Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Idialu, E. E."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Prediction of friction losses in spark-ignition engines: an artificial neural networks approach
    (2011) Fadare, D. A.; Idialu, E. E.; Igbudu, S. O.
    Artificial Neural Networks (ANNs) area prormsmg alternative to conventional tools in modeling and prediction of complex and non-linear parameters. However, the selection of appropriate network parameters for optimum performance pose application challenges. In this study, the modeling and predictive performances of six backpropagation learning algorithms: Levenberg-Marquardt (LM), BFGS Quasi-Newton (BFG), Resilient Backpropagation (RP), Fletcher-Powell Conjugate Gradient (CGF), Variable Learning Rate Backpropagation (GDX) and Bayesian Reglarization (BR) in solar radiation forecast were investigated. Multilayer perceptron (MPL) neural network with five, ten and one neuron(s) in the input, hidden and output layers, respectively was designed with MATLAB® neural network toolkit and trained with the six learning algorithms using the daily global solar radiation data of Ibadan (Lat. 7.4° N; Long. 3.90 E; Alt. 227.2m), Nigeria. The network performance was ranked based on the number of iterations required for convergence, and coefficient of correlation (r-value), mean square error (MSE) and mean absolute percentage error (MAPE) between the actual and predicted values of the training and testing datasets. Results showed that the LM and BR learning algorithms are the two best algorithms to be considered for use in modeling and forecasting of solar radiation data.

DSpace software copyright © 2002-2025 Customised by Abba and King Systems LLC

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify