Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Patlola, A. K."

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Kolaviron suppresses dysfunctional reproductive axis associated with multi-walled carbon nanotubes exposure in male rats
    (Springer-Verlag GmbH, 2021) Adedara, I. A.; Awogbindin, I. O.; Maduako, I. C.; Ajeleti, A. O.; Owumi, S. E.; Owoeye, O.; Patlola, A. K.; Farombi, E. O.
    Reproductive toxicity associated with excessive exposure to multi-walled carbon nanotubes (MWCNTs), which are commonly used in medicine as valuable drug delivery systems, is well documented. Kolaviron, a bioflavonoid isolated from Garcinia kola seeds, elicits numerous health beneficial effects related to its anti-inflammatory, anti-genotoxic activities, anti-apoptotic, and antioxidant properties. However, information on the role of kolaviron inMWCNTs-induced reproductive toxicity is not available in the literature. Herein, we assessed the protective effects of kolaviron onMWCNTs-induced dysfunctional reproductive axis in rats following exposure toMWCNTs (1 mg/kg) and concurrent treatment with kolaviron (50 or 100 mg/kg body weight) for 15 successive days. Results showed thatMWCNTs-induced dysfunctional reproductive axis as evidenced by deficits in pituitary and testicular hormones, marker enzymes of testicular function, and sperm functional characteristics were abrogated in rats coadministered with kolaviron. Moreover, co-administration of kolaviron-abated MWCNTs-induced inhibition of antioxidant enzyme activities increases in oxidative stress and inflammatory indices. This is evidenced by diminished levels of tumor necrosis factor-alpha, nitric oxide, lipid peroxidation, reactive oxygen, and nitrogen species as well as reduced activity of myeloperoxidase in testes, epididymis, and hypothalamus of the rats. Biochemical data on the chemoprotection of MWCNTsinduced reproductive toxicity were corroborated by histological findings. Taken together, kolaviron suppressed dysfunctional reproductive axis associated with MWCNTs exposure via abrogation of oxidative stress and inflammation in male rats.
  • Thumbnail Image
    Item
    Kolaviron via anti-inflammatory and redox regulatory mechanisms abates multi-walled carbon nanotubes-induced neurobehavioral deficits in rats
    (Springer-Verlag GmbH, 2020) Adedara, I. A.; Awogbindin, I. O.; Owoeye, O.; Maduako, I. C.; Ajeleti, A. O.; Owumi, S. E.; Patlola, A. K.; Farombi, E. O.
    Exposure to multi-walled carbon nanotubes (MWCNTs) reportedly elicits neurotoxic effects. Kolaviron is a phytochem- ical with several pharmacological effects namely anti-oxidant, anti-inflammatory, and anti-genotoxic activities. The present study evaluated the neuroprotective mechanism of kolaviron in rats intraperitoneally injected with MWCNTs alone at 1 mg/kg body weight or orally co-administered with kolaviron at 50 and 100 mg/kg body weight for 15 consecutive days. Following exposure, neurobehavioral analysis using video-tracking software during trial in a novel environment indicated that co-administration of both doses of kolaviron significantly (p < 0.05) enhanced the locomotor, motor, and exploratory activities namely total distance traveled, maximum speed, total time mobile, mobile episode, path efficiency, body rotation, absolute turn angle, and negative geotaxis when compared with rats exposed to MWCNTs alone. Further, kolaviron markedly abated the decrease in the acetylcholinesterase activity and antioxidant defense system as well as the increase in oxidative stress and inflammatory biomarkers induced by MWCNT exposure in the cerebrum, cerebellum, and mid-brain of rats. The amelioration of MWCNT-induced neuronal degeneration in the brain structures by kolaviron was verified by histological and morphometrical analyses. Taken together, kolaviron abated MWCNT-induced neurotoxicity via anti-inflammatory and redox regulatory mechanisms.
  • Thumbnail Image
    Item
    Low doses of multi-walled carbon nanotubes elicit hepatotoxicity in rats with markers of oxidative stress and induction of proinflammatory cytokines
    (Elsevier Inc., 2018) Adedara, I. A.; Anao, O. O.; Forcados, G. E.; Awogbindin, I. O.; Agbowo, A.; Ola-Davies, O. E.; Patlola, A. K.; Tchounwou, P. B.; Farombi, E. O.
    The investigation into the potential health risks associated with the use of engineered nanoparticles is a major scientific interest in recent years. The present study elucidated the involvement of proinflammatory cytokines, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in carboxylated multi-walled carbon nanotubes (MWCNTs)-induced hepatotoxicity. Pubertal rats were exposed to purified MWCNTs at 0, 0.25, 0.50, 0.75 and 1.0 mg/kg for 5 consecutive days. Results indicated that exposure to MWCNTs caused liver damage evidenced by significant elevation in serum activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and gamma glutamyl transferase (GGT) when compared with control. Moreover, MWCNTs significantly decreased superoxide dismutase (SOD) and glutathione S-transferase (GST) activities as well as glutathione level whereas it significantly increased catalase (CAT) and glutathione peroxidase (GPx) activities in liver of the treated rats. Moreover, the dose-dependent increase in hepatic hydrogen peroxide (H2O2) and lipid peroxidation levels were accompanied by marked increase in micronucleated polychromatic erythrocytes (MNPCE) in the MWCNTs-treated rats. Administration of MWCNTs significantly increased serum concentrations of pro-inflammatory cytokines namely interleukin-1b (IL-1b), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-a) in the treated rats. Immunohistochemical analysis showed significantly increased COX-2 and iNOS protein expressions in the liver of MWCNTs-treated rats. In conclusion, carboxylated MWCNTs induces hepatic damage via disruption of antioxidant defense systems, promotion of pro-inflammatory cytokines generation and expression of COX-2 and i-NOS in rats.
  • Thumbnail Image
    Item
    Responses of testis, epididymis, and sperm of pubertal rats exposed to functionalized Multiwalled Carbon Nanotubes
    (Wiley Periodicals, Inc., 2014) Farombi, E. O.; Adedara, I. A.; Forcados, G. E.; Anao, O. O.; Agbowo, A.; Patlola, A. K.
    The present study investigated the response of testes, epididymides and sperm in pubertal Wistar rats following exposure to 0, 0.25, 0.5, 0.75, and 1.0 mg kg21 functionalized multi-walled carbon nanotubes (f-MWCNTs) for 5 days. The results showed that administration of (f-MWCNTs) significantly increased the activities of superoxide dismutase, catalase, and glutathione peroxidase in a dose dependent manner in both testes and sperm compared with control group. Moreover, the significant decrease in the activity of glutathione-S-transferase and glutathione level was accompanied with significant elevation in the levels of hydrogen peroxide and malondialdehyde in both testes and sperm of (f- MWCNTs)-treated rats. The spermiogram of (f-MWCNTs)-treated rats indicated significant decrease in epididymal sperm number, sperm progressive motility, testicular sperm number and daily sperm production with elevated sperm abnormalities when compared with the control. Exposure to (f-MWCNTs) decreased plasma testosterone level and produced marked morphological changes including decreased geminal epithelium, edema, congestion, reduced spermatogenic cells and focal areas of tubular degeneration in the testes. The lumen of the epididymides contained reduced sperm cells and there was mild to severe hyperplasia epithelial cells lining the duct of the epididymis. Collectively, pubertal exposure of male rats to (f-MWCNTs) elicited oxidative stress response resulting in marked testicular and epididymides dysfunction.

DSpace software copyright © 2002-2026 Customised by Abba and King Systems LLC

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify