Classifying a class of the fuzzy subgroups of the alternating groups A(n)

dc.contributor.authorOgiugo, M. E.
dc.contributor.authorEniOluwafe, M.
dc.date.accessioned2023-02-10T09:15:52Z
dc.date.available2023-02-10T09:15:52Z
dc.date.issued2017
dc.description.abstractThe aim of this paper is to classify the fuzzy subgroups of the alternating group. First, an equivalence relation on *the set of all fuzzy subgroups of a group G is defined. Without any equivalence relation on fuzzy subgroups of group G, the number of fuzzy subgroups is infinite, even for the trivial group. Explicit formulae for the number of distinct fuzzy subgroup of finite alternating group are obtained in the particular case n = 5. Some inequalities satisfied by this number are also established for n≥ 5.en_US
dc.identifier.issn1608-9324
dc.identifier.otherui_art_ogiugo_classifying_2017
dc.identifier.otherAfrican Journal of Pure and Applied Mathematics 4(1), pp. 27-33
dc.identifier.urihttp://ir.library.ui.edu.ng/handle/123456789/7910
dc.language.isoenen_US
dc.subjectFuzzy subgroupsen_US
dc.subjectChains of subgroupsen_US
dc.subjectMaximal chains of subgroupsen_US
dc.subjectAlternating groupsen_US
dc.subjectSymmetric groupsen_US
dc.subjectRecurrence relationsen_US
dc.titleClassifying a class of the fuzzy subgroups of the alternating groups A(n)en_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
(14) ui_art_ogiugo_classifying_2017.pdf
Size:
813.89 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections