Thermodynamic analysis and simulation of combined adsorption heating and cooling system
Date
2012-06
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This paper presents the description and thermodynamic analysis of a new hybrid system of solarpowered water heater and adsorption ice maker. Mathematical models were generated based on heat transfer in the collector, heat and mass transfer within the adsorbent-adsorbate pair and the thermodynamics of the adsorption process. The numerical models developed from finite difference transformation of the resulting equations were developed into a MATLAB computer code for easy implementation on a personal computer. The results reveal the ability of the hybrid system to heat 50kg water to about 96°C as well as produce ice at 7.2kg per day with a 2m2 evacuated vacuum-tube- type solar collector, with a coefficient of performance of 0.62. The system is capable of reaching a specific refrigeration density of 0.48kg ice per kg-adsorbent per day. Details on the effect of condensation, evaporation and adsorption temperature on the system coefficient of performance are also reported.
Description
Keywords
Solar energy,, adsorption,, hybrid,, adsorbent bed,, simulation