FACULTY OF SCIENCE
Permanent URI for this communityhttps://repository.ui.edu.ng/handle/123456789/266
Browse
3 results
Search Results
Item A model for conflicts’ prediction using deep neural network(2021-10) Olaide, O. B.; Ojo, A. K.Conflict is part of human social interaction, which may occur from a mere misunderstanding among groups of settlers. In recent times, advanced Machine Learning (ML) techniques have been applied to conflict prediction. Strategic frameworks for improving ML settings in conflict research are emerging and are being tested with new algorithm-based approaches. These developments have given rise to the need to develop a Deep Neural Network model that predicts conflicts. Hence, in this study, two Artificial Neural Network models were developed, the dataset which was extracted from https://www.data.worlduploaded by the Armed Conflict Location and Event Data Project (ACLED), in four separate CSV files (January 2015 to December 2018). The dataset for the year 2015 has 2697 instances and 28 features, for 2016 was 2233 with the same feature, for 2017 has 2669 instances with the same features, and 2018 has 1651 instances. After the development of the models: the baseline Artificial Neural Network achieved an accuracy of 95% and a loss of 5% on the training data and an accuracy of 90% and 10% loss on the test set. The Deep Neural Network Model achieved 98% accuracy and 2% loss on the training set, with 89% accuracy and 11% loss on the test set. It was concluded that to further improve the prediction of conflict, there is a need to address the issue of the dataset, in developing a better and more robust model.Item A predicting phishing websites using support vector machine and multi-class classification based on association rule techniques(2018-06) Woods, N. C.; Agada, V. E.; Ojo, A. K.Phishing is a semantic attack which targets the user rather than the computer. It is a new Internet crime in comparison with other forms such as virus and hacking. Considering the damage phishing websites has caused to various economies by collapsing organizations, stealing information and financial diversion, various researchers have embarked on different ways of detecting phishing websites but there has been no agreement about the best algorithm to be used for prediction. This study is interested in integrating the strengths of two algorithms, Support Vector Machines (SVM) and Multi-Class Classification Rules based on Association Rules (MCAR) to establish a strong and better means of predicting phishing websites. A total of 11,056 websites were used from both PhishTank and yahoo directory to verify the effectiveness of this approach. Feature extraction and rules generation were done by the MCAR technique; classification and prediction were done by SVM technique. The result showed that the technique achieved 98.30% classification accuracy with a computation time of 2205.33s with minimum error rate. It showed a total of 98% Area under the Curve (AUC) which showed the proportion of accuracy in classifying phishing websites. The model showed 82.84% variance in the prediction of phishing websites based on the coefficient of determination. The use of two techniques together in detecting phishing websites produced a more accurate result as it combined the strength of both techniques respectively. This research work centralized on this advantage by building a hybrid of two techniques to help produce a more accurate result.Item A predicting phishing websites using support vector machine and multi-class classification based on association rule techniques(2018-06) Woods, N. C.; Agada, V. E.; Ojo, A. K.Phishing is a semantic attack which targets the user rather than the computer. It is a new Internet crime in comparison with other forms such as virus and hacking. Considering the damage phishing websites has caused to various economies by collapsing organizations, stealing information and financial diversion, various researchers have embarked on different ways of detecting phishing websites but there has been no agreement about the best algorithm to be used for prediction. This study is interested in integrating the strengths of two algorithms, Support Vector Machines (SVM) and Multi-Class Classification Rules based on Association Rules (MCAR) to establish a strong and better means of predicting phishing websites. A total of 11,056 websites were used from both PhishTank and yahoo directory to verify the effectiveness of this approach. Feature extraction and rules generation were done by the MCAR technique; classification and prediction were done by SVM technique. The result showed that the technique achieved 98.30% classification accuracy with a computation time of 2205.33s with minimum error rate. It showed a total of 98% Area under the Curve (AUC) which showed the proportion of accuracy in classifying phishing websites. The model showed 82.84% variance in the prediction of phishing websites based on the coefficient of determination. The use of two techniques together in detecting phishing websites produced a more accurate result as it combined the strength of both techniques respectively. This research work centralized on this advantage by building a hybrid of two techniques to help produce a more accurate result.