scholarly works

Permanent URI for this collectionhttps://repository.ui.edu.ng/handle/123456789/498

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    Kolaviron suppresses dysfunctional reproductive axis associated with multi-walled carbon nanotubes exposure in male rats
    (Springer-Verlag GmbH, 2021) Adedara, I. A.; Awogbindin, I. O.; Maduako, I. C.; Ajeleti, A. O.; Owumi, S. E.; Owoeye, O.; Patlola, A. K.; Farombi, E. O.
    Reproductive toxicity associated with excessive exposure to multi-walled carbon nanotubes (MWCNTs), which are commonly used in medicine as valuable drug delivery systems, is well documented. Kolaviron, a bioflavonoid isolated from Garcinia kola seeds, elicits numerous health beneficial effects related to its anti-inflammatory, anti-genotoxic activities, anti-apoptotic, and antioxidant properties. However, information on the role of kolaviron inMWCNTs-induced reproductive toxicity is not available in the literature. Herein, we assessed the protective effects of kolaviron onMWCNTs-induced dysfunctional reproductive axis in rats following exposure toMWCNTs (1 mg/kg) and concurrent treatment with kolaviron (50 or 100 mg/kg body weight) for 15 successive days. Results showed thatMWCNTs-induced dysfunctional reproductive axis as evidenced by deficits in pituitary and testicular hormones, marker enzymes of testicular function, and sperm functional characteristics were abrogated in rats coadministered with kolaviron. Moreover, co-administration of kolaviron-abated MWCNTs-induced inhibition of antioxidant enzyme activities increases in oxidative stress and inflammatory indices. This is evidenced by diminished levels of tumor necrosis factor-alpha, nitric oxide, lipid peroxidation, reactive oxygen, and nitrogen species as well as reduced activity of myeloperoxidase in testes, epididymis, and hypothalamus of the rats. Biochemical data on the chemoprotection of MWCNTsinduced reproductive toxicity were corroborated by histological findings. Taken together, kolaviron suppressed dysfunctional reproductive axis associated with MWCNTs exposure via abrogation of oxidative stress and inflammation in male rats.
  • Thumbnail Image
    Item
    Neurobehavioural and biochemical responses associated with exposure to binary waterborne mixtures of zinc and nickel in rats
    (1382-6689, 2020) Adedara, I. A.; Adegbosin, A. N.; Owoeye, O.; Abiola, M. A.; Odunewu, A. A.; Owoeye, O.; Owumi, S. E.; Farombi, E. O.
    Environmental and occupational exposure to metal mixtures due to various geogenic and anthropogenic ac- tivities poses a health threat to exposed organisms. The outcome of systemic interactions of metals is a topical area of research because it may cause either synergistic or antagonistic effect. The present study investigated the impact of co-exposure to environmentally relevant concentrations of waterborne nickel (75 and 150 pg NiCl 2L-1) and zinc (100 and 200pg ZnC^L-1) mixtures on neurobehavioural performance of rats. Locomotor, motor and exploratory activities were evaluated using video-tracking software during trial in a novel arena and thereafter, biochemical and histological analyses were performed using the cerebrum, cerebellum and liver. Results indicated that zinc significantly (p < 0.05) abated the nickel-induced locomotor and motor deficits as well as improved the exploratory activity of exposed rats as verified by track plots and heat map analyses. Moreover, zinc mitigated nickel-mediated decrease in acetylcholinesterase activity, elevation in biomarkers of liver damage, levels of reactive oxygen and nitrogen species as well as lipid peroxidation in the exposed rats when compared with control. Additionally, nickel mediated decrease in antioxidant enzyme activities as well as the increase in tumour necrosis factor alpha, interleukin-1 beta and caspase-3 activity were markedly abrogated in the cerebrum, cerebellum and liver of rats co-exposed to nickel and zinc. Histological and histomorphome- trical analyses evinced that zinc abated nickel-mediated neurohepatic degeneration as well as quantitative re- duction in the widest diameter of the Purkinje cells and the densities of viable granule cell layer of dentate gyrus, pyramidal neurones of cornu ammonis 3 and cortical neurons in the exposed rats. Taken together, zinc abrogated nickel-induced neurohepatic damage via suppression of oxido-inflammatory stress and caspase-3 activation in rats.
