scholarly works
Permanent URI for this collectionhttps://repository.ui.edu.ng/handle/123456789/560
Browse
3 results
Search Results
Item Development of ibuprofen microspheres using acetylated plantain starches as polymer for sustained release(Springer Publications, 2018) Okunlola, A.; Ghomorai, T.Ibuprofen has a short half-life (1–3 h) and istypically administered 3–4 times daily with subsequent adverse side effects. A good approach to reduce these effects is the preparation of sustained-release formulations of ibuprofen. Acetylated starches form water-insoluble, acid-resistant films that can substantially retard drug release. Ibuprofen microspheres were prepared using acetylated plantain starch as sustained-release polymer. Starch obtained from unripe plantain (Musa Paradisiaca normalis) were acetylated using acetic anhydride with pyridine (degrees of substitution, DS 1.5 ± 0.05 and 2.20 ± 0.10). The starches were characterized using morphology, crystallinity, swelling, density and flow properties. Ibuprofen microspheres were prepared by quasi-emulsion solvent diffusion method, using acetylated plantain starches DS 1.5 and 2.20 in comparison to Eudragit S100. Full 32 factorial experimental design was performed with polymer type (X1), polymer: drug ratio (X2) as independent factors; microsphere size, entrapment, and quantity of drug released in 12 h (Q12) were dependent variables. The data from in vitro drug release were fitted to various kinetic models. Acetylation resulted in larger starch aggregates with disruption in crystalline order. Ibuprofen microspheres were spherical with size 5.50 ± 4.00–129.90 ± 12.97μm. Drug entrapment was 43.92 ± 4.00–79.91 ± 6.15%. Values of Q12 ranged from 20.10 ± 0.55 to 54.00 ± 5.71%. Interaction between variables X1 and X2 had positive effects on size and entrapment. Drug release fitted zero order, first order and Baker-Lonsdale kinetic models. Acetylated starch of plantain with DS 2.20 was suitable as a polymer at polymer:drug ratio 4:1 for the formulation of ibuprofen microspheres with prolonged drug release.Item Formulation and in vitro evaluation of natural gum-based microbeads for delivery of ibuprofen(Pharmacotherapy group, faculty of pharmacy, university of Benin, Benin City, 2013) Odeku, O. A; Okunlola, A.; Lamprecht, A.Purpose: To investigate the effectiveness of three natural gums, namely albizia, cissus and khaya gums, as excipients for the formulation of ibuprofen microbeads. Methods: Ibuprofen microbeads were prepared by the ionotropic gelation method using the natural gums and their blends with sodium alginate at various concentrations using different chelating agents (calcium chloride, zinc chloride, calcium acetate and zinc acetate) at different concentrations. Microbeads were assessed for their morphology using SEM, swelling characteristics, drug entrapment efficiencies, release properties and drug release kinetics. Results: The natural gums alone could not form stable microbeads in the different chelating agents. Stable small spherical discrete microbeads with particle size of 1.35 ± 0.11 to 1.78 ± 0.11 mm, were obtained using the blends of natural gum: alginate at total polymer concentration of 2% w/v using 10% w/v calcium chloride solution at a stirring speed of 300 rpm. The encapsulation efficiencies of the microbeads ranged from 35.3 to 79.8 % and dissolution times, t15 and t80 increased with increase in the concentration of the natural gums present in the blends. Controlled release was obtained for over 4 h and the release was found to be by a combination of diffusion and erosion mechanisms from spherical formulations. Conclusion: The three natural gums would be useful in the formulation of ibuprofen microbeads and the type and concentration of natural gum in the polymer blend can be used to modulate the release properties of the microbeads.Item Generic versus innovator: Analysis of the pharmaceutical qualities of paracetamol and ibuprofen tablets in the Nigerian market(2009) Okunlola, A.; Adegoke, O. A.; Odeku, O. A.The physicochemical equivalence of twenty-two brands of paracetamol and nine brands of ibuprofen tablets sourced from retail Pharmacy outlets in the Nigerian market to their respective innovator brands were investigated. The uniformity of weight, friability, crushing strength, disintegration and dissolution times and assay of active paracetamol ingredient were used as assessment parameters. All the brands of paracetamol and ibuprofen tablets complied with the official specifications for uniformity of weight. However, five brands of paracetamol failed the friability test, one brand of paracetamol and two brands of ibuprofen failed the disintegration test and three brands of paracetamol and four brands of ibuprofen failed the assay of active ingredients. The study shows that not all the brands of paracetamol and ibuprofen tablets are physico-chemically equivalent to their innovator brands. There is therefore the need for constant market surveillance to ascertain their compliance with official standards and equivalence to the innovator products.