scholarly works
Permanent URI for this collectionhttps://repository.ui.edu.ng/handle/123456789/498
Browse
3 results
Search Results
Item Induction of aggression and anxiety-like responses by perfluorooctanoic acid is accompanied by modulation of cholinergic- and purinergic signaling-related parameters in adult zebrafish(Elsevier Inc., 2022) Adedara, I. A. || || || || || || || || || || ||; Souza, T. P.; Canzian, J.; Olabiyi, A. A.; Borba, J. V.; Biasuz, E.; Sabadin, G. R.; Goncalves, F. L. S.; Costa, F. V.; Schetinger, M. R. C.; Farombi E.O.; Rosemberg, D. B.Perfluorooctanoic acid (PFOA) is a contaminant of global concern owing to its prevalent occurrence in aquatic and terrestrial environments with potential hazardous impact on living organisms. Here, we investigated the influence of realistic environmental concentrations of PFOA (0, 0.25, 0.5, or 1.0 mg/L) on relevant behaviors of adult zebrafish (Danio rerio) (e.g., exploration to novelty, social preference, and aggression) and the possible role of PFOA in modulating cholinergic and purinergic signaling in the brain after exposure for 7 consecutive days. PFOA significantly increased geotaxis as well as reduced vertical exploration (a behavioral endpoint for anxiety), and increased the frequency and duration of aggressive episodes without affecting their social preference. Exposure to PFOA did not affect ADP hydrolysis, whereas ATP and AMP hydrolysis were significantly increased at the highest concentration tested. However, AChE activity was markedly decreased in all PFOA-exposed groups when compared with control. In conclusion, PFOA induces aggression and anxiety-like behavior in adult zebrafish and modulates both cholinergic and purinergic signaling biomarkers. These novel data can provide valuable insights into possible health threats related to human activities, demonstrating the utility of adult zebrafish to elucidate how PFOA affects neurobehavioral responses in aquatic organisms.Item Zebrafish as a potential non-traditional model organism in translational bipolar disorder research: Genetic and behavioral insights(Elsevier Ltd., 2022) Canzian, J.; Goncalves, F. L. S.; Muller, T. E.; Fransescon, F.; Santos, L. W.; Adedara, I. A.; Rosemberg, D. B.Bipolar disorder (BD) is a severe and debilitating illness that affects 1-2% of the population worldwide. BD is characterized by recurrent and extreme mood swings, including mania/hypomania and depression. Animal experimental models have been used to elucidate the mechanisms underlying BD and different strategies have been proposed to assess BD-like symptoms. The zebrafish (Danio rerio) has been considered a suitable vertebrate system for modeling BD-like responses, due to the genetic tractability, molecular/physiological conservation, and well-characterized behavioral responses. In this review, we discuss how zebrafish-based models can be suc- cessfully used to understand molecular, biochemical, and behavioral alterations paralleling those found in BD. We also outline some advantages and limitations of this aquatic species to examine BD-like phenotypes in translational neurobehavioral research. Overall, we reinforce the use of zebrafish as a promising tool to investigate the neural basis associated with BD-like behaviors, which may foster the discovery of novel pharmaco- logical therapies.Item Utility of cockroach as a model organism in the assessment of toxicological impacts of environmental pollutants(Elsevier Ltd., 2022) Adedara, I. A.; Mohammed, K. A.; Da-Silva, O. F.; Salaudeen, F. A.; Goncalves, F. L. S.; Rosemberg, D. B.; Aschner, M.; Rocha, J. B. T.; Farombi, E. O.Environmental pollution is a global concern because of its associated risks to human health and ecosystem. The bio-monitoring of environmental health has attracted much attention in recent years and efforts to minimize environmental contamination as well as to delineate toxicological mechanisms related to toxic exposure are essential to improve the health conditions of both humans and animals. This review aims to substantiate the need and advantages in utilizing cockroaches as a complementary, non-mammalian model to further understand the noxious impact of environmental contaminants on humans and animals. We discuss recent advances in neuro- toxicology, immunotoxicology, reproductive and developmental toxicology, environmental forensic entomo- toxicology, and environmental toxicology that corroborate the utility of the cockroach (Periplaneta americana, Blaptica dubia, Blattella germanica and Nauphoeta cinerea) in addressing toxicological mechanisms as well as a sensor of environmental pollution. Indeed, recent improvements in behavioural assessment and the detection of potential biomarkers allow for the recognition of phenotypic alterations in cockroaches following exposure to toxic chemicals namely saxitoxin, methylmercury, polychlorinated biphenyls, electromagnetic fields, pharma- ceuticals, polycyclic aromatic hydrocarbon, chemical warfare agents and nanoparticles. The review provides a state-of-the-art update on the current utility of cockroach models in various aspects of toxicology as well as discusses the potential limitations and future perspectives.
