FACULTY OF VETERINARY MEDICINE
Permanent URI for this communityhttps://repository.ui.edu.ng/handle/123456789/270
Browse
2 results
Search Results
Item Effects of ageratum conyzoides on semen characteristics and sperm morphology in rats exposed to sodium arsenite(Biomedical Communications Group, Ibadan, 2016-01) Ola-Davies, O.; Ajani, O. S.Arsenite is a major environmental toxicant that is well known to cause reproductive injury. The sperm protective potential of Ageratum conyzoides Linn in arsenic-treated rats was carried out in this study taking advantage of the antioxidant constituents and its androgenic activities. Twenty-four male albino rats aged 16 weeks, weighing 225 to 228g were used. They were grouped into 4(A-Da) with each group containing 6 rats. Group A was orally treated with 100mg/kg ethanol leaf extract of Ageratum conyzoides L., daily for 14 days, group B (single oral dose of sodium arsenite 2.5 mg/kg body weight), C (Ageratum conyzoides extract daily for 14 days and sodium arsenite (SA) given on the 14th day) and group D (Propylene glycol as negative control). It was observed that group B had a lower (p<0.05) percentage motility (26.7±6.67%) when compared across the groups while group A had a significantly higher (p<0.05) mean value (63.3±3.33%). The sperm motility of rats in group D was significantly higher (p<0.05) than groups B and C. This implies that A. conyzoides extract had no adverse effect on the sperm motility of the rats and also ameliorates the adverse effect of arsenite on sperm motility. The mean value obtained for sperm liveability, semen volume and Sperm concentration followed a similar pattern although, the differences were not significant (p>0.05) for semen volume and the Sperm concentration of rats across the groups. The total sperm abnormality obtained across the groups ranges between 10.44 and 14.27% with group B treated with sodium arsenite (SA) having the highest value when compared with groups A and D, although, the differences were not significant (P>0.05). The study concluded that ethanol leaf extract of Ageratum conyzoides has no negative effect on sperm motility, liveability characteristics and morphology and also protected spermatozoa against arsenic reproductive toxicity in Wistar strain albino rats.Item Acute sodium arsenite-induced hematological and biochemical changes in wistar rats: protective effects of ethanol extract of ageratum conyzoides(Wolters Kluwer - Medknow Publications, 2016) Ola-Davies, O. E.; Akinrinde, A. S.Background: Ageratum conyzoides L. (Asteraceae) is an annual herbaceous plant used in folklore medicine for the treatment of a wide range of diseases. Objective: To investigate the protective effect of the ethanol leaf extract of A. conyzoides (EEAC) against hematological, serum biochemical and histological alterations induced by Sodium arsenite administration to Wistar rats. Materials and Methods: Twenty male Wistar rats were randomly assigned into four groups of five rats each. Group I received propylene glycol and Group II rats were given the (EEAC, 100 mg/kg b.w.) orally for 7 days. Group III were given a single oral dose of sodium arsenite (NaAsO2, 2.5 mg/kg b.w.). Animals in Group IV were pretreated with 100 mg/kg EEAC for 7 days followed by a single oral dose of sodium arsenite. Results: Arsenic exposure resulted in significant reductions (P < 0.05) in values of packed cell volume (PCV), hemoglobin concentration (Hb) and red blood cell (RBC) count, and elevation in total white blood cell (WBC) count with insignificant reductions in serum total protein, albumin, and globulin levels. Alterations in aspartate aminotransferase, alanine transferase, alkaline phosphatase, and gamma glutamyl transferase activities, as well as in serum levels of urea, creatinine, glucose, cholesterol, and triglyceride levels, were not statistically significant. EEAC significantly restored (P < 0.05) the PCV, Hb, RBC, and WBC as well as serum albumin, globulin, and total protein to normal values. Conclusion: The results of this study indicate that EEAC possess strong potentials to protect against toxicities induced by sodium arsenite.