FACULTY OF PHARMACY
Permanent URI for this communityhttps://repository.ui.edu.ng/handle/123456789/271
Browse
2 results
Search Results
Item Formulation of metronidazole tablets using hydroxypropylated white yam (dioscorea rotundata) starch as the binding agent(IPEC-Americas Inc, 2017) Okunlola, A.; Alade, O. O.; Odeku, O. A.White yam starch obtained from the tubers of Dioscorea rotundata Poir was modified by hydroxypropylation and used as a binding agent in a metronidazole tablet formulation and compared with corn starch BP. The quantitative effects of the novel starch binder on the mechanical (tensile strength and friability) and release properties (disintegration and dissolution times) of the metronidazole tablet was analyzed using a full 23 factorial experimental design. The individual and interaction effects of type of starch binder (X1), concentration of binder (X2) and relative density (X3) on tensile strength, friability, disintegration time and dissolution time (t90) were determined. The ranking of the coefficients was X3 > X2 > X1 on T, X1 > X3 > X2 on F and X3 > X1 > X2 on DT and t90 (time for 90% drug release) indicating that the formulation variables influence the properties of metronidazole tablets to varying degrees. This indicates that the type and concentration of starch binder as well as the compression pressure employed in table formulation need to be carefully selected to obtain tablets with the desired mechanical and drug release properties. Hydroxypropyl white yam starch could be more useful as a binder especially when tablets require high mechanical strength and faster drug release are desired.Item Design of bilayer tablets using modified dioscorea starches as novel excipients for immediate and sustained release of aceclofenac soduim(Frontiers in Pharmacology, 2015-01) Okunlola, A.Bilayer tablets of aceclofenac sodium were developed using carboxymethylated white yam (Discorearotundata) starch (CWY)for a fast release layer (2.5, 5.0, and 7.5% w/w), and acid hydrolyzed bitter yam (Dioscoreadumetorum) starch (ABY) for a sustaining layer(27% w/w). Sodium starch glycolate (SSG) and hydroxypropyl methyl cellulose (HPMC) were used as standards. The starches were characterized using Fourier Transform Infrareds pectroscopy(FT- IR), particle size, swelling power, densities and flow analyses. Mechanical properties of the tablets were evaluated using crushing strength and friability while release properties were evaluated using disintegration and dissolution times. Distinctive fingerprint differences between the native and modified starches were revealed by FT-IR. Carboxymethylation produced starches of significantly (p<0.05) higher swelling and flow properties while acid- modification produced starches of higher compressibility. Bilayer tablets containing ABY had significantly higher crushing strength and lower friability values (p<0.05) than those containing HPMC. Crushing strength increased while friability values decreased with increase in CWY. Generally tablets containing the modified Dioscorea starches gave faster (p<0.05) disintegration times and produced an initial burst release to provide the loading dose of the drug from the immediate-release layer followed by sustained release (300±7.56– 450±11.55min). The correlation coefficient (R2) and chi- square (χ2) test were employed as error analysis methods to determine the best- fitting drug release kinetic equations. Invitro dissolution kinetics generally followed the Higuchi and Hixson- Crowell models via a non-Fickian diffusion-controlled release. Carboxymethylated white yam starch anda cid- modified bitter yam starch could serve as cheaper alternative excipients in bilayer tablet formulations for immediate and sustained release of drugs respectively, particularly where high mechanical strength is required.