scholarly works
Permanent URI for this collectionhttps://repository.ui.edu.ng/handle/123456789/498
Browse
2 results
Search Results
Item Neuroprotection of luteolin against methylmercury-induced toxicityin lobster cockroach Nauphoeta cinerea(Elsevier B.V., 2016) Adedara, I. A. || || || || ||; Rosemberg, D. B.; Souza, D. O.; Farombi, E. O.; Aschner, M.; Rocha, J. B. T.Luteolin (3_, 4_, 5, 7-tetrahydroxyflavone) is a polyphenolic compound found in foods of plant origin and has been reported to possess antioxidant and neuroprotective properties. However, there is dearth of information on the beneficial effects of luteolin on methylmercury (MeHg), a long-established neuro-toxic compound in animals and humans. This study evaluated the effect of luteolin on MeHg-inducedbehavioral and biochemical deficits, using lobster cockroach Nauphoeta cinerea as an alternative and complementary animal model. The insects were exposed for 35 consecutive days to either MeHg alone(0.05 mg/g feed) or in combination with luteolin at 0.25, 0.5 and 1.0 mg/g feed. Locomotor behavior was assessed using video-tracking software during a 10-min trial in a novel arena and subsequently, biochemical analyses were carried out using the cockroaches’ heads. Luteolin supplementation dose-dependentlyreversed the MeHg-induced locomotor deficits and enhanced the exploratory profiles of MeHg-exposedcockroaches as confirmed by track and occupancy plot analyses. Luteolin reversed the MeHg-inducedacetylcholinesterase activity inhibition, decreased dichlorofluorescein oxidation and lipid peroxidation levels, but increased total thiol level and catalase and glutathione S-transferase activities in the treated cockroaches. In conclusion, luteolin prevented oxidative stress indices and neurobehavioral deficits in a Nauphoeta cinerea model of MeHg toxicity.Item Influence of diphenyl diselenide on chlorpyrifos-induced toxicity in Drosophila melanogaster(Elsevier GmbH., 2015) Adedara, I. A.; Klimaczewski, C. V.; Barbosa, N. B. V.; Farombi, E. O.; Souza, D. O.; Rocha, J. B. T.Exposure to chlorpyrifos (CPF) poses several harmful effects to human and animal health. The present study investigated the influence of diphenyl diselenide (DPDS) on CPF-induced toxicity in Drosophila melanogaster. Firstly, the cumulative responses of virgin flies (2- to 3-day-old) to CPF (0.075–0.6 µg/g) and DPDP (5–40 µmol/kg) in the diet for 28 consecutive days were investigated. Subsequently, the protective effect of DPDS (10, 20 and 40 µmol/kg) on CPF (0.15 µg/g)-induced mortality, locomotor deficits, neurotoxicity and oxidative stress was assessed in a co-exposure paradigm for 7 days. Results showed that CPF exposure significantly decreased the operant reflex in a time- and concentration-dependent manner, whereas the percent live flies with DPDS treatment was not statistically different from control following 28 days of treatment. In the co-exposure study, CPF significantly increased mortality while the survivors exhibited significant locomotor deficits with decreased acetylcholinesterase (AChE) activity. Dietary supplementation with DPDS was associated with marked decrease in mortality, improvement in locomotor activity and restoration of AChE activity in CPF-exposed flies. Moreover, CPF exposure significantly decreased catalase and glutathione-S-transferase activities, total thiol level with concomitant significant elevation in levels of reactive oxygen species and thiobarbituric acid reactive substances in the head and body regions of the treated flies. Dietary supplementation with DPDS significantly improved the antioxidant status and prevented CPF-induced oxidative stress, thus demonstrating the protective effect of DPDS in CPF-treated flies.
