.identifier.urihttp://ir.library.ui.edu.ng/handle/123456789/1774-
dc.description.abstractThis study shows the usefulness of Artificial Neural Network (ANN) in maintenance planning and management. An ANN model based on the multi-layer perception having three hidden layers and four processing elements per layer was built to predict the expected downtime resulting from a breakdown or a maintenance activity. The model achieved an accuracy of over 70% in predicting the expected downtime.en_US
dc.language.isoenen_US
dc.titleAn application of artificial neural network to maintenance managementen_US
dc.typeArticleen_US
Appears in Collections:scholarly works

Files in This Item:
File Description SizeFormat 
(5)ui_art_oladokun_application_2006.pdf1.73 MBAdobe PDFThumbnail
View/Open


Items in UISpace are protected by copyright, with all rights reserved, unless otherwise indicated.