Browsing by Author "Makinde, A. A."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Carbon(IV)oxide Capture and Sequestration in Nigeria: Prospects and Challenges(Society of Petroleum Engineers, 2006) Isehunwa, S. O.; Makinde, A. A.; Olamigoke, O.The capture and storage of carbon dioxide (CCS) produced during the combustion of fossil fuels now offers one option for attaining large scale reductions in the emissions of greenhouse gases and thus, promote a clean environment. It is now becoming clear that CCS technologies could promote the use or consumption of fossil fuels than otherwise previously thought. This paper presents an overview of the techniques involved in the capture and sequestration of carbondioxide(CO). The opportunities and the challenges of the application of CCS in Nigeria are considered. It is concluded that the development of gas utilization schemes and power plants makes it imperative for Nigeria togive attention to CCS technologies.Item A correlation to predict the viscosity of light crude oils(Society of Petroleum Engineers, 2006) Isehunwa, O. S.; Olamigoke, O.; Makinde, A. A.Direct viscosity measurements are often expensive or unavailable. Therefore, empirical correlations are often used for predicting the viscosity of crude oils. However, several published correlations are either too simplistic or too complex for routine operational use. Many of the common correlations in use were developed using data from other regions of the world, Empirical correlations for predicting the viscosity of light crude oils in the Niger Delta have been presented in this paper. Data from over 400 oil reservoirs from the Niger Delta were collected. The samples were representative of the two crude oil viscosity regimes: above and below the bubble point. After normal quality checks, non-linear multiple regression with linear partial correlation coefficient techniques were used to establish simple correlations between viscosity, pressure, temperature, oil specific gravity and solution gas oil ratio. Statistical error analysis of the developed correlation showed average absolute relative percentage error of 4.00% and 3.25% and R2 of 0.99 and 0.97 for oil viscosity above and below the bubble point respectively. These results constitute considerable improvements over existing correlations.