  • Thumbnail Image
    Item
    Kolaviron via anti-inflammatory and redox regulatory mechanisms abates multi-walled carbon nanotubes-induced neurobehavioral deficits in rats
    (Springer-Verlag GmbH, 2020) Adedara, I. A.; Awogbindin, I. O.; Owoeye, O.; Maduako, I. C.; Ajeleti, A. O.; Owumi, S. E.; Patlola, A. K.; Farombi, E. O.
    Exposure to multi-walled carbon nanotubes (MWCNTs) reportedly elicits neurotoxic effects. Kolaviron is a phytochem- ical with several pharmacological effects namely anti-oxidant, anti-inflammatory, and anti-genotoxic activities. The present study evaluated the neuroprotective mechanism of kolaviron in rats intraperitoneally injected with MWCNTs alone at 1 mg/kg body weight or orally co-administered with kolaviron at 50 and 100 mg/kg body weight for 15 consecutive days. Following exposure, neurobehavioral analysis using video-tracking software during trial in a novel environment indicated that co-administration of both doses of kolaviron significantly (p < 0.05) enhanced the locomotor, motor, and exploratory activities namely total distance traveled, maximum speed, total time mobile, mobile episode, path efficiency, body rotation, absolute turn angle, and negative geotaxis when compared with rats exposed to MWCNTs alone. Further, kolaviron markedly abated the decrease in the acetylcholinesterase activity and antioxidant defense system as well as the increase in oxidative stress and inflammatory biomarkers induced by MWCNT exposure in the cerebrum, cerebellum, and mid-brain of rats. The amelioration of MWCNT-induced neuronal degeneration in the brain structures by kolaviron was verified by histological and morphometrical analyses. Taken together, kolaviron abated MWCNT-induced neurotoxicity via anti-inflammatory and redox regulatory mechanisms.
  • Thumbnail Image
    Item
    Neuroprotective mechanisms of selenium against arsenic-induced behavioral impairments in rats
    (Elsevier B.V., 2020) Adedara, I. A.; Fabunmi, A. T.; Ayenitaju, A. C.; Atanda, O. E.; Adebowale, A. A.; Ajayi, B. O.; Rocha, J. B. T.; Owoeye, O.; Farombi, E. O.
    Environmental pollution due to arsenic is associated with several adverse health effects including neurotoxicity in animals and humans. Selenium is a nutritionally essential trace metalloid well documented to elicit com- pelling pharmacological activities in vitro and in vivo. Report on the influence of selenium on arsenic-mediated behavioral derangement is lacking in literature. Hence, to fill this knowledge gap, rats were either exposed to arsenic per se in drinking water at 60 pg AsO2Na/L or co-administered with inorganic selenium at 0.25 mg/kg or organic selenium diphenyl diselenide (DPDS) at 2.5 mg/kg body weight for 45 successive days. Neurobehavioural data from rats in a new environment using video-tracking software evinced that inorganic and organic forms of selenium significantly (p < 0.05) abrogated arsenic-induced motor and locomotor in- sufficiencies such as increased negative geotaxis and fecal pellets numbers as well as the diminution in grip strength, body rotation, maximum speed, absolute turn angle and total distance travelled. The augmentation in the behavioral activities in rats co-administered with arsenic and both forms of selenium was substantiated using track and occupancy plots analyses. Selenium mitigated arsenic-induced decreases in glutathione level and acetylcholinesterase activity as well as the increase in oxidative stress and reactive oxygen and nitrogen species. Moreover, selenium diminished inflammatory parameters (myeloperoxidase activity, nitric oxide, tumour ne- crosis factor alpha and interleukin-1 beta levels), caspase-3 activity and ameliorated histological lesions in the cerebellum, cerebrum and liver of the rats. Collectively, selenium abated arsenic-induced behavioral derange- ments via anti-inflammation, antioxidant and anti-apoptotic mechanisms in rats.
