FACULTY OF TECHNOLOGY
Permanent URI for this communityhttps://repository.ui.edu.ng/handle/123456789/269
Browse
2 results
Search Results
Item Physico-chemical, thermal and micro-structural characterization of four common banana pseudo- stem fiber cultivars in nigeria(Taylor and Francis group, 2023) Oyewo A.T.; Oluwole O.O.; Ajide O.O.; Omoniyi T.E.; Akhter P.; Hamayun M.H.; Kang B.S.; Park Y.K.; Hussain H.This study explores Banana pseudo-stem fiber (BPSF) derived from BPF cultivars that are common in Nigeria. The four cultivars are known locally as Agbagba, Omini, Panbola, and Paranta. This study characterized these cultivars to gain insight into their physical, thermal and microstructural properties. The BPSFs were obtained after manual BPS retting and treated with a 2 wt. % sodium hydroxide solution to improve the fiber quality. Data from the characterization revealed the agbagba cultivar to give the highest percentage recovery (3%) and thermal stability at elevated temperatures with a residual char of 14%. The percentage of cellulose, lignin, hemicellulose, and ash content were determined by chemical composition analysis. FTIR spectroscopy showed a lower lignin and hemicellulose absorption band in the agbagba cultivar while scanning electron microscopy supported the FTIR results. Agabagba’s crystallinity index (XRD) of 61.7% was higher than other cultivars, and X-ray fluorescence (XRF) and a biodegradation test also showed that only agbagba cultivar contained calcium and had the strongest resilience to microbial attack under simulated soil conditions. Agbagba BPSF may be a viable reinforcement in bio-fiber polymer composites needing high strength due to its balanced qualities that have been demonstrated in comparison to other cultivars.Item Valorized chicken feather as corrosion inhibitor for mild steel in drilling mud(2019) Akintola, S. A.; Oki, M.; Aleem, A. A.; Adediran, A. A.; Akpor, O. B.; Oluba, O. M.; Ogunsemi, B. T.; Ikubanni, P. P.Modified chicken feather reduced the corrosion rate of mild steel in drilling mud as deduced from electrochemical potentiodynamic polarization technique, albeit, with observed infestation of the test environment by microbes over protracted exposure period of 92 days. The corrosion rates with and without the addition of 0.3g of hydrolyzed feather per 100 ml of drilling mud were 1.70 and 1.95 mm/yr, respectively; which corresponded to inhibition efficiency of 13% over the immersion period. The corresponding charge transfer resistances, a measure of corrosion rates were 1480.4 and 1780.0 Ω, respectively; in the uninhibited and hydrolyzed-feather inhibited environments. The voltage over the double layer capacitor as obtained from the polarization studies numerical increased from -0.907 to -0.948 V which indicated adsorption of moieties in the inhibitor and probably some corrosion products on the surface of the mild steel specimen.