On counting subgroups for a class of finite nonabelian p-groups and related problems

dc.contributor.authorOlapade, O. O.
dc.contributor.authorEniOluwafe, M.
dc.date.accessioned2023-02-10T09:13:25Z
dc.date.available2023-02-10T09:13:25Z
dc.date.issued2017
dc.description.abstractThe main goal of this article is to review the work of Marius Tarnauceanu, where an explicit formula for the number of subgroups of finite nonabelian p-groups having a cyclic maximal subgroups was given. Using examples to clarify our work and in addition we give an explicit formula to some related problems.en_US
dc.identifier.issn1608-9324
dc.identifier.otherui_art_olapade_on_2017
dc.identifier.otherAfrican Journal of Pure and Applied Mathematics 4(1), pp. 34-43
dc.identifier.urihttp://ir.library.ui.edu.ng/handle/123456789/7909
dc.language.isoenen_US
dc.subjectFinite nonabelian p-groupsen_US
dc.subjectCyclic subgroupsen_US
dc.subjectNumber of subgroupsen_US
dc.subjectRecurrence relationen_US
dc.subjectCartesian productsen_US
dc.titleOn counting subgroups for a class of finite nonabelian p-groups and related problemsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
(15) ui_art_olapade_on_2017.pdf
Size:
851.24 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections