Knowledge discovery in academic electronic resources using text mining
Date
2013-02
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Academic resources documents contain important knowledge and research results. They have highly quality information. However, they are lengthy and have much noisy results such that it takes a lot of human efforts to analyse. Text mining could be used to analyse these textual documents and extract useful information from large amount of documents quickly and automatically. In this paper, abstracts of electronic publications from African Journal of Computing and ICTs, an IEEE Nigerian Computer Chapter Publication were analysed using text mining techniques. A text mining model was developed and was used to analyse the abstracts collected. The texts were transformed into structured data in frequency form, cleaned up and the documents split into series of word features (adjectives, verbs, adverbs, nouns) and the necessary words were extracted from the documents. The corpus collected had 1637 words. The word features were then analysed by classifying and clustering them. The text mining model developed is capable of mining texts from academic electronic resources thereby identifying the weak and strong issues in those publications.
Description
Keywords
Text Mining, Academic Journals, Classification, Clustering, Document collection