scholarly works

Permanent URI for this collectionhttps://repository.ui.edu.ng/handle/123456789/498

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Kolaviron suppresses dysfunctional reproductive axis associated with multi-walled carbon nanotubes exposure in male rats
    (Springer-Verlag GmbH, 2021) Adedara, I. A.; Awogbindin, I. O.; Maduako, I. C.; Ajeleti, A. O.; Owumi, S. E.; Owoeye, O.; Patlola, A. K.; Farombi, E. O.
    Reproductive toxicity associated with excessive exposure to multi-walled carbon nanotubes (MWCNTs), which are commonly used in medicine as valuable drug delivery systems, is well documented. Kolaviron, a bioflavonoid isolated from Garcinia kola seeds, elicits numerous health beneficial effects related to its anti-inflammatory, anti-genotoxic activities, anti-apoptotic, and antioxidant properties. However, information on the role of kolaviron inMWCNTs-induced reproductive toxicity is not available in the literature. Herein, we assessed the protective effects of kolaviron onMWCNTs-induced dysfunctional reproductive axis in rats following exposure toMWCNTs (1 mg/kg) and concurrent treatment with kolaviron (50 or 100 mg/kg body weight) for 15 successive days. Results showed thatMWCNTs-induced dysfunctional reproductive axis as evidenced by deficits in pituitary and testicular hormones, marker enzymes of testicular function, and sperm functional characteristics were abrogated in rats coadministered with kolaviron. Moreover, co-administration of kolaviron-abated MWCNTs-induced inhibition of antioxidant enzyme activities increases in oxidative stress and inflammatory indices. This is evidenced by diminished levels of tumor necrosis factor-alpha, nitric oxide, lipid peroxidation, reactive oxygen, and nitrogen species as well as reduced activity of myeloperoxidase in testes, epididymis, and hypothalamus of the rats. Biochemical data on the chemoprotection of MWCNTsinduced reproductive toxicity were corroborated by histological findings. Taken together, kolaviron suppressed dysfunctional reproductive axis associated with MWCNTs exposure via abrogation of oxidative stress and inflammation in male rats.