  • Thumbnail Image
    Item
    Impact of binary waterborne mixtures of nickel and zinc on hypothalamic-pituitary-testicular axis in rats
    (Elsevier Ltd., 2019) Adedara, I. A.; Abiola, M. A.; Adegbosin, A. N.; Odunewu, A. A.; Farombi, E. O.
    Several evidences from the literature showed that the coexistence of nickel and zinc in polluted waters is related to the similarity in their geogenic and anthropogenic factors. Although most environmental exposures to metals do not occur singly, there is a paucity of scientific knowledge on the effects of zinc and nickel co-exposure on mammalian reproductive health. The present study investigated the influence of co-exposure to nickel and zinc on male reproductive function in rats. Experimental rats were co- exposed to environmentally relevant concentrations of waterborne nickel (75 and 150 mg NiCl2 L-1) and zinc (100 and 200 mg ZnCl2 L-1) for 45 successive days. Subsequently, reproductive hormones were assayed whereas the hypothalamus, epididymis and testes of the rats were processed for the assessment of oxidative stress and inflammation indices, caspase-3 activity and histology. Results indicated that co- exposure to nickel and zinc significantly (p < 0.05) abolished nickel-mediated diminution of antioxidant defense mechanisms while diminishing levels of reactive oxygen and nitrogen species and lipid per- oxidation in the hypothalamus, epididymis and testes of the exposed rats. Additionally, co-exposure to zinc abated nickel-mediated diminutions in luteinizing hormone, follicle-stimulating hormone, serum and intra-testicular testosterone with concomitant enhancement of sperm production and quality. Further, zinc abrogated nickel-mediated elevation in inflammatory biomarkers including nitric oxide, tumor necrosis factor alpha, interleukin-1 beta as well as caspase-3 activity. The protective influence of zinc on nicked-induced reproductive toxicity was well supported by histological data. Overall, zinc ameliorated nickel-induced reproductive dysfunction
  • Thumbnail Image
    Item
    Selenium abates reproductive dysfunction via attenuation of biometal accumulation, oxido-inflammatory stress and caspase-3 activation in male rats exposed to arsenic
    (Elsevier Ltd., 2019) Adedara, I. A.; Adebowale, A. A.; Atanda, O. E.; Fabunmi, A. T.; Ayenitaju, A. C.; Rocha, J. B. T.; Farombi, E. O.
    Frequent exposure to arsenic is well documented to impair reproductive function in humans and animals. Biological significance of inorganic selenium and organoselenium, diphenyl selenide (DPDS), has been attributed to their pharmacological activities. However, their roles in arsenic-mediated reproductive toxicity is lacking in literature. The present study evaluated the protective effects elicited by selenium and DPDS in arsenic-induced reproductive deficits in rats. Animals were either exposed to arsenic alone in drinking water at 60 µg AsO₂Na L⁻¹ or co-treated with selenium at 0.25 mg kg⁻¹ or DPDS at 2.5 mg kg⁻¹ body weight for 45 consecutive days. Results indicated that arsenic-mediated deficits in spermatogenic indices and marker enzymes of testicular function were significantly abrogated in rats co-treated with selenium or DPDS. Additionally, selenium or DPDS co-treatment prevented arsenic-mediated elevation in oxidative stress indices and significantly suppressed arsenic-mediated inflammation evidenced by diminished myeloperoxidase activity, nitric oxide, tumor necrosis factor alpha, interleukin-1 beta levels in hypothalamus, testes and epididymis of the rats. Moreover, selenium or DPDS abrogated arsenic mediated activation of caspase-3 activity and histological lesions in the treated rats. Taken together, selenium or DPDS improved reproductive function in arsenic-exposed rats via suppression of inflammation, oxidative stress and caspase-3 activation in rats.