scholarly works
Permanent URI for this collectionhttps://repository.ui.edu.ng/handle/123456789/498
Browse
3 results
Search Results
Item Kolaviron via anti-inflammatory and redox regulatory mechanisms abates multi-walled carbon nanotubes-induced neurobehavioral deficits in rats(Springer-Verlag GmbH, 2020) Adedara, I. A.; Awogbindin, I. O.; Owoeye, O.; Maduako, I. C.; Ajeleti, A. O.; Owumi, S. E.; Patlola, A. K.; Farombi, E. O.Exposure to multi-walled carbon nanotubes (MWCNTs) reportedly elicits neurotoxic effects. Kolaviron is a phytochem- ical with several pharmacological effects namely anti-oxidant, anti-inflammatory, and anti-genotoxic activities. The present study evaluated the neuroprotective mechanism of kolaviron in rats intraperitoneally injected with MWCNTs alone at 1 mg/kg body weight or orally co-administered with kolaviron at 50 and 100 mg/kg body weight for 15 consecutive days. Following exposure, neurobehavioral analysis using video-tracking software during trial in a novel environment indicated that co-administration of both doses of kolaviron significantly (p < 0.05) enhanced the locomotor, motor, and exploratory activities namely total distance traveled, maximum speed, total time mobile, mobile episode, path efficiency, body rotation, absolute turn angle, and negative geotaxis when compared with rats exposed to MWCNTs alone. Further, kolaviron markedly abated the decrease in the acetylcholinesterase activity and antioxidant defense system as well as the increase in oxidative stress and inflammatory biomarkers induced by MWCNT exposure in the cerebrum, cerebellum, and mid-brain of rats. The amelioration of MWCNT-induced neuronal degeneration in the brain structures by kolaviron was verified by histological and morphometrical analyses. Taken together, kolaviron abated MWCNT-induced neurotoxicity via anti-inflammatory and redox regulatory mechanisms.Item Neuroprotective mechanisms of selenium against arsenic-induced behavioral impairments in rats(Elsevier B.V., 2020) Adedara, I. A.; Fabunmi, A. T.; Ayenitaju, A. C.; Atanda, O. E.; Adebowale, A. A.; Ajayi, B. O.; Rocha, J. B. T.; Owoeye, O.; Farombi, E. O.Environmental pollution due to arsenic is associated with several adverse health effects including neurotoxicity in animals and humans. Selenium is a nutritionally essential trace metalloid well documented to elicit com- pelling pharmacological activities in vitro and in vivo. Report on the influence of selenium on arsenic-mediated behavioral derangement is lacking in literature. Hence, to fill this knowledge gap, rats were either exposed to arsenic per se in drinking water at 60 pg AsO2Na/L or co-administered with inorganic selenium at 0.25 mg/kg or organic selenium diphenyl diselenide (DPDS) at 2.5 mg/kg body weight for 45 successive days. Neurobehavioural data from rats in a new environment using video-tracking software evinced that inorganic and organic forms of selenium significantly (p < 0.05) abrogated arsenic-induced motor and locomotor in- sufficiencies such as increased negative geotaxis and fecal pellets numbers as well as the diminution in grip strength, body rotation, maximum speed, absolute turn angle and total distance travelled. The augmentation in the behavioral activities in rats co-administered with arsenic and both forms of selenium was substantiated using track and occupancy plots analyses. Selenium mitigated arsenic-induced decreases in glutathione level and acetylcholinesterase activity as well as the increase in oxidative stress and reactive oxygen and nitrogen species. Moreover, selenium diminished inflammatory parameters (myeloperoxidase activity, nitric oxide, tumour ne- crosis factor alpha and interleukin-1 beta levels), caspase-3 activity and ameliorated histological lesions in the cerebellum, cerebrum and liver of the rats. Collectively, selenium abated arsenic-induced behavioral derange- ments via anti-inflammation, antioxidant and anti-apoptotic mechanisms in rats.Item Diphenyl diselenide abrogates brain oxidative injury and neurobehavioural deficits associated with pesticide chlorpyrifos exposure in rats(Elsevier B.V., 2018) Adedara, I. A. || || || || || ||; Owoeye, O.; Awogbindin, I. O.; Ajayi, O. B.; Adeyemo, O. A.; Rocha, J. B. T.; Farombi, E. O.Exposure to pesticide chlorpyrifos (CPF) is associated with neurodevelopmental toxicity both in humans and animals. Diphenyl diselenide (DPDS) is a simple synthetic organoselenium well reported to possess antioxidant, anti-inflammatory and neuroprotective effects. However, there is paucity of information on the beneficial effects of DPDS on CPF-mediated brain injury and neurobehavioural deficits. The present study investigated the neuroprotective mechanism of DPDSin rats sub-chronically treated with CPF alone at 5 mg/kg body weight or orally co-treated with DPDS at 2.5 and 5 mg/kg body weight for 35 consecutive days. Endpoint analyses using video- tracking software in a novel environment revealed that co-treatment with DPDS significantly (p < 0.05) pro- tected against CPF-mediated locomotor and motor deficits precisely the decrease in maximum speed, total distance travelled, body rotation, absolute turn angle, forelimb grip strength as well as the increase in negative geotaxis and incidence of fecal pellets. The enhancement in the neurobehavioral activities of rats co-treated with DPDS was verified by track plot analyses. Besides, DPDS assuaged CPF-induced decrease in acetylcholinesterase and antioxidant enzymes activities and the increase in myeloperoxidase activity and lipid peroxidation level in the mid-brain, cerebral cortex and cerebellum of the rats. Histologically, DPDS co-treatment abrogated CPF- mediated neuronal degeneration in the cerebral cortex, dentate gyrus and cornu ammonis3 in the treated rats. In conclusion, the neuroprotective mechanisms of DPDS is related to the prevention of oxidative stress, enhance- ment of redox status and acetylcholinesterase activity in brain regions of the rats. DPDS may be a promising chemotherapeutic agent against brain injury resulting from CPF exposure.
