Ako, A.
Date
2019-09
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
This study presents an approach to extracting data from amazon dataset and performing some preprocessing on it by combining the techniques of Bi-Directional Long Short-Term Memory and 1-Dimensional Convolution Neural Network to classify the opinions into targets. After parsing the dataset and identifying desired information, we did some data gathering and preprocessing tasks. The feature selection technique was developed to extract structural features which refer to the content of the review (Parts of Speech Tagging) along with extraction of behavioral features which refer to the meta-data of the review. Both behavioral and structural features of reviews and their targets were extracted. Based on extracted features, a vector was created for each entity which consists of those features. In evaluation phase, these feature vectors were used as inputs of classifier to identify whether they were fake or non-fake entities. It could be seen that the proposed solution has over 90% of the predictions when compared with other work which had 77%. This increase was as a result of the combination of the bidirectional long short-term memory and the convolutional neural network algorithms.
Description
Keywords
Fake reviews detection, Opinion Spam, Behavioral features, Convolution Neural Network, Bi-Directional Long Short-Term Memory