On the maximization of the likelihood function against Iogarithmic transformation

dc.contributor.authorObisesan, K. O.
dc.contributor.authorUdomboso, C. G.
dc.contributor.authorOsowole, O. I.
dc.contributor.authorAlaba, O. O.
dc.date.accessioned2021-05-25T09:22:37Z
dc.date.available2021-05-25T09:22:37Z
dc.date.issued2008
dc.description.abstractWe consider maximum likelihood estimation logarithmic transformation irrespective of mass of density functions. The estimators are assumed to be consistent, convergent and existing. They are referred to as asymptotically minimum-variance sufficient unbiased estimators (AMVSU). We find that the likelihood function gives accurate result when maximized than the log-likelihood. This is because logarithmic transformation has potential problems. We consider a uniform case where the parameter 0 cannot be estimated by calculus but order-statistics. We fit a truncated Poison distribution into data on damaged done after estimating λ by a Newton-Raphson Iterative Algorithm.en_US
dc.identifier.otherui_art_obisesan_on_2008
dc.identifier.otherWest African Journal of Biophysics and Biomathematics 1, pp. 33-45
dc.identifier.urihttp://ir.library.ui.edu.ng/handle/123456789/5325
dc.language.isoenen_US
dc.titleOn the maximization of the likelihood function against Iogarithmic transformationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
(11) ui_art_obisesan_on_2008.pdf
Size:
3.1 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections