UISpace
Welcome to UISpace, The University of Ibadan Institutional Repository. A collection of theses, articles, books, videos, images, lectures, papers, data sets and all types of digital content originating from the University of Ibadan Nigeria. This repository is managed by the Kenneth Dike Library University of Ibadan, Nigeria.

Communities in DSpace
Select a community to browse its collections.
- Please Click to View Repository
- Centre for Educational Media Resources
- College of Medicine
Recent Submissions
Influence of acid-sensing ion channel blocker on behavioral responses in a zebrafish model of acute visceral pain
(Elsevier B.V., 2022) Adedara, I. A.; Costa, F. V.; Biasuz, E.; Canzian, J.; Farombi, E. O.; Rosemberg, D. B.
Acid-sensing ion channels (ASICs) play significant roles in numerous neurological and pathological conditions, including pain. Although acid-induced nociception has been characterized previously in zebrafish, the contri- bution of ASICs in modulating pain-like behaviors is still unknown. Here, we investigated the role of amiloride, a nonselective ASICs blocker, in the negative modulation of specific behavioral responses in a zebrafish-based model of acute visceral pain. We verified that intraperitoneal injection (i.p.) of 0.25, 0.5, 1.0, and 2.0 mg/mL amiloride alone or vehicle did not change zebrafish behavior compared to saline-treated fish. Administration of 2.5% acetic acid (i.p.) elicited writhing-like response evidenced by the abnormal body curvature and impaired locomotion and motor activity. Attenuation of acetic acid-induced pain was verified at lower amiloride doses (0.25 and 0.5 mg/mL) whereas 1.0 and 2.0 mg/mL abolished pain-like responses. The protective effect of the highest amiloride dose tested was evident in preventing writhing-like responses and impaired locomotion and vertical activity. Collectively, amiloride antagonized abdominal writhing-like phenotype and aberrant behaviors, supporting the involvement of ASICs in a zebrafish-based model of acute visceral pain
Utility of cockroach as a model organism in the assessment of toxicological impacts of environmental pollutants
(Elsevier Ltd., 2022) Adedara, I. A.; Mohammed, K. A.; Da-Silva, O. F.; Salaudeen, F. A.; Goncalves, F. L. S.; Rosemberg, D. B.; Aschner, M.; Rocha, J. B. T.; Farombi, E. O.
Environmental pollution is a global concern because of its associated risks to human health and ecosystem. The bio-monitoring of environmental health has attracted much attention in recent years and efforts to minimize environmental contamination as well as to delineate toxicological mechanisms related to toxic exposure are essential to improve the health conditions of both humans and animals. This review aims to substantiate the need and advantages in utilizing cockroaches as a complementary, non-mammalian model to further understand the noxious impact of environmental contaminants on humans and animals. We discuss recent advances in neuro- toxicology, immunotoxicology, reproductive and developmental toxicology, environmental forensic entomo- toxicology, and environmental toxicology that corroborate the utility of the cockroach (Periplaneta americana, Blaptica dubia, Blattella germanica and Nauphoeta cinerea) in addressing toxicological mechanisms as well as a sensor of environmental pollution. Indeed, recent improvements in behavioural assessment and the detection of potential biomarkers allow for the recognition of phenotypic alterations in cockroaches following exposure to toxic chemicals namely saxitoxin, methylmercury, polychlorinated biphenyls, electromagnetic fields, pharma- ceuticals, polycyclic aromatic hydrocarbon, chemical warfare agents and nanoparticles. The review provides a state-of-the-art update on the current utility of cockroach models in various aspects of toxicology as well as discusses the potential limitations and future perspectives.
Indole-3-propionic acid mitigates chlorpyrifos-mediated neurotoxicity by modulating cholinergic and redox-regulatory systems, inflammatory stress, apoptotic responses and DNA damage in rats
(Elsevier B.V., 2022) Owumi, S. E.; Adedara, I. A.; Oyelere, A. K.
