Browsing by Author "Akinlabi, E. T."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Evaluation of palm kernel oil as cutting lubricant in turning AISI 1039 steel using taguchi-grey relational analysis optimization technique(Elsevier, 2023) Alaba, E. S.; Kazeem, R. A.; Adebayo, A. S.; Petinrin, M. O.; Ikumapayi, O. M.; Jen, T. C.; Akinlabi, E. T.Cutting fluids have a known negative impact on productivity, human health, and the environment in the manufacturing sector. A suitable method for reducing the effect of cutting fluids on human health and the environment is minimum quantity lubrication (MQL). In this experiment, AISI 1039 steel was machined using vegetable oil lubricant and MQL. A chemical method was used to extract vegetable oil from palm kernel seeds. Then, using established techniques, the physicochemical and lubricity properties of palm kernel oil (PKO) were ascertained. The Taguchi L9 (33) orthogonal array served as the basis for the planning of the experimental design. Process parameters such as surface roughness, chip thickness ratio, cutting temperature, and material removal rate were measured during the turning operations. The multi-response outputs from TGRA were considered to simultaneously optimize the cutting parameters namely depth of cut, feed rate, and spindle speed. At a temperature of 55◦C, 180 min, and particle sizes of 0.2–0.5 mm, an oil yield of 55% by weight was obtained. The viscosity at 40◦C, specific gravity, pour, fire, cloud, and flash points of the raw PKO were 117.6 mm2/s, 0.8940 mg/ml, 21◦C, 231◦C, 22.3 ◦C and 227◦C, respectively. The surface roughness and cutting temperature of PKO improved by 44% and 12%, respectively, when compared with mineral oil. The findings of this research confirmed the effectiveness of the integrated Taguchi-grey relational analysis (TGRA) optimization method and established an experimental foundation for the use of PKO minimum quantity lubrication turning.Item Forecast of the trend in sales data of a confectionery baking industry using exponential smoothing and moving average models(2023-02) Kazeem, R. A.; Petinrin, M. O.; Akhigbe, P. O.; Jen, T. C.; Akinlabi, E. T.; Akinlabi, S. A.; Ikumapayi, O. M.Starch-containing foods such as bread, pastries, and cakes are usually baked at a moderately high temperature in an oven. When these products are later exposed to room temperature, the associated gelatinized starch begins to harden which causes retrogradation and molecular realignment. Due to this circumstance, manufacturers need to have a fairly accurate estimate of products demand in order to determine the precise amount of baking powder and additives for use in their production so as not to incur losses in their business arising from the stale and consequentially unsalable products. This research was therefore focused on selecting the best forecasting model using a prominent confectionery firm in Abeokuta, Ogun State, Nigeria as a case study. The study was based on 24-week operational period sales data collected from the company. The moving average model and the exponential smoothing model were the two forecasting models considered in this research. The data obtained was thoroughly reviewed and the results of the forecasting models were compared. The most effective model was the exponential smoothing model as it produced the lowest mean absolute percentage error on the average of 3.7347 for the cumulative days of sales under review as against the 15.1713 for the moving average model. However, the exponential smoothing model was considered the best forecasting model for minimizing forecasting error in this study.Item Investigation of temperature distribution in a slab using lattice boltzmann method(2022) Petinrin, M. O.; Owodunni, A.; Kazeem, R. A.; Ikumapayi, O. M.; Afolalu, S. A.; Akinlabi, E. T.In this paper, the temperature distribution in a slab was investigated. A model based on the Boltzmann transport equation without heat source was simplified using the Bhatnagar-Gross-Krook (BGK) approximation was applied. This is an example of the Lattice Boltzmann Method. The model was developed based on using a D2Q4 lattice arrangement for the medium of study. To obtain results, the model was tested on different cases: Two box-shaped slabs with different boundary conditions, and a T-shaped and an L-shaped slabs to determine the temperature distributions different times t > 0. The results obtained based on the developed model were validated with the enterprise software COMSOL Multiphysics which is based on the Finite Element Method. For the two cases of box-shaped and the T-shaped slabs, their results were in nearly perfect agreement with the finite element method. However, for the L-shaped slab, there was good agreement at most points apart from the regions where there was change of shape. In conclusion there is high agreement between the results of LBM and using COMSOL, which proves that LBM can be used to determine temperature distribution in a slab accurately.Item Numerical investigation of forces and acceleration for air-sea unmanned aerial vehicle in transition(2023) Chukwuemeka, E. C.; Ames, F.; Kazeem, R. A.; Petinrin, M. O.; Ikumapayi, O. M.; Akinlabi, E. T.The air-sea UAV is made to be able to fly, change from land to water, and navigate through submerged water. However, as it moves from the air to the water, it experiences a significant impact force. The UAV’s structure and components run the risk of being harmed by this strong impact force. The accelerations and forces involved in the transition process must therefore be understood through quantitative research. The method was created using computational fluid dynamics (CFD), which can manage the process of water entry. The simulation and calculations were carried out using the Fluent software suite from ANSYS Inc. The research examined the UAV’s wing and center bodies independently and separately. 3-D models were used for the analyses of the center body, while 2-D models were used for the wing-body analyses. The transition flow and submerged methods were taken into consideration in obtaining the impact load that a body experiences when transitioning into water. Because it was substantiated using experimental results from prior studies, the transient-time analysis-based transition techniquewas shown to be reliable. The steady-state analysis of the submerged flowmethod can be used to quickly comprehend the pressure and velocity distribution over a body immersed in or entering the water. However, because it fails to account for the water’s initial acceleration upon entry, the steady-state simulation underestimates the drag force. The submerged flow method’s findings indicate that a sharp nose centre body diminishes drag more successfully. The transition method evaluations for the UAV slender body reveal controllable drag and impact forces. Furthermore, the study demonstrates that wedge-shaped leading edges for the wing-body reduce impact but may not be optimal when considering airlift. As a result, this research provides useful data for air-sea UAV structural design and movement conditions.