The Fuzzy Subgroups for the Nilpotent (P-Group) of (D23 × C2m) for M ≥ 3

dc.contributor.authorAdebisi, S.A.
dc.contributor.authorOgiugo, M.
dc.contributor.authorEniOluwafe, M.
dc.date.accessioned2025-05-15T14:21:28Z
dc.date.issued2022
dc.description.abstractA group is nilpotent if it has a normal series of a finite length n. By this notion, every finite p-group is nilpotent. The nilpotence property is an hereditary one. Thus, every finite p-group possesses certain remarkable characteristics. In this paper, the explicit formulae is given for the number of distinct fuzzy subgroups of the Cartesian product of the dihedral group of order 23 with a cyclic group of order of an m power of two for, which m ≥ 3.
dc.identifier.issn2717-3453
dc.identifier.urihttps://repository.ui.edu.ng/handle/123456789/10625
dc.language.isoen
dc.subjectFinite p-groups
dc.subjectNilpotent group
dc.subjectFuzzy subgroups
dc.subjectDihedral group
dc.subjectInclusion-exclusion principle
dc.subjectMaximal subgroups.
dc.titleThe Fuzzy Subgroups for the Nilpotent (P-Group) of (D23 × C2m) for M ≥ 3
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
(34) ui_art_adebisi_fuzzy_2022.pdf
Size:
651.55 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections