Frequentist and bayesian estimation of parameters of linear regression model with correlated explanatory variables

Abstract

This paper addressed the popular issue of collinearity among explanatory variables in the context of a multiple linear regression analysis, and the parameter estimations of both the classical and the Bayesian methods. Five sample sizes: 10, 25, 50, 100 and 500 each replicated 10,000 times were simulated using Monte Carlo method. Four levels of correlation p = 0.0,0.1,0.5, and 0.9 representing no correlation, weak correlation, moderate correlation and strong correlation were considered. The estimation techniques considered were; Ordinary Least Squares (OLS), Feasible Generalized Least Squares (FGLS) and Bayesian Methods. The performances of the estimators were evaluated using Absolute Bias (ABIAS) and Mean Square Error (MSE) of the estimates. In all cases considered, the Bayesian estimators had the best performance. It was consistently most efficient than the other estimators, namely OLS and FGLS

Description

Keywords

Multicollinearity, Bayesian estimation, Level of correlation, Feasible generalized least squares, Mean square error

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By