FACULTY OF SCIENCE

Permanent URI for this communityhttps://repository.ui.edu.ng/handle/123456789/266

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Comparative analysis of rainfall prediction using statistical neural network and classical linear regression model
    (Medwell Journals, 2011) Udomboso, C. G.; Amahia., G. N.
    Different types of models have been used in modeling rainfall. Since 1990s however, interest has shifted from traditional models to ANN in rainfall modeling. Many researchers found out that the ANN performed better than such traditional models. In this study, we compared a traditional linear model and ANN in the modeling of rainfall in Ibadan, Nigeria. Ibadan is a city in West Africa, located in the tropical rainforest zone, using the data obtained from the Nigeria Meteorological (NIMET) station. Three variables were considered in this study rainfall, temperature and humidity. In selecting between the two models, we concentrated on the choice of adjusted R2 (R-2 ), Akaike Information Criterion (AIC) and Schwarz Information Criterion (SIC). Though, the MSE and R2 were also used, it was concluded from results that MSE is not a good choice for model selection. This is due to the nature of the rainfall data (which has wide variations). It was found that the Statistical Neural Network (SNN), generally performed better than the traditional (OLS).
  • Thumbnail Image
    Item
    Alternative goodness-of-fit test in logistic regression models
    (Medwell Journals, 2011) Nja, M. E.; Enang, E. I.; Chukwu, A. U.; Udomboso, C. G.
    The Deviance and the Pearson chi-square are two traditional goodness-of-fit tests in generalized linear models for which the logistic model is a special case. The effort involved in the computation of either the Deviance or Pearson chi-square statistic is enormous and this provides a reason for prospecting an alternative goodness-of-fit test in logistic regression models with discrete predictor variables. The Deviance is based on the log likelihood function while the Pearson chi-square derives from the discrepancies between observed and predicted counts. Replacing observed and predicted counts with observed proportions and predicted probabilities, respectively in a cross-classification data arrangement, the standard error of estimate is proposed as an alternative goodness-of-fit test in logistic regression models. The illustrative example returns favourable comparisons with Deviance and the Pearson chi-square statistics.