This study probed the neuroprotective influence of indole-3-propionic acid (IPA) in rats exposed to chlorpyrifos (CPF) alone at 5 mg/kg body weight or co-administered with IPA at 12.5 and 25 mg/kg for 14 days. Behavioral data indicated that IPA significantly (p < 0.05) abated CPF-mediated anxiogenic-like behaviors with concomitant improvement in the locomotor and exploratory behaviors as substantiated by track plots and heat maps data. Also, IPA mitigated CPF-mediated diminution in cholinergic and antioxidant defense systems whereas it mark- edly improved thioredoxin level and thioredoxin reductase activity in cerebral and cerebellar tissues of the animals. Co-administration of IPA significantly enhanced anti-inflammatory cytokine, interleukin-10 but sup- pressed oxidative and inflammatory stress, caspase-9 and caspase-3 activation with concomitant reduction in 8- hydroxy-2'-deoxyguanosine (8-OHdG) level and histological damage. Collectively, IPA-mediated neuro- protection involves modulation of cholinergic and redox-regulatory systems, inflammatory stress, apoptotic re- sponses and DNA damage in cerebrum and cerebellum of rats.
Influence of Atrazine and Diclofenac Co-exposure on Hypothalamic-Pituitary-Testicular Axis Function in Rats
(2021) Adedara I. A.|| || || || ||; Godswill U. S.; Amorha C. C.; Sule, J.; Mike M. A.; Farombi E.O.
Humans and animals are commonly exposed to numerous chemicals through diverse sources causing unpredictable real-life health effects. This study evaluated the influence of joint exposure to the herbicide atrazine (ATZ) and the NSAID diclofenac (DCF) on the hypothalamic-pituitary-testicular axis function in pubertal rats. The animals were jointly exposed to ATZ (20 and 40 mg/kg body weight) and DCF (10 and 20 mg/kg body weight) for 42 days. In comparison with individual exposures, the current data illustrated that combined exposure to ATZ and DCF exacerbated the reductions in follicle stimulating hormone (FSH), luteinizing hormone (LH), serum and intra-testicular testosterone levels with testosterone/LH ratio. Additionally, co- exposure to ATZ and DCF worsened the sperm quality and quantity with marked disruption in the testicular function marker enzymes activities. The diminution in the epididymal, testicular and hypothalamic antioxidant defense mechanisms was intensified in animals co-exposed to ATZ and DCF. Moreover, the induction of reactive oxygen and nitrogen species, lipid peroxidation, inflammatory stress and histopathological lesions in the epididymal, testicular and hypothalamic tissues was intensified in co-exposed animals. These data accentuate the possible male reproductive dysfunction related to ATZ and DCF co-exposure in mammals and, by extension, provide useful insights into the public health threats associated with combined exposure to pesticides and pharmaceuticals.
Kolaviron suppresses dysfunctional reproductive axis associated with multi-walled carbon nanotubes exposure in male rats
(Springer-Verlag GmbH, 2021) Adedara, I. A.; Awogbindin, I. O.; Maduako, I. C.; Ajeleti, A. O.; Owumi, S. E.; Owoeye, O.; Patlola, A. K.; Farombi, E. O.
Reproductive toxicity associated with excessive exposure to multi-walled carbon nanotubes (MWCNTs), which are commonly used in medicine as valuable drug delivery systems, is well documented. Kolaviron, a bioflavonoid isolated from Garcinia kola seeds, elicits numerous health beneficial effects related to its anti-inflammatory, anti-genotoxic activities, anti-apoptotic, and antioxidant properties. However, information on the role of kolaviron inMWCNTs-induced reproductive toxicity is not available in the literature. Herein, we assessed the protective effects of kolaviron onMWCNTs-induced dysfunctional reproductive axis in rats following exposure toMWCNTs (1 mg/kg) and concurrent treatment with kolaviron (50 or 100 mg/kg body weight) for 15 successive days. Results showed thatMWCNTs-induced dysfunctional reproductive axis as evidenced by deficits in pituitary and testicular hormones, marker enzymes of testicular function, and sperm functional characteristics were abrogated in rats coadministered with kolaviron. Moreover, co-administration of kolaviron-abated MWCNTs-induced inhibition of antioxidant enzyme activities increases in oxidative stress and inflammatory indices. This is evidenced by diminished levels of tumor necrosis factor-alpha, nitric oxide, lipid peroxidation, reactive oxygen, and nitrogen species as well as reduced activity of myeloperoxidase in testes, epididymis, and hypothalamus of the rats. Biochemical data on the chemoprotection of MWCNTsinduced reproductive toxicity were corroborated by histological findings. Taken together, kolaviron suppressed dysfunctional reproductive axis associated with MWCNTs exposure via abrogation of oxidative stress and inflammation in male rats.
