scholarly works
Permanent URI for this collectionhttps://repository.ui.edu.ng/handle/123456789/560
Browse
2 results
Search Results
Item Formulation of metronidazole tablets using hydroxypropylated white yam (dioscorea rotundata) starch as the binding agent(IPEC-Americas Inc, 2017) Okunlola, A.; Alade, O. O.; Odeku, O. A.White yam starch obtained from the tubers of Dioscorea rotundata Poir was modified by hydroxypropylation and used as a binding agent in a metronidazole tablet formulation and compared with corn starch BP. The quantitative effects of the novel starch binder on the mechanical (tensile strength and friability) and release properties (disintegration and dissolution times) of the metronidazole tablet was analyzed using a full 23 factorial experimental design. The individual and interaction effects of type of starch binder (X1), concentration of binder (X2) and relative density (X3) on tensile strength, friability, disintegration time and dissolution time (t90) were determined. The ranking of the coefficients was X3 > X2 > X1 on T, X1 > X3 > X2 on F and X3 > X1 > X2 on DT and t90 (time for 90% drug release) indicating that the formulation variables influence the properties of metronidazole tablets to varying degrees. This indicates that the type and concentration of starch binder as well as the compression pressure employed in table formulation need to be carefully selected to obtain tablets with the desired mechanical and drug release properties. Hydroxypropyl white yam starch could be more useful as a binder especially when tablets require high mechanical strength and faster drug release are desired.Item Formulation of floating metronidazole microspheres using cassava starch (manihot esculenta) as polymer(Springer Publications, 2017) Odeku, O. A; Aderogba, A. A.; Ajala, T. O.; Akin-Ajani, O. D.; Okunlola, A" Floating gastroretentive microspheres have been used to prolong the gastric residence time after oral administration and improve the local effect of metronidazole in the stomach in the treatment of peptic ulcer caused by Helicobacter pylori. In the present study, cassava starch, obtained from the tubers of Manihot esculenta has been pregelatinized and used as polymer in combination with sodium alginate for the formulation of floating gastroretentive metronidazole microspheres. Metronidazole microspheres were prepared by ionic gelation method using pregelatinized cassava starch and sodium alginate at different concentrations as polymers and calcium chloride (2% w/v) as chelating agent. Sodium bicarbonate (2% w/w) was used as gas releasing agent. Microspheres were characterized using the particle size, swelling index, floating lag time (FLT), total floating time and drug release properties. Spherical discrete microspheres with size ranging from 1.52 to 2.23 mm were obtained with FLT of less than 5min and drug entrapment efficiency of 42–60% w/w. The microsphere maintained buoyancy for over 19h and the microspheres provided controlled release of metronidazolefor up to 18h. Drug release from the microspheres, swelling index and buoyancy depended on the concentration of cassava starch in the polymer blend. Formulations containing high concentration of cassava starch showing shorter floating lag time and faster drug release. Thus, buoyancy and rate of drug release appeared to be modulated by the concentration of cassava starch in the polymer blend. The results showed that pregelatinized cassava could be useful in the formulation of floating gastroretentive metronidazole microspheres "