Performance evaluation of classification algorithms on academic performance of postgraduate students
Date
2023-02
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Educational data mining has contributed to enhancing student academic performance by way of enabling stakeholders in academic institutions to have a pre-knowledge of the risks and dangers ahead and how to mitigate them. Prediction algorithms perform differently on dataset, and so, the need to develop models using different prediction algorithms and evaluating the result of such predictions is very important in order to be sure the best algorithm for a particular dataset is used. This work employed four classifiers: K-Nearest-Neighbour, Neural Network, Naïve Bayes and Decision Tree to model and, evaluated their models to know the performance of each on the target dataset. Their results were evaluated based on the various performance metrics. The results showed that Decision Tree had the highest accuracy on the dataset with test accuracy of 48.25% and therefore is the most suitable out of the four classifiers for performing prediction modelling on the dataset. Naïve Bayes is the second-best prediction model that can be used for predicting academic performance with an accuracy of 36.25%., followed by Neural Network with accuracy of 32.5 % and then K-Nearest Neighbour with accuracy of 32.5% but with lower precision, recall and area under Receiver Operating Characteristic curve.
Description
Keywords
Decision Tree, Educational Data mining, K-Nearest Neighbour, Neural Network, Naive Bayes